有限元法理论及应用参考答案

合集下载

有限单元法考试题及答案

有限单元法考试题及答案

有限单元法考试题及答案一、选择题1. 有限元法是一种用于求解偏微分方程的数值方法,其基本思想是将连续域离散化成有限个互不重叠的子域。

这种说法正确吗?A. 正确B. 错误答案:A2. 在有限元法中,单元的选取通常遵循以下哪个原则?A. 单元越小越好B. 单元越大越好C. 单元大小应根据问题的具体需求来确定D. 单元大小固定不变答案:C3. 有限元分析中,边界条件的处理方式不包括以下哪一项?A. 强制边界条件B. 自然边界条件C. 忽略边界条件D. 周期性边界条件答案:C4. 在有限元法中,下列哪个不是常用的单元类型?A. 三角形单元B. 四边形单元C. 六面体单元D. 圆形单元答案:D5. 有限元法中,形函数的作用是什么?A. 描述单元的几何形状B. 描述单元的物理属性C. 用于构建单元的局部刚度矩阵D. 用于描述单元内部的位移场答案:D二、简答题1. 简述有限元法的基本步骤。

答案:有限元法的基本步骤包括:定义问题域和边界条件,划分网格,选择单元类型,定义形函数,组装全局刚度矩阵,施加边界条件,求解线性方程组,提取结果。

2. 有限元法中,局部刚度矩阵是如何构建的?答案:局部刚度矩阵是通过单元的形函数和材料属性来构建的。

首先,根据单元的形函数和材料属性,计算单元的应变和应力。

然后,利用应变和应力,通过积分得到单元的局部刚度矩阵。

三、计算题1. 给定一个简单的一维弹性杆问题,其长度为L,两端固定,中间受力P。

请使用有限元法求解该杆的位移和应力分布。

答案:首先,将杆划分为若干个单元,每个单元的长度为Δx。

然后,为每个单元定义形函数,通常是线性形函数。

接着,根据形函数和材料属性(如杨氏模量E),构建每个单元的局部刚度矩阵。

将所有单元的局部刚度矩阵组装成全局刚度矩阵。

由于杆两端固定,边界条件为位移为零。

最后,将力P施加到中间节点,求解全局刚度矩阵对应的线性方程组,得到节点位移。

应力可以通过位移和形函数计算得到。

有限元法理论及其应用第一次作业

有限元法理论及其应用第一次作业

1、 证明3节点三角形单元的插值函数满足
(,)i j j i j N x y δ= 及1i j m N N N ++=
2、如图1所示3节点直角三角形单元,厚度为t,弹性模量是E ,泊松比ν=0。

设坐标原点在节点3。

试求:形函数矩阵N ,应变矩阵B ,应力矩阵S ,单元刚度矩阵e K 。

验证e
K 的性质。


从T3单元刚度矩阵公式来分析为什么e K 元素与单元大小和在坐标系中的位置无关?
图1
3、如图2所示单元在jm 边作用有线性分布的面载荷(x 方向),试求:单元等效节点载荷向量。

图2
4、如图3所示一根直杆,长度2L ,截面积A ,弹性模量E ,杆受到轴向的线分布力:q cx =。

试用2个2节点一维杆单元求解其位移、应力。

要求推导详细的有限元求解列式,设置合理的参数将求解结果绘制成曲线,并与精确解进行对比分析。

图3。

有限元习题及答案ppt课件

有限元习题及答案ppt课件

病原体侵入机体,消弱机体防御机能 ,破坏 机体内 环境的 相对稳 定性, 且在一 定部位 生长繁 殖,引 起不同 程度的 病理生 理过程
病原体侵入机体,消弱机体防御机能 ,破坏 机体内 环境的 相对稳 定性, 且在一 定部位 生长繁 殖,引 起不同 程度的 病理生 理过程
病原体侵入机体,消弱机体防御机能 ,破坏 机体内 环境的 相对稳 定性, 且在一 定部位 生长繁 殖,引 起不同 程度的 病理生 理过程
病原体侵入机体,消弱机体防御机能 ,破坏 机体内 环境的 相对稳 定性, 且在一 定部位 生长繁 殖,引 起不同 程度的 病理生 理过程
病原体侵入机体,消弱机体防御机能 ,破坏 机体内 环境的 相对稳 定性, 且在一 定部位 生长繁 殖,引 起不同 程度的 病理生 理过程
病原体侵入机体,消弱机体防御机能 ,破坏 机体内 环境的 相对稳 定性, 且在一 定部位 生长繁 殖,引 起不同 程度的 病理生 理过程
病原体侵入机体,消弱机体防御机能 ,破坏 机体内 环境的 相对稳 定性, 且在一 定部位 生长繁 殖,引 起不同 程度的 病理生 理过程
病原体侵入机体,消弱机体防御机能 ,破坏 机体内 环境的 相对稳 定性, 且在一 定部位 生长繁 殖,引 起不同 程度的 病理生 理过程
病原体侵入机体,消弱机体防御机能 ,破坏 机体内 环境的 相对稳 定性, 且在一 定部位 生长繁 殖,引 起不同 程度的 病理生 理过程
病原体侵入机体,消弱机体防御机能 ,破坏 机体内 环境的 相对稳 定性, 且在一 定部位 生长繁 殖,引 起不同 程度的 病理生 理过程
病原体侵入机体,消弱机体防御机能 ,破坏 机体内 环境的 相对稳 定性, 且在一 定部位 生长繁 殖,引 起不同 程度的 病理生 理过程

有限元答案

有限元答案

有限元答案1.1有限单元法中“离散”的含义是什么?有限单元法是如何将具有无限自由度的连续介质问题转变成有限自由度问题的?位移有限元法的标准化程式是怎样的?(1)离散的含义即将结构离散化,即用假想的线或面将连续体分割成数目有限的单元,并在其上设定有限个节点;用这些单元组成的单元集合体代替原来的连续体,而场函数的节点值将成为问题的基本未知量。

(2)给每个单元选择合适的位移函数或称位移模式来近似地表示单元内位移分布规律,即通过插值以单元节点位移表示单元内任意点的位移。

因节点位移个数是有限的,故无限自由度问题被转变成了有限自由度问题。

(3)有限元法的标准化程式:结构或区域离散,单元分析,整体分析,数值求解。

1.3单元刚度矩阵和整体刚度矩阵各有哪些性质?各自的物理意义是什么?两者有何区别?单元刚度矩阵的性质:对称性、奇异性(单元刚度矩阵的行列式为零)。

整体刚度矩阵的性质:对称性、奇异性、稀疏性。

单元Kij物理意义Kij即单元节点位移向量中第j个自由度发生单位位移而其他位移分量为零时,在第j个自由度方向引起的节点力。

整体刚度矩阵K中每一列元素的物理意义是:要迫使结构的某节点位移自由度发生单位位移,而其他节点位移都保持为零的变形状态,在所有个节点上需要施加的节点荷载。

2.2什么叫应变能?什么叫外力势能?试叙述势能变分原理和最小势能原理,并回答下述问题:势能变分原理代表什么控制方程和边界条件?其中附加了哪些条件?(1)在外力作用下,物体内部将产生应力ζ和应变ε,外力所做的功将以变形能的形式储存起来,这种能量称为应变能。

(2)外力势能就是外力功的负值。

(3)势能变分原理可叙述如下:在所有满足边界条件的协调位移中,那些满足静力平衡条件的位移使物体势能泛函取驻值,即势能的变分为零δΠp=δUε+δV=0此即变分方程。

对于线性弹性体,势能取最小值,即δ2ΠP=δ2Uε+δ2V≧0此时的势能变分原理就是著名的最小势能原理。

有限元分析及应用习题答案

有限元分析及应用习题答案

有限元分析及应用习题答案有限元分析及应用习题答案有限元分析是一种广泛应用于工程领域的数值计算方法,可以用来解决各种结构力学问题。

在学习有限元分析的过程中,习题是非常重要的一部分,通过解答习题可以巩固理论知识,提高应用能力。

本文将给出一些有限元分析及应用的习题答案,希望对读者有所帮助。

1. 什么是有限元分析?有限元分析的基本步骤是什么?有限元分析是一种通过将结构划分为有限数量的子域,然后对每个子域进行数值计算,最终得到整个结构的应力、应变等力学参数的方法。

其基本步骤包括:建立有限元模型、选择适当的数学模型、进行数值计算、分析计算结果。

2. 有限元分析的优点是什么?有限元分析具有以下优点:- 可以处理任意形状的结构,适用范围广。

- 可以考虑材料非线性、几何非线性等复杂情况。

- 可以对结构进行优化设计,提高结构的性能。

- 可以得到结构的应力、应变等力学参数分布,为工程实际应用提供参考。

3. 有限元分析中的单元是什么?常见的有哪些类型?有限元分析中的单元是指将结构划分为有限数量的子域,每个子域称为一个单元。

常见的单元类型有:- 一维单元:如梁单元、杆单元等,适用于解决一维结构问题。

- 二维单元:如三角形单元、四边形单元等,适用于解决平面或轴对称问题。

- 三维单元:如四面体单元、六面体单元等,适用于解决立体结构问题。

4. 如何选择适当的单元类型?选择适当的单元类型需要考虑结构的几何形状、边界条件、材料性质等因素。

一般来说,对于简单的结构,可以选择较简单的单元类型;对于复杂的结构,需要选择更复杂的单元类型。

此外,还需要根据具体问题的要求和计算资源的限制进行选择。

5. 有限元分析中的边界条件有哪些类型?有限元分析中的边界条件包括:- 位移边界条件:指定某些节点的位移或位移的导数。

- 力边界条件:施加在结构上的外力或力矩。

- 约束边界条件:限制某些节点的位移或位移的导数为零。

6. 有限元分析中的材料模型有哪些?有限元分析中常用的材料模型有:- 线性弹性模型:假设材料的应力与应变之间存在线性关系。

有限元法理论及应用参考答案(推荐文档)

有限元法理论及应用参考答案(推荐文档)

有限元法理论及应用大作业1、试简要阐述有限元理论分析的基本步骤主要有哪些?答:有限元分析的主要步骤主要有:(1)结构的离散化,即单元的划分;(2)单元分析,包括选择位移模式、根据几何方程建立应变与位移的关系、根据虚功原理建立节点力与节点位移的关系,最后得到单元刚度方程;(3)等效节点载荷计算;(4)整体分析,建立整体刚度方程;(5)引入约束,求解整体平衡方程。

2、有限元网格划分的基本原则是什么?指出图示网格划分中不合理的地方。

题2图答:一般选用三角形或四边形单元,在满足一定精度情况,尽可能少一些单元。

有限元划分网格的基本原则:1.拓扑正确性原则。

即单元间是靠单元顶点、或单元边、或单元面连接2.几何保持原则。

即网络划分后,单元的集合为原结构近似3.特性一致原则。

即材料相同,厚度相同4.单元形状优良原则。

单元边、角相差尽可能小5.密度可控原则。

即在保证一定精度的前提下,网格尽可能的稀疏一些。

(a)(b)中节点没有有效的连接,且(b)中单元边差相差很大。

(c)中没有考虑对称性,单元边差很大。

3、分别指出图示平面结构划分为什么单元?有多少个节点?多少个自由度?题3图答:(a )划分为杆单元, 8个节点,12个自由度。

(b )划分为平面梁单元,8个节点,15个自由度。

(c )平面四节点四边形单元,8个节点,13个自由度。

(d )平面三角形单元,29个节点,38个自由度。

4、什么是等参数单元?。

答:如果坐标变换和位移插值采用相同的节点,并且单元的形状变换函数与位移插值的形函数一样,则称这种变换为等参变换,这样的单元称为等参单元。

5、在平面三节点三角形单元中,能否选取如下的位移模式,为什么?(1).⎪⎩⎪⎨⎧++=++=26543221),(),(y x y x v yx y x u αααααα (2). ⎪⎩⎪⎨⎧++=++=2652423221),(),(yxy x y x v yxy x y x u αααααα 答:(1)不能,因为位移函数要满足几何各向同性,即单元的位移分布不应与人为选取的 坐标方位有关,即位移函数中的坐标x,y 应该是能够互换的。

有限单元法考试题及答案

有限单元法考试题及答案一、选择题(每题2分,共10分)1. 有限单元法中,单元刚度矩阵的计算是基于()。

A. 位移法B. 能量法C. 虚功原理D. 变分法答案:C2. 在有限单元法中,节点位移向量通常表示为()。

A. 位移向量B. 速度向量C. 加速度向量D. 力向量答案:A3. 有限单元法中,边界条件的处理方式是()。

A. 通过增加约束方程B. 通过减少未知数C. 通过增加未知数D. 通过修改单元刚度矩阵答案:A4. 在有限单元法中,单元的类型不包括以下哪一项()。

A. 三角形单元B. 四边形单元C. 六面体单元D. 五边形单元答案:D5. 有限单元法中,用于解决非线性问题的方法是()。

A. 直接迭代法B. 牛顿-拉夫森法C. 有限差分法D. 有限体积法答案:B二、填空题(每题2分,共10分)1. 有限单元法中,单元的局部刚度矩阵可以通过______方法得到。

答案:能量法2. 在有限单元法中,节点的自由度数量等于______。

答案:单元的维度3. 有限单元法中,边界条件的施加可以通过______实现。

答案:修改节点位移4. 有限单元法中,单元的类型包括______和四边形单元。

答案:三角形单元5. 有限单元法中,非线性问题的处理通常需要______。

答案:迭代求解三、简答题(每题10分,共20分)1. 简述有限单元法在结构分析中的应用。

答案:有限单元法在结构分析中主要用于模拟结构的力学行为,如应力、应变分布,以及结构的变形。

通过将结构划分为有限数量的小单元,建立单元的刚度矩阵,然后通过组装和施加边界条件,求解结构的位移场和应力场。

2. 描述有限单元法中单元刚度矩阵的计算步骤。

答案:单元刚度矩阵的计算步骤包括:(1) 确定单元的形函数;(2)计算单元的应变矩阵;(3) 根据材料性质计算应力矩阵;(4) 利用应变矩阵和应力矩阵计算单元的刚度矩阵;(5) 考虑单元的边界条件和连接条件,进行必要的矩阵组装。

有限元法基础习题答案

有限元法基础习题答案有限元法是一种常用的工程分析方法,广泛应用于结构力学、热传导、流体力学等领域。

它通过将复杂的物理问题离散化为一系列简单的子问题,并利用数值方法求解这些子问题,从而得到整体问题的近似解。

在学习有限元法的过程中,习题是必不可少的一环。

本文将给出一些有限元法基础习题的答案,希望能够帮助读者更好地理解和掌握这一方法。

习题一:一维线性弹性力学问题考虑一根长度为L的弹性杆,杆的截面积为A,杨氏模量为E。

在杆的一端施加一个沿杆轴向的拉力F,另一端固定。

假设杆轴向变形u(x)满足以下方程:EAu''(x) = -F,0 < x < Lu(0) = 0, u(L) = 0其中,u''(x)表示u(x)对x的二阶导数。

解答:根据上述方程,我们可以得到杆的位移函数u(x)的表达式。

首先,对方程两边进行积分,得到:EAu'(x) = -Fx + C1其中,C1为积分常数。

再次对方程两边进行积分,得到:EAu(x) = -F/2*x^2 + C1*x + C2其中,C2为积分常数。

根据边界条件u(0) = 0,可得C2 = 0。

代入边界条件u(L) = 0,可得:EAu(L) = -F/2*L^2 + C1*L = 0由此可得C1 = F/2*L。

将C1代入上式,可得:EAu(x) = -F/2*x^2 + F/2*L*x最终得到杆的位移函数u(x)的表达式为:u(x) = (-F/2*E)*(x^2 - L*x),0 < x < L习题二:二维平面弹性力学问题考虑一个正方形薄板,边长为L,板的厚度为h。

假设薄板的杨氏模量为E,泊松比为ν。

在薄板的一侧施加一个沿法向的均匀表面压力P,另一侧固定。

求薄板的位移和应力分布。

解答:根据平面弹性力学理论,我们可以得到薄板的位移和应力分布。

首先,根据杨氏模量E、泊松比ν和薄板的厚度h,可以计算出薄板的弹性模量D:D = E*h^3 / (12*(1-ν^2))接下来,根据薄板的边界条件和平衡方程,可以得到薄板的位移和应力分布。

《有限单元法》1-5章课后习题答案

2
δδ∏00且或∏,泛函极值性对于判断解的近似性质有意义,利用它可以对解的上下界做出估计。
思考题1.9什么是里兹法?通过它建立的求解方法有什么特点?里兹方法收敛性的定义是
什么?收敛条件是什么?
里兹法:在某一函数空间寻找试探函数,利用加权值的独立变分性将该函数的驻值问题转化
为该函数关于权值的极值问题。其特点是:试探函数是全域的,解的精度依赖于试探函数的
5qL L 5qL
wx L x当x , w
5 4
120EI + kl 2 480EI + 4kL
4
L 5qL
精确解w ???,应该是三角级数更接近精确解。因为是最小位能原理建立的
2 384EI
泛函,因此近似解比精确解要偏小。因此只要比较三角函数和幂函数的结果,就可以知道哪
个更精确了。另外,取不同的阶数,逼近速度不同,三角函数更快。
可得最终结果(略)。3 2 2 2 w ww ww
δδw n ds?+ n dsδ dxdy?
xx?∫∫3 2∫2 2
ΓΓ?x xx ?x ?x? 2 2 2 3? ww ?
+δ dxdy?+δδ n ds w n ds? y y
∫22∫2∫2ΓΓ
?y ?x ?y ?x y xD?
0
2 2 2 3 ww ?
12
23
L LL
3
x
上式中的最后一项前面没有待定系数,这是由于使用了在xL处φ1的强制边界条件。
3
L
从物理意义上说,相当于给定边界条件的解为齐次方程的通解加一个特解的缘故。将(1 )
式代入教材(1.2.26 )式,得到残量:
x 66 xx
R x a ?6 + a 2? + + Qx

高等有限元课后题答案 (1)

2 弹性力学问题的有限单元法思考题2.1 有限元法离散结构时为什么要在应力变化复杂的地方采用较密网格,而在其他地方采用较稀疏网格?答:在应力变化复杂的地方每一结点与相邻结点的应力都变化较大,若网格划分较稀疏,则在应力突变处没有设置结点,而使得所求解的误差很大,若网格划分较密时,则应力变化复杂的地方可以设置更多的结点,从而使得所求解的精度更高一些。

2.2 因为应力边界条件就是边界上的平衡方程,所以引用虚功原理必然满足应力边界条件,对吗?答:对。

2.3 为什么有限元只能求解位移边值问题和混合边值问题?弹性力学中受内压和外压作用的圆环能用有限元方法求解吗?为什么?答:有限元法是一种位移解法,故只能求解位移边值问题和混合边值问题。

而应力边值问题没有确定的位移约束,不能用位移法求解,所以也不能用有限元法求解。

2.4 矩形单元旋转一个角度后还能够保持在单元边界上的位移协调吗?答:能。

矩形单元的插值函数满足单元内部和单元边界上的连续性要求,是一个协调元。

矩形的插值函数只与坐标差有关,旋转一个角度后各个结点的坐标差保持不变,所以插值函数保持不变。

因此矩形单元旋转一个角度后还能够保持在单元边界上的位移协调。

2.5 总体刚度矩阵呈带状分布,与哪些因素有关?如何计算半带宽? 答:因素:总体刚度矩阵呈带状分布与单元内最大结点号与最小结点号的差有关。

计算:设半带宽为B ,每个结点的自由度为n ,各单元中结点整体码的最大差值为D ,则B=n(D+1),在平面问题中n=2。

2.6 为什么单元尺寸不要相差太大,如果这样,会导致什么结果? 答:由于实际工程是一个二维或三维的连续体,将其分为具有简单而规则的几何单元,这样便于网格计算,还可以通过增加结点数提高单元精度。

在几何形状上等于或近似与原来形状,减小由于形状差异过大带来的误差。

若形状相差过大,使结构应力分析困难加大,误差同时也加大。

2.7 剖分网格时,在边界出现突变和有集中力作用的地方要设置结点或单元边界,试说明理由。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

有限元法理论及应用大作业1、试简要阐述有限元理论分析的基本步骤主要有哪些?答:有限元分析的主要步骤主要有:(1)结构的离散化,即单元的划分;(2)单元分析,包括选择位移模式、根据几何方程建立应变与位移的关系、根据虚功原理建立节点力与节点位移的关系,最后得到单元刚度方程;(3)等效节点载荷计算;(4)整体分析,建立整体刚度方程;(5)引入约束,求解整体平衡方程。

2、有限元网格划分的基本原则是什么?指出图示网格划分中不合理的地方。

题2图答:一般选用三角形或四边形单元,在满足一定精度情况,尽可能少一些单元。

有限元划分网格的基本原则:1.拓扑正确性原则。

即单元间是靠单元顶点、或单元边、或单元面连接2.几何保持原则。

即网络划分后,单元的集合为原结构近似3.特性一致原则。

即材料相同,厚度相同4.单元形状优良原则。

单元边、角相差尽可能小5.密度可控原则。

即在保证一定精度的前提下,网格尽可能的稀疏一些。

(a)(b)中节点没有有效的连接,且(b)中单元边差相差很大。

(c)中没有考虑对称性,单元边差很大。

3、分别指出图示平面结构划分为什么单元?有多少个节点?多少个自由度?题3图答:(a )划分为杆单元, 8个节点,12个自由度。

(b )划分为平面梁单元,8个节点,15个自由度。

(c )平面四节点四边形单元,8个节点,13个自由度。

(d )平面三角形单元,29个节点,38个自由度。

4、什么是等参数单元?。

答:如果坐标变换和位移插值采用相同的节点,并且单元的形状变换函数与位移插值的形函数一样,则称这种变换为等参变换,这样的单元称为等参单元。

5、在平面三节点三角形单元中,能否选取如下的位移模式,为什么?(1).⎪⎩⎪⎨⎧++=++=26543221),(),(y x y x v yx y x u αααααα (2). ⎪⎩⎪⎨⎧++=++=2652423221),(),(yxy x y x v yxy x y x u αααααα 答:(1)不能,因为位移函数要满足几何各向同性,即单元的位移分布不应与人为选取的 坐标方位有关,即位移函数中的坐标x,y 应该是能够互换的。

所以位移多项式应按巴斯卡三角形来选择。

(2)不能,位移函数应该包括常数项和一次项。

6、设位移为线性变化,将图示各单元边上的载荷等效到相应的节点上去。

(1)集中力F 平行于x 轴,e 点到i 、j 点的距离分别为lie ,lje ; (2)边长为lij 的ij 边上有线性分布载荷,最大值为q 。

题6图答:(1)⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡+-=0jeie ie ja l l l FF ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡+-=0je ie je ia l l l F F (2)i,j 两节点受到的力分别为ij ql 61,ij ql 31⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=θθcos 61sin 61ij ij i ql ql P ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=θθcos 31sin 31ij ij jql ql P 7、图示三角形ijm 为等边三角形单元,边长为l,单位面积材料密度位ρ,集中力F 垂直作用于mj 边的中点,集度为q 的均布载荷垂直作用于i m 边。

写出三角形单元的节点载荷向量。

题7图 题8图答:将q 移置到m,i 节点:⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡-=ql ql P m 41431 ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡-=ql ql P i 41431将F 移置到m,j 两节点:⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡--=F F P m 41432 ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡--=F F P j 41432 将重力移置到i,j,m 点:33231230j i m P P l P ==⎥⎥⎦⎤⎢⎢⎣⎡-=ρ叠加后得:⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡----=212341414343l F ql F ql P m ρ ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡--=21234143l ql ql P i ρ ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡---=21234143l F F P j ρ8、如图所示为线性位移函数的三角形单元,若已知i 、j 两个节点的位移为零,试证明ij 边上任意一点的位移都为零。

证:设ij 边上任一点坐标为x,y ,则其位移为:∵i 、j 点位移为0 ∴所以u i ,v i ,u j ,v j 均为0 要证 {δ}=0,只需证 N m =0∵N m =(a m +b m x +c m y)/2A ,a m =x i y j -x j y i ,b m =y i -y j ,c m =x j -x i ∴N m = [x i y j -x j y i +(y i -y j )x+(x j -x i )y]/2A=[xy i -yx i ]/2A ∵该点为ij 边上任一点 ∴y i /x i =y/x ∴Nm = 09、已知图示的三角形单元,其jm 边和mi 边边长均为a ,单元厚度为t ,弹性模⎪⎪⎪⎪⎭⎪⎪⎪⎪⎬⎫⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧⎥⎦⎤⎢⎣⎡=m m j j i i m jim j iv u v u v u N N N N N N 0000}{δ量为E ,泊松比为μ=0,试求: (1)行函数矩阵N ; (2)应变矩阵B ; (3)应力矩阵S ; (4)单元刚度矩阵K 。

解:令m 点为坐标原点,则m 点坐标为(0,0),j 点坐标为(0,a ),i 点坐标为(a,0)0a =-=j m m j i y x y x ,0=-=m i i m j y x y x a ,2a y x y x a i j j i m =-=a y yb m j i =-=,0=-=i m j y y b ,a y y b j i m -=-=; 0=-=j m i x xc ,a x x c m i j =-=,a x x c i j m -=-=.m j i y c x b a A N i i i i ,,),(21++=x a ax a N i 1*12==,y a ay a N j 1*12==,)(1)(*122y x a a ay ax a aN m --=--=⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡=y -x -a 0y0x 00y -x -a 0y 0x 1N 0N 0N 00N 0N 0N m jim j ia N ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡∆=110101010100100001100000000001000000212a a a a a a a a a a b c c b b c c b b c c b B m m mm jj jj ii i i ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡--=10002000222100010112E E D μμμμ[][][]⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----⋅⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡==120102020100100002211010101010010000111000200022a E a E B D S [][][][]21101010101001000011100020002211010101010010000112a t a E a t B D B K TT e⋅⋅⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----⋅⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⋅⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----=∆=⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎣⎡------------=3121302021101100201101101101100200024Et题9图 题10图10、如图所示,设桁架杆的长度为l,截面积为A ,材料弹性模量为E ,单元的位移函数为u (x)=α1+α2x ,导出其单元刚度矩阵。

答::1点:x=0 u=u12点: x=l u=u2⎩⎨⎧+==l u u 21211ααα ⎪⎩⎪⎨⎧-==l u l u u 12211αα lx N l x u lxu l x x l u l u u u =⎪⎭⎫ ⎝⎛-=+⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛-+=2121121;1N 1令[]⎭⎬⎫⎩⎨⎧=+=21212211u u N N u N u N u dxdudx u du u =-+=ε{}{}[]{}eeeB l l l x l x dx d δδδ=⎥⎥⎦⎤⎢⎢⎣⎡-=⎥⎦⎤⎢⎣⎡-=111[]{}{}[]{}eee S l E lEB E E δδδεσ=⎥⎥⎦⎤⎢⎢⎣⎡-=== [K] e=∫∫V[B]T[D][B]dv[D] -----为弹性矩阵(对于一维问题,为E)⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡--=⎥⎦⎤⎢⎣⎡-⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=⎰22220e1111[K]l EA l EA l EA l EAAdxl l E l l l11、如图为一悬臂梁,其厚度为1m ,长度为2 m ,高度为1 m ,弹性模量为E ,泊松比为μ=1/3,在自由端面上作用有均匀载荷,合力为F ,若用图示两个三角形单元进行有限元分析,试计算各个节点的位移;若将悬臂梁离散为四个平面三角形单元,令μ=0,试求整体刚度矩阵。

解:离散为两个单元求各节点位移,假设t 很小,则该问题为平面应力问题: 一、单元编号、节点坐标各节点的坐标为:1(0,0),2(2,0),3(2,1),4(0,1)面积A=1; 二、求单元刚度矩阵(1)对单元① (i=1,j=2,m=4)由ai=xjym-xmyj bi=yi-ym ci=xm-xj 得 b1= -1 c1=-2 b2=1 c2=0 b4=0 c4=2由[]⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-+-+-+-+-=s r s r sr s r s r s r s r s r rs b b c c cb bc b c c b c c b b A Et k 21212121)1(42μμμμμμμ r,s = i,j,m 令329)1(42EtA Et P =-=μ 得:⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=37343437][11P k ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----=3132321][12P k ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----=4323234][14P k ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----=3132321][21P k ⎥⎥⎦⎤⎢⎢⎣⎡=31001][22P k ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=032320][24P k ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----=4323234][41P k ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=032320][42P k ⎥⎥⎦⎤⎢⎢⎣⎡=40034][44P k ⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡----------------=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡403243203432032340323103132320013214323132373432343213437444241242221141211P k k k k k k k k k (1)、对单元② (i=2,j=3,m=4)同理求得:b2 = 0 c2 = -2 b3 = 1 c3 = 2 b4 = -1 c4=0求得:⎥⎥⎦⎤⎢⎢⎣⎡=40034][22P k ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----=4323234][23P k ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=032320][24P k ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=313343437][33P k ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----=3132321][34P k ⎥⎥⎦⎤⎢⎢⎣⎡=31001][44P k可得单元②的单元刚度矩阵:⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡----------------=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=310313203201321320313231334432321343732303243240320323403444434234333223232224k k k k k k k k k P k 三、整理刚度矩阵将两个单元刚度矩阵的子矩阵对号入座,组成整体刚度矩阵⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡--------------------------------=31303132034432037321340323431323133443200321343732340003443231303132340323403732143200313237343234003213437][P K 四、单元等效节点力和整体等效节点载荷∵单元①不受分布力作用 ∴{R} ① = 0单元②有分布力F/t 作用,利用tds q N R l T⎰=}{][}{②ds F N tds t F N L T L T⎰⎰⎥⎦⎤⎢⎣⎡==0][}{][ds F L LjL L L L L Tm im j i⎰⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡=000000 ∵ij 边上 Lm = 0∴ds F Lj L L LR L Tij i⎰⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡=000000000}{② []ds L L F R LTji⎰=0000}{②由l ds L L Lj i ⋅++=⎰)!1(!!βαβαβα 得2121==⎰⎰ds L ds L Li L i T FR ]001010[2}{=② 将两个单元的等效节点力以对号入座的方式迭加,再加上节点1和4 上的未知集中力,得整体等效节点载荷为T Y X F F Y X R ]22[}{4114=五、求解整体平衡方程 整体平衡方程:⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡=⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡--------------------------------4411443322112020130120412207234024121344200234724000412213012402407231220012742402347163Y X F F Y X v u v u v u v u Et约束边界条件为: u1 = v1 = u4 = v4 = 0 将这四个零位移的行划去,剩下方程为:⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡--------2020134122472412213024073233322F F v u v u Et得整体节点位移列阵:T EtF]00000.9878.1420.8494.100[}{=δ题11图12、利用对称性或反对称性等原理建立图示结构的有限元计算模型。

相关文档
最新文档