28空间直角坐标系

合集下载

空间直角坐标系-解析几何

空间直角坐标系-解析几何

(2)已知△ABC的三顶点 A(x1,y1,z1),B(x2,y2,z2),C(x3,y3,z3),则△ABC的重心G的 坐标为
x1 + x 2 + x 3 y 1 + y 2 + y 3 z 1 + z 2 + z 3 , , 3 3 3
. 返回目录
考点一 确定空间点的坐标 在四棱锥 P—ABCD中 , 底面ABCD是一直角梯形, ∠BAD=90°, AD∥BC,AB=BC=a,AD=2a,PA⊥底面
坐标系. ∵AB=BC=a,∴点A(0,0,0), B(a,0,0), C(a,a,0). ∵AD=2a,∴D(0,2a,0). ∵PA⊥底面ABCD,∴PA⊥AD. 返回目录
又∵∠PDA=30°,∴PA=ADtan30°=
2 故点P(0,0, 3 a). 3
2 3 a. 3
∵面PAD⊥面ABCD,过E作EF⊥AD于F,则F为E
3 为0,0, .) 2 3 ,所以点C的坐标 2
返回目录
高考对本学案内容的考查为:建立空间直角坐标系,写出 一些点的坐标,然后利用空间向量的有关知识求与该坐 标有关的量(如距离、夹角等).
返回目录
ABCD,∠PDA=30°,AE⊥PD于E.试建立适当的坐标 系,求出各点的坐标.
【分析】 由题意易知,AP,AB,AD两两互相垂 直,故以A为坐标原点,以AB,AD,AP所在的直线分 别为x轴、y轴、z轴建立空间直角坐标系. 返回目录
【解析】如图所示,以点A为坐标原点,以AB,
AD,AP所在直线分别为x轴、y轴、z轴建立空间直角
在底面ABD内的射影,在Rt△AED中,
a 3 1 ∵∠EDA=30°,∴AE= AD=a,故E(0, , a). 2 2 2

空间直角坐标系及坐标运算

空间直角坐标系及坐标运算

基础知识梳理
4.空间向量坐标表示及应用 (1)数量积的坐标运算 则a·b若=aa=1b(1a+1,a2ab22,+aa33)b,3 .b=(b1,b2,b3), (2)共线与垂直的坐标表示 设a=(a1,a2,a3),b=(b1,b2,b3), 则a∥b⇔a=λb⇔a1=λb1,a2=λb2,a3= λb3,a⊥b⇔a·b=0⇔a1b1+a2b2+a3b3= 0(a,b均为非零向量).
课堂互动讲练
2.证明空间四点共面的方法 对空间四点P,M,A,B可通过 证明下列结论成立来证明四点共面 (1)M→P=xM→A+yM→B; (2)对空间任一点 O,O→P=O→M+xM→A +yM→B;
课堂互动讲练
(3)对空间任一点 O,O→P=xO→M+yO→A +zO→B(x+y+z=1);
A.x=1,y=1 B.x=12,y=-12 C.x=16,y=-32
D.x=-16,y=32 答案:C
三基能力强化
3.已知空间四边形 OABC 中,点 M 在 线段 OA 上,且 OM=2MA,点 N 为 BC 的中
点,设O→A=a,O→B=b,O→C=c,则M→N等于
() A.12a+12b-23c
【解】 法一:(1)原式可变形为 O→P=O→M+(O→A-O→P)+(O→B-O→P) =O→M+P→A+P→B. ∴O→M=O→P-P→A-P→B. 由共面向量定理的推论知 M 与 P、A、 B 共面.
课堂互动讲练
(2)






→ OP

2
→ OA

→ OA

O→B+O→A-O→M=2O→A+B→A+M→A.
基础知识梳理
3.空间向量的数量积及运算律 (1)数量积及相关概念 ①两向量的夹角

空间直角坐标系及向量坐标

空间直角坐标系及向量坐标

a (ax )i (ay ) j (az )k ,

a b (ax bx ,ay by ,az bz ) ,
a b (ax bx ,ay by ,az bz ) ,
a (ax ,ay ,az ) .
由此可见,对向量进行加、减及数乘,只需对向量的各个坐标分别进行相应
的运算即可.
高等数学
1.1 空间直角坐标系
在平面解析几何中,通过建立平面直角坐标系,把平面上的点与 二元有序实数组对应起来.同样,在空间解析几何中,通过建立空间 直角坐标系,也可以把空间的点与三元有序实数组对应起来.
如图所示,过空间一定点 O ,作三个两两垂直的单位向量 i ,j ,k ,就确定了三 条都以 O 为原点的两两垂直的数轴,依次记为 x 轴(横轴)z ) ,b (bx ,by ,bz ) , 即 a axi ay j azk ,b bxi by j bzk , 利用向量的运算律,有
a b (ax bx )i (ay by ) j (az bz )k ,
a b (ax bx )i (ay by ) j (az bz )k ,
1.2 向量的坐标表示
如图所示,设 M 为空间一点,过点 M 分别作垂直于 x 轴、 y 轴、 z 轴的平面,它 们与 x 轴、 y 轴、 z 轴分别交于 P ,Q ,R 三点,这三个点在 x 轴、 y 轴、 z 轴上的坐标分 别为 x,y,z ,这样就确定了空间点 M 的唯一一个三元有序实数组 (x ,y ,z) .反之,若 给定一个三元有序实数组 (x ,y ,z) ,分别在 x 轴、 y 轴、 z 轴找到坐标分别为 x,y,z 的 三点 P ,Q ,R ,过这三点分别作垂直于 x 轴、 y 轴、 z 轴 的平面,这三个平面有唯一交点 M ,于是就建立了空间 点 M 和三元有序实数组 (x ,y ,z) 之间的一一对应关系. 这组数 x,y,z 称为点 M 的坐标,记为 M (x ,y ,z) ,并依 次称 x,y 和 z 为点 M 的横坐标、纵坐标和竖坐标.

空间直角坐标系

空间直角坐标系

空间直角坐标系空间直角坐标系是一种用来描述物体在三维空间中位置的坐标系统。

它是一种常见且重要的坐标系,被广泛应用于数学、物理、工程等各个领域。

本文将详细介绍空间直角坐标系的定义、特点和使用方法。

一、空间直角坐标系的定义空间直角坐标系是由三个相互垂直的坐标轴构成的,通常用x、y、z表示。

x轴和y轴在水平平面上,z轴垂直于水平平面向上延伸。

在这个坐标系中,每个点可以由一个有序的三元组(x, y, z)唯一确定。

其中,x表示点在x轴上的坐标值,y表示点在y轴上的坐标值,z表示点在z轴上的坐标值。

二、空间直角坐标系的特点1. 三维描述:空间直角坐标系能够准确描述物体在三维空间中的位置。

通过确定点在x、y、z轴上的坐标值,可以得知物体在坐标系中的具体位置。

2. 直角关系:空间直角坐标系中的三个坐标轴彼此垂直。

这意味着任意两个轴的夹角为直角,使得坐标系的描述更加简洁明了。

3. 正负号:在空间直角坐标系中,每个坐标轴都有正负号之分。

通过正负号的不同,可以识别出点在轴的正方向还是负方向上。

三、空间直角坐标系的使用方法1. 坐标表示:在空间直角坐标系中,可以通过坐标表示物体的位置。

例如,一个点的坐标为(2, 3, 4),表示该点在x轴上的坐标值为2,在y轴上的坐标值为3,在z轴上的坐标值为4。

2. 图形表示:使用空间直角坐标系,可以绘制出物体在三维空间中的图形。

例如,通过连接多个点可以绘制直线、曲线,通过连接多个面可以绘制立方体、圆柱体等。

3. 距离计算:在空间直角坐标系中,可以计算物体之间的距离。

根据勾股定理,可以计算出两点之间的直线距离。

例如,两点A(x1, y1,z1)和B(x2, y2, z2)之间的距离可以用以下公式表示:AB = √[(x2-x1)² + (y2-y1)² + (z2-z1)²]。

四、应用举例空间直角坐标系在许多领域有着广泛的应用。

以下是一些例子:1. 建筑设计:在建筑设计中,使用空间直角坐标系可以准确描述建筑物的位置、大小和形状,方便施工和规划工作。

空间直角坐标系

空间直角坐标系

的几何特性. 为顶点的三角形ABC的几何特性. 解 由空间两点间距离公式有
| AB |2 = (10 − 4)2 + (−1−1)2 + (6 − 9)2 = 49,
同理有
| AC | = 49, | BC |2 = 98.
2
Q AB | =| AC | , ∴AB= AC, |
2 2
因而△ 为等腰三角形. 因而△ABC为等腰三角形.
2 2
2 2
2
2
= ( x 2 − x1 ) + ( y2 − y1 ) + ( z 2 − z1 )
所以空间两点间的距离 所以空间两点间的距离
d = ( x2 − x1 ) + ( y2 − y1 ) + (z2 − z1 ) .
2 2 2
特地, 特别地,
点 M ( x , y , z) 与原点O ( 0 , 0 , 0 ) 的距离
z
a aa Q( , , ) 2 22
D’ A’ B’
C’
Q
O A x C
Q’
B
y
典型例题
1 的小正方体堆积成的正方体), ),其 图(可看成是八个棱长为 的小正方体堆积成的正方体),其 2
结晶体的基本单位称为晶胞, 例2 结晶体的基本单位称为晶胞,如图是食盐晶胞的示意
中色点代表钠原子,黑点代表氯原子. 中色点代表钠原子,黑点代表氯原子.
典型例题
1 的小正方体堆积成的正方体), ),其 图(可看成是八个棱长为 的小正方体堆积成的正方体),其 2
结晶体的基本单位称为晶胞, 例2 结晶体的基本单位称为晶胞,如图是食盐晶胞的示意
中色点代表钠原子,黑点代表氯原子. 中色点代表钠原子,黑点代表氯原子. 如图建立空间直角坐标 系O-xyz后,试写出全部钠原子所在位置的坐标. 后 试写出全部钠原子所在位置的坐标.

空间直角坐标系

空间直角坐标系

空间直角坐标系在数学和物理学中,空间直角坐标系是一种常用的坐标系统,用于描述三维空间中的点、向量和物体的位置。

它由三个互相垂直的坐标轴(x轴、y轴和z轴)组成,构成了一个三维的直角坐标系。

一、空间直角坐标系的定义空间直角坐标系以原点为起点,通过选定的单位长度建立了三个相互垂直的坐标轴。

x轴代表水平方向,y轴代表垂直于x轴的水平方向,z轴代表竖直方向垂直于x、y轴。

这样,每一个点都可以用三个数字(x,y,z)表示其在空间直角坐标系中的位置。

二、坐标轴的性质和方向在空间直角坐标系中,每个坐标轴都具有以下性质:1. x轴:位于水平方向,从负无穷到正无穷延伸。

正方向为从左往右。

2. y轴:位于垂直于x轴的水平方向,从负无穷到正无穷延伸。

正方向为从前往后。

3. z轴:位于竖直方向,从负无穷到正无穷延伸。

正方向为从下往上。

空间直角坐标系中,x轴和y轴的交点称为原点(O),z轴的正方向与x轴和y轴的正方向形成右手螺旋规则关系。

三、点的表示和距离计算在空间直角坐标系中,任意一点P的坐标为(x,y,z)。

这意味着点P在x轴上的坐标为x,在y轴上的坐标为y,在z轴上的坐标为z。

点P到原点的距离可以由勾股定理计算:距离= √(x² + y² + z²)四、向量和运算在空间直角坐标系中,向量可以用其起点和终点的坐标差来表示。

例如,向量V可以表示为V = (x2 - x1, y2 - y1, z2 - z1),其中(x1, y1, z1)为起点坐标,(x2, y2, z2)为终点坐标。

向量的加法和减法可以分别通过坐标的相加和相减进行计算。

例如,向量A = (x1, y1, z1)和向量B = (x2, y2, z2)的加法结果为A + B = (x1 +x2, y1 + y2, z1 + z2)。

五、空间坐标系的应用空间直角坐标系在几何学、物理学、工程学等领域中都有广泛的应用。

它可以用来描述点、线、面和三维物体的位置关系和运动状态。

空间直角坐标系

空间直角坐标系

2.3.1 空间直角坐标系一、教材知识解析 1、空间直角坐标系的定义:从空间某一个定点O 引三条互相垂直且有相同单位长度的数轴,这样就建立了空间直角坐标系O-xyz ,点O 叫做坐标原点,x 轴、y 轴和z 轴叫做坐标轴,这三条坐标轴中每两条确定一个坐标平面,分别称为xOy 平面、yOz 平面和xOz 平面。

2、右手直角坐标系及其画法:(1)定义:在空间直角坐标系中,让右手拇指指向x 轴的正方向,食指指向y 轴的正方向,若中指指向z 轴的正方向,则称这个坐标系为右手直角坐标系。

本书上所指的都是右手直角坐标系。

(2)画法: 将空间直角坐标系画在纸上时,x 轴与y 轴、x 轴与z 轴均成135°,而z轴垂直于y 轴,,y 轴和z 轴的长度单位相同,,x 轴上的单位长度为y 轴(或z 轴)的长度的一半,这样,三条轴上的单位长度在直观上大体相等。

3、空间中点的坐标表示:点在对应数轴上的坐标依次为x 、y 、z ,我们把有序实数对(x ,y ,z )叫做点A 的坐标,记为A (x ,y ,z )。

二、题型解析:题型1、在空间直角坐标系下作点。

例1、在空间直角坐标系中,作出M(4,2,5). 解:法一:依据平移的方法,为了作出M(4,2,5),可以按如下步骤进行:(1)在x 轴上取横坐标为4的点1M ;(2)将1M 在xoy 平面内沿与y 轴平行的方向向右移动2个单位,得到点2M ;(3)将2M 沿与z 轴平行的方向向上移动5个单位,就可以得到点M (如图)。

法二:以O 为一个顶点,构造三条棱长分别为4,2,5的长方体,使此长方体在点O 处的三条棱分别在x 轴的正半轴、y 轴的正半轴、z 轴的正半轴上,则长方体与顶点O 相对的顶点即为所求的点M 。

法三:在x 轴上找到横坐标为4的点,过此点作与x 垂直的平面α;在y 轴上找到纵坐标为2的点,过此点作与y 垂直的平面β;在z 轴上找到竖坐标为5的点,过此点作与z 垂直的平面γ;则平面αβγ,,交于一点,此交点即为所求的点M 的位置。

空间几何中的坐标系与空间直角坐标的转换

空间几何中的坐标系与空间直角坐标的转换

空间几何中的坐标系与空间直角坐标的转换在空间几何中,坐标系是进行点位置表示和计算的重要工具。

常见的空间坐标系有直角坐标系、柱坐标系和球坐标系等。

其中,空间直角坐标系是最为常用和便捷的一种坐标系。

本文将讨论空间几何中的坐标系,并介绍如何在不同坐标系间进行转换。

一、空间直角坐标系空间直角坐标系又称笛卡尔坐标系,由三个相互垂直的坐标轴构成,通常用x、y、z表示。

它们分别代表了水平方向(x轴)、竖直方向(y轴)和水平面内的垂直方向(z轴)。

一个点P在空间直角坐标系中的坐标可用有序数(x, y, z)表示,其中x、y、z分别为点P在x轴、y 轴、z轴上的投影长度。

二、空间坐标系的转换在空间几何的研究中,通常需要将一个坐标从某个坐标系转换为另一个坐标系。

下面以空间直角坐标系与球坐标系为例,介绍坐标系间的转换过程。

1. 空间直角坐标系到球坐标系的转换给定空间直角坐标系中点P(x, y, z),它的球坐标为(r, θ, φ)。

其中,r 代表点P到原点的距离,θ代表从x轴到点P的连线与x轴正向之间的夹角,φ代表从正z轴到点P的连线与正z轴之间的夹角。

根据三角函数的关系,可以得到:r = √(x^2 + y^2 + z^2)θ = arctan(y/x)φ = arccos(z/√(x^2 + y^2 + z^2))2. 球坐标系到空间直角坐标系的转换给定球坐标系中点P(r, θ, φ),它的空间直角坐标为(x, y, z)。

转换公式如下:x = r * sin(φ) * cos(θ)y = r * sin(φ) * sin(θ)z = r * cos(φ)通过上述转换公式,可以在空间直角坐标系和球坐标系之间进行坐标转换。

三、应用举例下面通过一个具体的例子来说明空间坐标系的转换。

例:已知空间直角坐标系中的点P(3, 4, 5),求其在球坐标系中的坐标。

根据转换公式,可以计算得到:r = √(3^2 + 4^2 + 5^2) = √50θ = arctan(4/3) ≈ 0.93φ = arccos(5/√50) ≈ 0.49因此,点P在球坐标系中的坐标为(√50, 0.93, 0.49)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2
2
2
空间两点 A, B 的距离公式:
AB a1 b1 2 a2 b2 2 a3 b3 2
三、巩固练习
3、已知点 A(2,1, 3) ,则其关于 x 轴对称的点 A1
的坐标是 的坐标是
,其关于原点的对称的点 A2 ,关于平面 xOy 对称的点
A3 的坐标是
.
【 A1(2,1, 3) 】
二、新知探究
1、空间直角坐标系(右手直角坐标系):
例:下列坐标系是不是右手坐标系的?
x
y
z
z
y
x
【不是】
【是】
二、新知探究
2、空间的点的坐标:
类比得到平面点坐标的方法,如何得到空间
点 A 的坐标?
z
A3
B1
B2
A
O x A1
A2 y
B3
【垂面法(定义)→辅助长方体】
【垂线法(向面作垂线,再向轴作垂线)】
【位移法】
二、新知探究
2、空间的点的坐标:
例:空间直角坐标系中,已知 A(3, 2, 4) ,
(1)作出 A 点; (2)如图是以 A 为顶点、坐标平面为面的长方体,
求 A, A1, A2 , A3 , B1, B2 , B3 的坐标。
z
z
A3
B1
B2
A
x
O
y
O
A2 y
x A1
B3
思考:轴上点与坐标平面上的点有何特征?
谢谢
z A'
【 A(0, 0, 0) 】
C'
【 B(1, 3, 0) 】
B'
【 C(1, 3, 0) 】
【 A(0,1, 3) 】
A x
C
D
y
B
【 B(1,1 3, 3) 】 【 C(1,1 3, 3) 】
四、能力提升
2、空间图形的方程: 空间中,下列方程(组)表示什么图形?
(1) x2 y 2 z 2 r 2 (2) z 0
.
三、巩固练习
2、已知点 A(1, 1,3), B(3,3, 1) ,
(1)求 AB 中点 M 的坐标; 【 M (2,1,1) 】
(2)求 AB .
【 AB 6 】
若 A(a1, a2 , a3 ), B(b1,b2 ,b3 ) ,则:
空间线段 AB 中点 M 的坐标公式:M ( a1 b1源自, a2 b2 , a3 b3 )
(3) y x
(4)
y z
x x
(1)球;(2) xOy 平面;(3)过平面 xOy 上的直
线 y x ,且于平面 xOy 垂直的平面;(4)直线(两
个平面的交线)
x2 y2 z2 1
思考:
表示什么图形?
z c
五作、 业课 :堂D3小3 结
1、空间直角坐标系(右手直角坐标系); 2、空间的点的坐标.
三、巩固练习
1、空间直角坐标系中,如图摆放的长方体,满足:
OA1 2, A1B3 3, B3 A 4 ,
(1) M
B1B3, B3M
1 3
B1B3
,求
M
点的坐标;
(2)
N
A3 B3 ,
A3 N
2 3
A3B3
,求
N
点的坐标.
【 M ( 4 ,3, 4) 】 33
【 N ( 4 , 2, 4) 】 33
【 A2 (2,1, 3) 】
【 A3 (2,1, 3) 】
思考:你能总结空间对称点的规律吗?
四、能力提升
1、如图,棱长均为 2 的三棱柱 ABC ABC ,底 面 ABC 在 xOy 平面上, A 为坐标原点,角平分线
AD 在 y 轴上, AA 在 xOy 平面上的射影为 y 轴,
AAD 60。求三棱柱各顶点的坐标。
相关文档
最新文档