函数凹凸性的性质判定及应用
《函数曲线的凹凸性》课件

CONTENTS 目录
• 引言 • 函数曲线的凹凸性判定 • 函数曲线的凹凸性性质 • 函数曲线的凹凸性与导数的关系 • 函数曲线的凹凸性与几何意义 • 总结与展望
CHAPTER 01
引言
凹凸性的定义
凹函数
对于函数$f(x)$,如果在区间$I$上,对于任意$x_1 < x_2$,都有$f(frac{x_1+x_2}{2}) geq frac{f(x_1) + f(x_2)}{2}$,则称$f(x)$在区间$I$上是凹函数。
函数曲线的凹凸性可能会随着自变量x 的变化而发生变化。
凸函数曲线
表示函数图像呈上凸的几何形状,即 任意两点之间的连线位于曲线上方。
几何形状的凹凸性实例
下凹函数曲线
$f(x) = x^2$,$f(x) = sin x$
上凸函数曲线
$f(x) = log x$,$f(x) = e^x$
几何形状的凹凸性与生活中的应用
02
二次函数是典型的凹函数和凸函数,其图像为抛物 线。
03
指数函数和幂函数在其定义域内是凹函数,对数函 数在其定义域内是凸函数。
CHAPTER 04
函数曲线的凹凸性与导数的关系
导数与凹凸性的关系
01
导数大于0的区间内,函数曲线为 凹;
02
导数小于0的区间内,函数曲线为 凸。
导数在判断凹凸性中的应用
凸函数
对于函数$f(x)$,如果在区间$I$上,对于任意$x_1 < x_2$,都有$f(frac{x_1+x_2}{2}) leq frac{f(x_1) + f(x_2)}{2}$,则称$f(x)$在区间$I$上是凸函数。
函数凹凸的定义

02 函数凹凸的几何意义
凹函数的几何意义
凹函数图像呈下凹状,即对于函数图 像上的任意两点A和B,如果A、B两 点连线的中点始终位于A、B连线的下 方,则该函数为凹函数。
在几何意义上,凹函数具有一个明显 的特征,即函数图像上任意两点的连 线的斜率始终小于或等于该点处的函 数导数。
凸函数的几何意义
通过分析函数的凹凸性,我们可以确定函数的拐点,从而更好地理解函数 的性质,为求解最优化问题提供指导。
在求解无约束最优化问题时,可以利用函数凹凸性选择合适的算法,如梯 度下降法、牛顿法等,以提高求解效率。
在经济学中的应用
函数凹凸性在经济学中也有 广泛应用,它可以帮助我们 理解经济现象和预测经济行
为。
函数凹凸的定义
目录
• 函数凹凸的基本概念 • 函数凹凸的几何意义 • 函数凹凸的判定方法 • 函数凹凸的应用 • 函数凹凸的反例 • 函数凹凸的扩展知识
01 函数凹凸的基本概念
凹函数
01
凹函数是指函数图形在任意两点 之间总是位于这两点连线的下方, 即对于定义域内的任意x1和x2, 都有 f((x1+x2)/2)≥f(x1)+f(x2)/2。
03
在计算机科学中,函数凹凸性可以帮助我们设计更有效的算法和数据 结构,如动态规划、图算法等。
04
在生物学中,函数凹凸性可以帮助我们理解生物系统的复杂性和行为, 如生态学、生物化学反应等。
05 函数凹凸的反例
凹函数的反例
总结词
凹函数的反例是指函数图像呈现下凹形状的反例。
详细描述
凹函数的反例通常是指那些在一定区间内,函数值随着自变量的增加而减少的函数。例如,二次函数 $f(x) = x^2$在区间$(-infty, 0)$内是一个凹函数的反例,因为在这个区间内,函数值随着$x$的增加 而减少。
函数凹凸性判别法与应用

设曲线 在点 处有穿过曲线的切线. 且在切点近旁,曲线的切线的两侧分别是 严格凹和严格凸的,这时称点 为曲线 的拐点. 由定义可见,对于具有凹凸性的 函数而言,拐点正是函数的凹凸性发生改 变的那一点,即拐点的两侧邻域有着互异 的严格凹凸性.如下图中的M点.
严格地说,拐点都是平面光滑曲线(即切 线连续变动的曲线)弯曲方向发生改变的 转折点,拐点的几何特征是该点的切线不 是在曲线的一侧“托着曲线”而是切线在 切点处把曲线一分为二,分别在切线的两 侧.
观察函数图象,我们很容易得出结论:凹 函数的一阶导数是不断变大的,而凸函数 的一阶导数则恰恰相反。这是我们通过观 察几何图形进行直观的感知得到的结论, 但是人的观察不可避免的存在着一定的局 限性,只有通过严密的证明得到的结论才 能使人信服.迄今为止,判别函数的凹凸性 已经有很多的方法。
函数的凹凸理论在高等数学中占有重要地位。函数的 凹凸性揭示了函数的因变量随自变量变化而变化的快 慢程度。作为研究分析函数的工具和方法,它在许多 学科里有着重要的应用。
我们已经同之处是:曲线 上任意两点间 的弧段总在这两点连线的下方;而曲线 则相反,任意两点间的弧段总在这两点连 线的上方。我们把具有前一种特性的曲线 称为凹的,相应的函数称为凹函数;后一 种曲线称为凸的,相应的函数成为凸函数. 函数凹凸性的分析定义形式较多,下面给 出函数凹凸性定义的更一般的形式。
《函数的凹凸性》课件

凸函数的性质
凸函数图像呈上凸状,即对于函数图像上的任意两点A(x1, y1)和B(x2, y2),当x1 < x2时,y1 < y2。
凸函数的导数在定义域内小于0,即f''(x) < 0。
凸函数具有局部最大值,即对于任意x0属于定义域,存在一个邻域使得 该邻域内所有点的函数值都小于或等于f(x0)。
在物理学中,凹凸性可以用于描述物 体的弹性、光学性质等。
在经济学中,凹凸性可以用于描述商 品的需求和供给关系,以及价格和产 量的变化关系。
在计算机科学中,凹凸性可以用于图 像处理、机器学习等领域。
02
函数的凹凸性判定
判定方法一:二阶导数法
总结词
举例说明
二阶导数法是判断函数凹凸性的常用 方法之一,通过计算函数的二阶导数 并分析其符号来判断函数的凹凸性。
05
实际应用案例
金融领域的应用
金融数据分析
函数的凹凸性在金融数据分析中有着广泛的应用,如股票价格、收益率等金融时间序列数 据的分析,通过识别数据的凹凸性,可以预测未来的价格走势和风险评估。
投资组合优化
在投资组合优化中,凹凸性可用于确定最优投资组合,通过最小化投资组合的风险或最大 化预期收益,实现资产的有效配置。
判定方法三:几何意义法
总结词
几何意义法是通过观察函数图像 ቤተ መጻሕፍቲ ባይዱ几何形状来判断函数的凹凸性
。
详细描述
如果一个函数的图像是一条向下 凸出的弧形线,则该函数是凹的 ;如果图像是一条向上凸起的弧
形线,则函数是凸的。
举例说明
以函数$f(x) = x^4 - x^2$为例 ,通过绘制该函数的图像可以观 察到,该函数在$x < 0$时图像 向下凸出,因此函数$f(x) = x^4
函数的凹凸性及其应用

二阶导数 , 记作 厂( z ) ) 也具有一定的关系.可 以得出
下列 结论 :
由 均 值 不 等 式 , 得 专 > . 再 根 据 对 数
பைடு நூலகம்
在区间 D上, 若 厂( ) >0 , 则. , ’ ( ) 在区间 D上
罐
贪婪是最真实的贫穷, 满足 是 最真 实 的财 富
( ) 一 言, 虽 然 它 们 的
吉 n ( + ) + s i n ( 一
s i nT g e l - { - " 2 : " 一 2
s , /( ) 一 = = =
图象 在E o , 1 ] 上 都是 上 升
的, 但 是却 有 着 显 著 的不
同. 如 图 l所 示 , ,( . r ) 一 3 - 的 图 象 是 “ 凹” 的, 而
图 2
, Q 解 析 当“ > 1 时, 厂 ( ) 在 ( o , + 。 。 ) 上 是凸 函 数 ; 当
O <n < 1时 , 厂 ( ) 在( 0 , +c x 。 ) 上 是 凹 函 数.
证 明如下 :
象 位 于其 任 意 一 点 的 切 线 之上 ( 下) , 且切 线 的斜 率 单调 递 增 ( 减) .如 同 函
图 l
s i n 华
s i n
・ ( 1 一 c o s
> 0, 卜 c os
) .
> o.
( 1 ) 任 意 l , z 2 ∈[ 0 , 7 c ] , 且z 1 ≠ 2 , 因为
g ( z ) 一 专的 图 象是 “ 凸” 的 ,那 么如何 描 述 数 图象 的 凹凸性 呢? 从几 何上 看 , 凹( 凸) 对 应 着 连 接 图象 上 任 意两 点 问 的弦之 中点 位 于 图象 上 具 有 相 同横 坐 标 的点 的上
函数的凹凸性与拐点的判定

函数的凹凸性与拐点的判定在微积分中,函数的凹凸性与拐点是非常重要的概念。
凹凸性描述了函数曲线的弯曲情况,而拐点则表示曲线的方向发生改变的点。
凹凸性和拐点的判定对于函数的研究和应用具有重要作用。
本文将介绍函数凹凸性和拐点的概念,并讨论如何判定和应用。
一、函数的凹凸性函数的凹凸性是指函数曲线的弯曲情况。
我们可以通过函数的二阶导数来判断函数的凹凸性。
1. 定义设函数f(x)在区间I上具有二阶导数,如果对于任意x1和x2∈I,有f''(x)>0,则函数f(x)在区间I上是凹函数;如果对于任意x1和x2∈I,有f''(x)<0,则函数f(x)在区间I上是凸函数。
2. 凹凸点根据函数的凹凸性质,我们可以定义凹凸点。
若对于函数f(x)的定义域I上的某一点x0,存在一个区间(x0-δ,x0+δ),在该区间内f(x)是凹函数,那么称点(x0,f(x0))是函数f(x)的一个凹点;若在区间(x0-δ,x0+δ)内f(x)是凸函数,则称点(x0,f(x0))是函数f(x)的一个凸点。
二、拐点的判定拐点表示函数曲线的方向发生改变的点。
我们可以通过函数的二阶导数来判断拐点。
1. 定义设函数f(x)在区间I上具有二阶导数。
如果在某一点x0∈I处,f''(x0)=0,并且f''(x0-)和f''(x0+)的符号相反,则称点(x0,f(x0))是函数f(x)的一个拐点。
2. 拐点的性质拐点具有以下性质:- 在拐点处,函数的凹凸性发生改变,由凸转为凹或由凹转为凸。
- 拐点不一定存在,只有当函数曲线的凹凸性发生改变时,才会有拐点。
- 如果函数曲线有k个拐点,那么至多有k+1个不同的凹凸区间。
三、判定和应用判定函数的凹凸性和拐点的方法可以通过以下步骤进行。
1. 求导数首先,求出函数f(x)的一阶和二阶导数f'(x)和f''(x)。
函数的凹凸性在高考中的应用

函数的凹凸性在高考中的应用函数凹凸性问题是近几年高考与平时训练中的一种新题型.这种题情景新颖、背景公平,能考查学生的创新能力和潜在的数学素质,体现“高考命题范围遵循教学大纲,又不拘泥于教学大纲”的改革精神.1、凹凸函数定义及几何特征 ⑴引出凹凸函数的定义:如图3根据单调函数的图像特征可知:函数)(1x f 与)(2x f 都是增函数,但是)(1x f 与)(2x f 递增方式不同,把形如)(1x f 的增长方式的函数称为凹函数,而形如)(2x f 的增长方式的函数称为凸函数.⑵凹凸函数定义:设函数f 为定义在区间I 上的函数,若对(a ,b )上任意两点1x 、2x ,恒有:(1)1212()()()22x x f x f x f ++<,则称f 为(a ,b )上的凹函数; (2)1212()()()22x x f x f x f ++>,则称f 为(a ,b )上的凸函数. ⑶凹凸函数的几何特征:图6(凹函数) 图7(凸函数)图4(凹函数) 图5(凸函数) 几何特征1(形状特征)如图4、5,设21,A A 是凹函数y=)(x f 曲线上两点,它们对应的横坐标12x x <,则111(,())A x f x ,222(,())A x f x ,过点122x x +作ox 轴的垂线交函数于A ,交21A A 于B , 凹函数的形状特征是:其函数曲线任意两点1A 与2A 之间的部分位于弦21A A 的下方; 凸函数的形状特征是:其函数曲线任意两点1A 与2A 之间的部分位于弦21A A 的上方. 简记为:形状凹下凸上.几何特征2(切线斜率特征)图6、7设21,A A 是曲线y =)(x f 上两点,曲线上1A 与2A 之间任一点A 处切线的斜率: 凹函数的切线斜率特征是:切线的斜率y =)(x f 随x 增大而增大; 凸函数的切线斜率特征是:切线的斜率y =)(x f 随x 增大而减小. 简记为:斜率凹增凸减. 几何特征3(增量特征)图8(凹函数) 图9(凸函数) 图10(凹函数) 图11(凸函数) 设函数g (x )为凹函数,函数f (x )为凸函数,其函数图象如图8、9所示,由图10、11可知,当自变量x 逐次增加一个单位增量Δx 时,函数g (x )的相应增量123,,,y y y ∆∆∆…越来越大;函数f (x )的相应增量123,,,y y y ∆∆∆…越来越小;由此,对x 的每一个单位增量Δx ,函数y的对应增量i y ∆(1,2,3,i =…) 凹函数的增量特征是:Δyi越来越大;凸函数的增量特征是:Δyi越来越小; 简记为:增量凹大凸小.弄清了上述凹凸函数及其图象的本质区别和变化的规律,就可准确迅速、简捷明了地解决有关凹凸的曲线问题. 函数凹凸性的应用应用1 凹凸曲线问题的求法例1:一高为H、满缸水量为V的鱼缸的截面如图12所示,其底部碰了一个小洞,满缸水从洞中流出.若鱼缸水深为h 时水的体积为V,则函数V=f (h )的大致图象可能是图13中的解:据四个选项提供的信息(h从O→H),我们可将水“流出”设想成“流入”,这样,每当h增加一个单位增量Δh时,根据鱼缸形状可知V 的变化开始其增量越来越大,但经过中截面后则越来越小,故V关于h的函数图象是先凹后凸的,因此,选B.例2:向高为H的水瓶中注水,注满为止,如果注水量V 与水深h的函数关系的图象如图14所示,那么水瓶的形状是(图15中的)( ).(1998年全国高考题)解:因为容器中总的水量(即注水量)V 关于h的函数图象是凸的,即每当h增加一个单位增量Δh,V 的相应增量ΔV越来越小.这说明容器的上升的液面越来越小,故选B. 例3:在某种金属材料的耐高温实验中,温度随着时间变化的情况由微机记录后再显示的图象如图16所示.现给出下面说法:①前5分钟温度增加的速度越来越快; ②前5分钟温度增加的速度越来越慢; ③5分钟以后温度保持匀速增加; ④5分钟以后温度保持不变. 其中正确的说法是( ).A.①④ B.②④ C.②③ D.①③ 解:因为温度y关于时间t的图象是先凸后平行直线,即5分钟前每当t增加一个单位增量Δt,则y相应的增量Δy越来越小,而5分钟后是y关于t的增量保持为0,故选B.注:本题也选自《中学数学教学参考》2001年第1~2 合期的《试题集绵》,用了增量法就反成了“看图说画”.例4:(06重庆 理)如图所示,单位圆中弧AB 的长为x ,f(x)表示弧AB 与弦AB 所围成的弓形面积的2倍,则函数y=f(x)的图象是( )A B图17解:易得弓形A x B的面积的2倍为f(x)= x -sin x.由于y1=x是直线,每当x增加一个单位增量Δx,y1的对应增量Δy不变;而y2=sin x是正弦曲线,在[0,π]上是凸的,在[π,2π]上是凹的,故每当x增加一个单位增量Δx时,y2对应的增量i(i=1,2,3,…)在[0,π]上越来越小,在[π,2π]上是越来越大,故当x增加一个单位增量Δx时,对应的f(x)的变化,在x∈[0,π]上其增量Δf(x)i(i=1,2,3,…)越来越大,在x∈[π,2π]上,其增量Δf(x)i则越来越小,故f(x)关于x的函数图象,开始时在[0,π]上是凹的,后来在[π,2π]上是凸的,故选D.例5(07 江西)四位好朋友在一次聚会上,他们按照各自的爱好选择了形状不同、内空高度相等、杯口半径相等的圆口酒杯,如图所示.盛满酒后他们约定:先各自饮杯中酒的一半.设剩余酒的高度从左到右依次为h1,h2,h3,h4,则它们的大小关系正确的是()图18A.h2>h1>h4B.h1>h2>h3C.h3>h2>h4D.h2>h4>h1解:设内空高度为H, 剩余酒的高度关于酒杯中酒的体积函数从左到右依次为V1(h)、V2(h)、V3(h)、V4(h),根据酒杯的形状可知函数V1(h)、V2(h)、V4(h)的图象可为图19因为函数V1(h)、V2(h)为凹函数, V1(h)当h从O→H,Δh增加一个单位增量,ΔVi(i=1,2,3,…)增大,则h1> 0.5H =h4;同理V2(h)当h从O→H,Δh增加一个单位增量,ΔVi(i=1,2,3,…)增大,则h2> 0.5H =h4;所以h1> h4、h2> h4;由V1(h)、V2(h)图象可知,h从H→h2,ΔV1(h)>ΔV2(h),而0.5 V1(h)>ΔV1(h),ΔV2(h)=0.5 V2(h),则当ΔV1(h)=0.5 V1(h)时h1> h2,所以答案为A.例6 (2005·湖北卷) 在y=2x, y=log2x, y=x2, y=cos2x这四个函数中,当0<x1<x2<1时,恒成立的函数的个数是().A.0B.1C.2D.3分析:运用数形结合思想,考察各函数的图象.注意到对任意x1,x2∈I,且x1<x2,当f(x)总满足时,函数f(x)在区间I上的图象是“上凸”的,由此否定y=2x,y=x2,y=cos2x,应选B。
凹凸函数判定

凹凸函数判定引言凹凸函数是数学中的重要概念,在各个领域有着广泛的应用。
凹凸函数的性质可以用来优化问题求解、判定函数的凸性以及分析函数的特征。
本文将全面、详细、完整地探讨凹凸函数的判定方法及其应用。
凹凸函数的定义凹凸函数是指函数在定义域上的一种特殊性质,即函数的曲线在任意两点之间的区间上或下凸性保持不变。
更正式地说,对于定义在区间[a, b]上的函数f(x),如果对于区间中的任意两个点x1和x2以及任意一点t,都有以下条件成立:1.凹函数:f((1-t)x1 + tx2) ≤ (1-t)f(x1) + tf(x2)2.凸函数:f((1-t)x1 + tx2) ≥ (1-t)f(x1) + tf(x2)其中,0 ≤ t ≤ 1。
如果函数满足上述条件,则称其为凹函数;如果相反方向满足上述条件,则称其为凸函数。
几何解释凹凸函数的几何解释可以通过观察函数的图像得到。
对于凹函数,其图像在任意两点之间的区间上是下凸的,即曲线在该区间上的任意一点的下方;对于凸函数,则是相反的情况,曲线在该区间上的任意一点的上方。
下图展示了凹函数与凸函数的图像示例:凹函数示例凸函数示例凹凸函数的判定方法一阶导数的判定法一阶导数的判定法是判定函数凹凸性的常用方法之一。
凹函数的一阶导数可以通过以下方式判定:1.对于凹函数,其一阶导数是递增的;2.对于凸函数,其一阶导数是递减的。
具体判定步骤如下:1.求取函数的一阶导数;2.分别计算函数在凸区间上的一阶导数值;3.判断一阶导数的递增或递减性。
以下是一个凹函数的一阶导数判定示例:f(x)=2x2−3x+1首先,求取函数的一阶导数:f′(x)=4x−3然后,计算函数在凸区间上的一阶导数值:x f’(x)1 12 53 9最后,判断一阶导数的递增或递减性。
根据上表可知,一阶导数递增,因此函数为凹函数。
二阶导数的判定法二阶导数的判定法是判定函数凹凸性的另一种常用方法。
凹函数的二阶导数可以通过以下方式判定:1.对于凹函数,其二阶导数始终大于等于零;2.对于凸函数,其二阶导数始终小于等于零。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
函数凹凸性的判定性质及应用曹阳数学计算机科学学院摘要:函数的凹凸性在数学研究中具有重要的意义。
本文从凸函数的多种定义入手,引出凹凸函数的性质,介绍了凹凸函数的性质及判定定理。
在此基础上,将一元函数的凹凸性进行推广,推广到二元函数上,讨论了二元函数凹凸性的性质,判定方法及其应用。
一元到二元,即增加了一个变量,那么对于n元的情况是否有相似的函数存在呢?本文层层深入,将二元函数进行再次推广,至n元的情形,给出n元凹凸函数的定义,判定方法及性质。
本文主要讨论了一元,二元,多元凹凸函数的定义,性质,及判定方法,并介绍了它们应用。
关键词:凹凸性;一元函数;二元函数;多元函数;判别法;应用;Convex function of Judge Properties and Applications Abstract: The function of convexity in mathematical research is of great significance. In this paper, the definition of convex function of a variety of start, leads to uneven nature of the function, describes the properties of convex functions and decision theorem. On this basis, the concave and convex functions of one variable to promote, promote to the binary function, discusses the uneven nature of the nature of the binary function, determine the method and its application. One to a binary, an increase of a variable, then for n-whether it is a similar function exist? This layers of depth, the binary function tore-promote, to the case of n-given definition of n-convex function, determine the methods and properties. This article focuses on one element, binary, multiple convex function definition, nature, and judging methods, and describes their application.Keywords: Convexity; One Function; Binary function; Multiple functions; Criterion; Applications;1.引言凸函数是数学中一类极其重要的函数,它在最优化,运筹与控制理论,模具设计等方面具有重要的理论和实践意义。
凸函数在大学数学中很少具有直接的运用,而导数在函数图像的凹凸性研究是大学数学中一个重要的知识点,这说明凸性在大学数学,特别是数学分析中的应用没有得到应有的正视,长期以来,凸函数被热为只在一些具体学科,如机器人学,模具设计或一些数学分支(如全局优化,运筹学等)中具有重要的运用,而在大学数学中没有应用。
本文将重点探讨凸函数在分析学中的一些简单应用。
在本文中,我们首先给出凸函数的多种定义,性质,然后探讨二元与多元的情况下凸函数的定义,判定及性质。
2. 一元函数凹凸性的判定2.1 凸函数的多种定义及等价证明 下面先先给出凸函数的13种常见定义。
假设I ∈R ,f:I →R.定义2.1.11: f 在I 内连续f(12x+x2)≤12f(x)+f(x)2,则称f 为凸函数。
定义2.1.21:若32211232132()()()() f x f x f x f x x x x x x x x --∀∈≤--,,I,则称f 为凸函数定义2.1.31:123123x x x x x x ⎛⎫⎪∀∈ ⎪ ⎪⎝⎭112233x1f(x),,I,<<,x1f(x)x1f(x)的行列式≤0,则称f 为凸函数定义2.1.41:12x x ∀∈∀∈≤1212,I,t(0,1),f(t x+(1-t )x)t f(x )+(1-t )f(x),则称f 为凸函数定义2.1.51:111n n n===∀≤∑∑∑kkkkkkkkkt,t=1,有f(tx)tf(x),则称f(x)为凸函数定义2.1.61:12x x ∀∈∃≤∀≤''''-+-+''+1-2(1.)xI ,f(x),f(x)且f(x)f(x)(2),,f(x)f(x)则称f(x)为凸函数定义2.1.71:若f在I内存在单增函数ψ,∃0x∈I, ∀x ∈I,有f(x)-f(0x)=d ψ⎰0xx(t)t,则称f 为凸函数。
定义2.1.81:设f 在I 上连续,12x x ∀∈,I,且12x x <有1212+x ()()122x f x f x d +≤≤⎰21xx21f()f(t)tx-x,则称f 为凸函数。
定义2.1.91:若1x,...,x n∈I,f(12nx+x+...+xn)≤12nf(x)+f(x)+....+f(x)n(n∈N),则称f 为凸函数。
定义2.1.101:若f在I内可导,∀x,y∈I,有f(x)≥'f(y)(x-y)+f(y),则称f 为凸函数。
定义2.1.111:若f在I可导,且'f(x)单调递增,则称f 为凸函数。
定义2.1.121:f在I内二次可导,''f(x)≥0,则称f 为凸函数。
定义2.1.131:f在区间I上凸函数的充要条件是:函数ψλλλ12()=f(x+(1-)x)为[0,1]上的凸函数, 下面给出几种定义间的相互证明。
定理2.1.11 若f在区间I上可导,则定义7⇒定义10证明:因为f在I内存在单增函数ψ,∃0x∈I,∀∈xI,有: f(x)-f(0x)=dt ψ⎰0xx(t) (1) 故对于∀y∈I,不妨设y<x,有:f(y)-f(0x)=dt ψ⎰0yx(t) (2) 将式(1)两边关于x求导,得'f(x)=ψ(x). (1)-(2),得:f(x)-f(y)=d ψ⎰0xx(t)t-d ψ⎰0yx(t)t=d ψ⎰0xx(t)t+d ψ⎰0xy(t)t=d ψ⎰xy(t)t=(x-y)ψξ();y<ξ<x (3) 因为ψ(t)单调递增,且y<ξ,所以ψ(y)≤ψξ(),式(2)可化为: f(x)-f(y)=(x-y)ψξ()≥(x-y)ψ(y)=(x-y)'f(y) 即f(x)≥'f(y)(x-y)+f(y)定理2.1.21: 若f在I上连续,则定义13⇒定义8。
证明:因为ψλ()=λλ12f(x+(1-)x)为[]0,1上的凸函数,故: λλ12f(x+(1-)x)=ψλ()=ψ(λλ⋅⋅1+(1-)0)≤λψλψ(1)+(1-)(0)=λλ12f(x)+(1-)f(x)特别地,当λ=12时,有f(12x+x2)≤12f(x)+f(x)2先证不等式的左边.1x ∀2,x∈I ,12x<x,由实数的性质知在I上可确定一个闭区间[]12x,x,若t∈[121x+xx,2],则t关于12x+x2的对称点是12x+x-t,而f在I上连续,所以积分存在,所以:[]d ≥⎰⎰⎰12122112x+xx+xx122212xxx1221x+xf(t)t=f(t)+f(x+x+t)dt2f()dt=2x+x(x-x)f()2即12x+xf()2≤⎰21xx211f(t)dtx-x 下证不等式的右边. 作变换u=x ≤≤222112122112-t(0u1),则t =x -u (x -x )=ux +(1-u )x ,dt =(x -x )du ,x -x 当t =x 时,u =1;t =x 时,u=0d ⎰21xxf(t)t=[][]≤⎰⎰1121122112001221(x-x)fux+(1-u)xdu(x-x)uf(x)+(1-u)f(x)du=f(x)+f(x)(x-x)2即 ⎰21xx211f(t)dtx-x≤12f(x)+f(x)2,故12x+xf()2≤⎰21xx211f(t)dtx-x≤12f(x)+f(x)2 定理2.1.31 若f在I上二次可导,则定义8⇒定义12。
证明 因∀1x ,2x ∈I12x<x,12x+xf()2≤⎰21xx211f(t)dtx-x≤12f(x)+f(x)2 令x ≤1212+xx=,则x<x<x,故f(x)212f(x)+f(x)2,即f(x)-f(1x)≤f(x2)-f(1x)12x-x=x-x>0,所以x ≤1212f(x)-f(x)f()-f(x)x-xx-x;又因为f在I上可导,则f在I上连续,故由极限的性质可知lim lim x x →→≤1212x12xf(x)-f(x)f(x)-f(x),即x-xx-x≤''+1-2f(x)f(x).因为f具有二阶导数,所以''''+11-22f(x)=f(x),f(x)=f(x),即∀1x ,2x ∈I,都有'1f(x)≤'2f(x),设x为I上任意固定点,则0lim x x x∆→∆≥∆'''f(x+)-f(x)0,所以f(x)0。
定理2.1.41 定义11⇒定义2证明 因为f(x)在I内可导,且'f(x)单调递增,∀∈123x,x,xI, 且123x<x<x。
可确定两个区间[]12x,x,[]23x,x⊂I,曲线y=f(x)在(2x ,f(2x ))的切线方程为y-f(2x)='2f(x)(x-2x)故横坐标为x的曲线的纵坐标与切线纵坐标之差为:f(x)-y=f(x)-f(2x)-'2f(x)(x-2x)而f(x)在I内可导,而[]23x,x⊂I,故f(x)在[]23x,x内连续,在(23x,x)上可导,所以f(x)在[]23x,x上满足拉格朗日中值定理,即ξ∃∈1(23x,x),s.t.f(x32)-f(x)=ξ'132f()(x-x)。
由式(3),当x=x3时,有:f(x3)-y=f(x3)-f(x2)-'2f(x)32(x-x)=ξ'1f()32(x-x)-'2f(x)32(x-x)=(ξ'1f()-'2f(x))32(x-x)≥0同理f(x)在[]12x,x上满足拉格朗日中值定理,即ξ∃∈2(12x,x),s.t. f(x21)-f(x)=ξ'221f()(x-x)。