【大学物理】§51角动量转动惯量力矩共26页

合集下载

力矩、角动量定理和刚体.ppt

力矩、角动量定理和刚体.ppt

转动动能
1 2 Ek mi vi i 2 1 1 2 2 2 ( mi ri ) J 2 i 2
36
刚体绕定轴转动的动能定理 1 2 2 d d Jd W Md J 1 1 1 dt 2 1 1 2 2 W Md J 2 J1 1 2 2

相对不同参考点A、B,计算重力矩和角动量
参考点A: 重力矩 角动量 参考点B: 重力矩 角动量
A
v
mg
d1
M mgd 1
L0

d2
B
M mgd 1

L mvd2

(三)
质点对轴的角动量定理及守恒
dL z Mz dt
§4.2 质点系的角动量定理
1、质点系的角动量 2、质点系的角动量定理 3、角动量守恒 4、绕某一轴的圆周运动
该直线称作转轴。
对定轴转动的描述:角坐标。一个自由度。
刚体转动的角速度和角加速度 z 角坐标 (t )
沿逆时针方向转动 > 0 沿顺时针方向转动 < 0 角位移 (t t) (t) 角速度 角加速度
O
ω
d P(t)
r P’(.t+dt)
.
x
d lim t 0 t dt
I m r r dm
2 j j 2 j
dm:质量元 d V :体积元
r dV
2 V
说明 刚体的转动惯量与以下因素有关:
(1)与刚体的几何形状及质量分布有关. (2)与转轴的位置有关.
平行轴定理
质量为m 的刚体, 如果对其质心轴的转动 惯量为 I C ,则对任一与 该轴平行,相距为 d 的 转轴的转动惯量

角动量 角动量守恒定律大学物理

角动量 角动量守恒定律大学物理

对定轴转动的刚体 Miin 0 ,合外力矩
M
Miex
d dt
(
mi
ri
2
)
d(J
dt
)
d( J )
dL
M
dt dt
第3章 守恒定律
12
大学物
理学
第二版
t2 t1
Mdt
L2
L1
t2 t1
Mdt
L2
L1
当转轴给定时,作用在物体上的冲量 矩等于角动量的增量.——定轴转动的角 动量定理
第3章 守恒定律
然长度处以
垂直于弹簧运动,当
弹簧与初始位置垂直时,弹簧长度
v
求此时滑块的速度.
v0
第3章 守恒定律
图 3.4
大学物 理学
第二版
【解】 由角动量和机械能守恒
结论:对于有心力问题,系统对力心处的 角动量守恒.
第3章 守恒定律
大学物
理学
第二版
三、角动量守恒定律的应用
(1)常平架回转仪(陀螺仪) (2)直升飞机尾翼
质点角动量定理的推导
L r p r mv
dL
d
(r
p)
r
dp
dr
p
dt dt dr v,v p 0
dt dL
dt
r
dp
r
F
dt
dt
dt
第3章 守恒定律
4
大学物
理学
第二版
dL
M
dt
作用于质点的合外力对参考点 O 的力 矩,等于质点对该点 O 的角动量随时间的 变化率.
13
大学物
理学
第二版
对定轴转动的刚体,受合外力矩M,

大学物理角动量转动惯量及角动量的守恒定律93页PPT

大学物理角动量转动惯量及角动量的守恒定律93页PPT

26、要使整个人生都过得舒适、愉快,这是不可能的,因为人类必须具备一种能应付逆境的态度。——卢梭

27、只有把抱怨环境的心情,化为上进的力量,才是成功的保证。——罗曼·罗兰

28、知之者不如好之者,好之者不如乐之者。——孔子

29、勇猛、大胆和坚定的决心能够抵得上武器的精良。——达·芬奇

30、意志是一个强壮的盲人,倚靠在明眼的跛子肩上。——叔本华
大学物理角动量转动惯量及角动量的守 恒定律
56、死去何所道,托体同山阿。 57、春秋多佳日,登高赋新诗。 58、种豆南山下,草盛豆苗稀。晨兴 理荒秽 ,带月 荷锄归 。道狭 草木长 ,夕露 沾我衣 。衣沾 不足惜 ,但使 愿无违 。 59、相见无杂言,但道桑麻长。 60、迢迢新秋夕,亭亭月将圆。

谢谢!
93
ห้องสมุดไป่ตู้

大学物理第5章刚体的定轴转动

大学物理第5章刚体的定轴转动

d ctdt

对上式两边积分得
d c td t
0 0
t
1 2 ct 2
2 2 600π π 3 rad s 由给定条件, c 2 t 300 2 75
d π 2 由角速度的定义,则任意 t 时刻的角速度可写为: d t 150

得到: 转子转数:
A M d E K
a b
动能定理
动量定理
A F ds E K
动能定理 角动量定理 角动量 守恒
t 0Fdt P
t
动量守恒
F 0, P 0
t 0 M z dt Lz
t
M 0, L 0
§5.1 刚体、刚体运动
一、一般运动 二、刚体的定轴转动 三、解决刚体动力学问题的一般方法
基本方法: 加
质点系运动定理 刚体特性 平动:动量定理
刚体定轴转动的 动能定理 角动量定理
F mac
可以解决刚体的一般运动(平动加转动)
一、一般运动
1. 刚体 特殊的质点系, 形状和体积不变化 —— 理想化模型 在力作用下,组成物体的所有质点间的距离始终保持不变 2. 自由度 确定物体的位置所需要的独立坐标数 —— 物体的自由度数 z
刚体平面运动可看做刚体的平动与定轴转动的合成。 例如:车轮的滚动可以看成车轮随轮 轴的平动与绕轮轴的转动的组合。 描述刚体平面运动的自由度:3个
定点转动 刚体运动时,刚体上的一点固定不动,刚体绕过定点的一 瞬时转轴的转动,称作定点转动。
描述定点转动的自由度:3个
刚体的一般运动 质心的平动
+
绕质心的转动
z
描述刚体绕定轴转动的角量: 角坐标

转动惯量与角动量

转动惯量与角动量

转动惯量与角动量转动惯量和角动量是刚体在旋转运动中的重要物理量,它们之间存在着密切的关系。

本文将介绍转动惯量和角动量的定义、计算公式以及它们之间的相互关系。

一、转动惯量的定义和计算公式转动惯量是描述刚体对转动的惯性大小的物理量。

对于质量分布均匀的刚体,其转动惯量与质量的分布以及旋转轴的位置有关。

转动惯量的计算公式如下:I = ∫r²dm其中,I表示转动惯量,r表示质点到旋转轴的距离,dm表示质点的质量微元。

对于连续体,转动惯量可以通过对质量微元的积分来求得。

二、角动量的定义和计算公式角动量是描述刚体在旋转运动中旋转状态的物理量。

它的定义为:L = Iω其中,L表示角动量,I表示转动惯量,ω表示角速度。

角速度是描述刚体旋转角度改变的快慢程度的物理量。

三、转动惯量与角动量的关系转动惯量和角动量之间的关系可以由角动量定理来说明。

根据角动量定理,刚体所受合外力矩的变化率等于刚体的角动量。

τ = dL/dt其中,τ表示合外力矩,dL/dt表示角动量的变化率。

将角动量的定义代入上式得到:τ = d(Iω)/dt对上式进行求导,得到:τ = Iα其中,α表示角加速度。

由此可见,转动惯量与角动量之间存在线性关系,转动惯量越大,角动量的变化率越小。

四、应用举例1. 陀螺陀螺是一种利用转动惯量和角动量原理运动的玩具。

陀螺转动时,由于转动惯量的存在,它能够保持稳定的旋转状态,称为陀螺的进动。

进动现象是由于陀螺的角动量在地球重力的作用下发生变化。

2. 地球自转地球自转是地球沿着自身轴心旋转运动。

地球的自转轴决定了地球的转动惯量,也影响着地球的气候和地理现象。

地球的自转周期为大约24小时,使得地球上的一天分为白天和黑夜。

3. 运动员旋转在体育竞技中,某些项目需要运动员进行旋转动作。

运动员在旋转时,身体的转动惯量会影响旋转速度和稳定性。

通过调整身体的姿势和肌肉的协调运动,运动员可以实现更稳定和高效的旋转动作。

综上所述,转动惯量和角动量是刚体在旋转运动中的重要物理量。

力矩和角动量

力矩和角动量

05 力矩和角动量的关系
力矩和角动量的相互转化
力矩可以改变角动量的大小和方向
力矩和角动量之间存在相互转化的 关系
添加标题
添加标题
添加标题
添加标题
角动量也可以通过力矩产生旋转运 动
角动量守恒定律是力矩和角动量相 互转化的重要基础
力矩和角动量在转动过程中的变化
力矩改变角动量的方向
角动量守恒定律:在没有外 力矩作用的情况下,系统的
角动量保持不变
力矩改变角动量的大小
角动量定理:力矩对时间的 积分等于角动量的变化率
力矩和角动量在碰撞过程中的变化
力矩和角动量在碰撞前后的变化规律 力矩和角动量在碰撞过程中的相互作用 力矩和角动量在碰撞过程中的守恒定律 力矩和角动量在碰撞过程中的影响因素
感谢您的观看
汇报人:XX
力矩的单位是牛顿·米(N·m)
添加标题
添加标题
添加标题
添加标题
力矩等于力和力臂的乘积,计算公 式为 M=FL
力矩是矢量,具有方向性
力矩的单位和符号
力矩的单位是牛顿米(N·m)
力矩的符号是M
力矩的矢量性
力矩是矢量,具有大小和方向 力矩的大小等于力和力臂的乘积 力矩的方向垂直于力和力臂所在的直线 力矩的矢量性在物理中有重要应用,如动量守恒定律和角动量守恒定律
角动量守恒的应用
天体运动:行星、卫星和彗星等天体的运动遵循角动量守恒,保持旋转轴的方向不变。
陀螺仪:利用角动量守恒原理制成的陀螺仪,可以用来导航、控制和稳定物体姿态。
分子动理论:分子在不停地做无规则热运动,其动量(包括角动量)在不停地变化, 符合动量守恒定律。 机械系统:在某些机械系统中,例如钟表和自行车,角动量守恒定律可以用来分析和 优化系统的性能。

第八章角动量定理

第八章角动量定理
• 与空间各向同性相对应的守恒定律是角动量守 恒定律,它也是自然界中的基本规律之一。
第25页/共28页
思考题
• 8-1、简述角动量守恒定律,举出你所观察到的现象,并给以说明。 • 8-2、试用角动量守恒说明地球上有春夏秋冬之分的原因。 • 8-3、举出在天体运动中角动量守恒的表现。 • 8-4、试解释宇宙中星云的旋转盘状结构的成因。
第12页/共28页
直升飞机加尾翼的作用
• 当直升飞机机翼旋转 起来时,由角动量守 恒知机身将发生反向 的旋转,为了稳定机 身,常在直升飞机的 尾部加上一尾翼。还 可在直升飞机上加双 重反向旋转的机翼。
其 第13页/共28页 目的之一都是为了
直升飞机 的旋转机 翼
第14页/共28页
• 在跳水运动员的跳水过程, 运动员从跳板向前跃起时, 绕一通过质心的水平轴有 一角速度,从而具有绕通 过质心的水平轴的角动量。
质点绕定点转动的角动量
设有一个质量为m的质点位于A点,该点相对空间一定点O的位置 矢量为r,质点的速度为v,动量为mv,定义质点对O点的角动量L为
第2页/共28页
质点绕定点转动的角动量
第3页/共28页
质点作圆周运动的角动量
第4页/共28页
刚体绕定轴转动的角动量
刚体定轴转动的角动量L等于刚体对 定轴的转动惯量J和角速度ω的乘积
第26页/共28页
第27页/共28页
感谢您的观看!
第28页/共28页
第8页/共28页
角动量守恒矩为零时,系统的总角动量保持不变。
第9页/共28页
角动量守恒的表现
• 为什么当把哑铃收拢在胸前时,女 孩的旋转速度加快?你在冰上运动 和芭蕾舞表演中看到过类似的现象 吗?
第10页/共28页

大学物理-刚体绕定轴转动的角动量

大学物理-刚体绕定轴转动的角动量

M J
p mivi
角动量
L J
角动量定理 M d(J)
dt
质点的运动规律与刚体的定轴转动规律的比较(续)
质点的运动
动量守恒 力的功 动能
Fi 0时
mivi 恒量
Aab
b
F
dr
a
Ek
1 2
mv
2
动能定理
A
1 2
mv
2 2
1 2
mv12
重力势能
Ep mgh
机械能守恒
A外 A非保内 0时
进动特性的技术应用
翻转
外力
C
外力
进动
C
炮弹飞行姿态的控制:炮弹在飞行时,空气阻力对炮弹质心 的力矩会使炮弹在空中翻转;若在炮筒内壁上刻出了螺旋线 (称之为来复线),当炮弹由于发射药的爆炸所产生的强大 推力推出炮筒时,炮弹还同时绕自己的对称轴高速旋转。由 于这种自转作用,它在飞行过程中受到的空气阻力将不能使 它翻转,而只能使它绕着质心前进的方向进动。
pA pB
pA A
Bp B
s
s
O
x
结论:静止流体中任意两等高点的压强相等,即压强差为零。 若整个流体沿水平方向加速运动? 加速运动为a,压强差为?
2. 高度相差为 h 的两点的压强差(不可压缩的流体)
选取研究对象,受力分析:(侧面?)
沿 y 方向:
p C
Y C s
pB s pC s mg may
已知:p0=1.013×105 Pa , 0 1.29kg / m3
解 由等温气压公式
p
p e(0g / p0 ) y 0
0g 1.25104 m1
p0
p1 1.0 105 e1.251043.6103 0.64 105 Pa
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档