高三数学 函数与方程的思想(第8讲)

合集下载

(浙江专用)2020版高考数学复习第二章函数概念与基本初等函数第8讲函数与方程练习(含解析)

(浙江专用)2020版高考数学复习第二章函数概念与基本初等函数第8讲函数与方程练习(含解析)

第8讲 函数与方程[基础达标]1.(2019·浙江省名校联考)已知函数y =f (x )的图象是连续不断的曲线,且有如下的对应值表:则函数y A .2个 B .3个 C .4个D .5个解析:选B.依题意,f (2)>0,f (3)<0,f (4)>0,f (5)<0,根据零点存在性定理可知,f (x )在区间(2,3),(3,4),(4,5)上均至少含有一个零点,故函数y =f (x )在区间[1,6]上的零点至少有3个.2.(2019·温州十校联考(一))设函数f (x )=ln x +x -2,则函数f (x )的零点所在的区间为( )A .(0,1)B .(1,2)C .(2,3)D .(3,4)解析:选B.法一:因为f (1)=ln 1+1-2=-1<0,f (2)=ln 2>0,所以f (1)·f (2)<0,因为函数f (x )=ln x +x -2的图象是连续的,所以函数f (x )的零点所在的区间是(1,2).法二:函数f (x )的零点所在的区间为函数g (x )=ln x ,h (x )=-x +2图象交点的横坐标所在的区间,作出两函数的图象如图所示,由图可知,函数f (x )的零点所在的区间为(1,2).3.已知函数f (x )=⎝ ⎛⎭⎪⎫12x-cos x ,则f (x )在[0,2π]上的零点个数为( )A .1B .2C .3D .4解析:选C.作出g (x )=⎝ ⎛⎭⎪⎫12x与h (x )=cos x 的图象如图所示,可以看到其在[0,2π]上的交点个数为3,所以函数f (x )在[0,2π]上的零点个数为3,故选C.4.已知函数f (x )=⎝ ⎛⎭⎪⎫1e x-tan x ⎝ ⎛⎭⎪⎫-π2<x <π2,若实数x 0是函数y =f (x )的零点,且0<t <x 0,则f (t )的值( )A .大于1B .大于0C .小于0D .不大于0解析:选B.y 1=⎝ ⎛⎭⎪⎫1e x是减函数,y 2=-tan x 在⎝ ⎛⎭⎪⎫-π2,π2上也是减函数,可知f (x )=⎝ ⎛⎭⎪⎫1e x-tan x 在⎝ ⎛⎭⎪⎫-π2,π2上单调递减. 因为0<t <x 0,f (t )>f (x 0)=0.故选B.5.(2019·兰州模拟)已知奇函数f (x )是R 上的单调函数,若函数y =f (2x 2+1)+f (λ-x )只有一个零点,则实数λ的值是( )A .14 B .18 C .-78D .-38解析:选C.因为函数y =f (2x 2+1)+f (λ-x )只有一个零点,所以方程f (2x 2+1)+f (λ-x )=0只有一个实数根,又函数f (x )是定义在R 上的奇函数,所以f (-x )=-f (x ),所以f (2x 2+1)+f (λ-x )=0⇔f (2x 2+1)=-f (λ-x )⇔f (2x 2+1)=f (x -λ)⇔2x 2+1=x -λ,所以方程2x 2-x +1+λ=0只有一个实数根,所以Δ=(-1)2-4×2×(1+λ)=0,解得 λ=-78.故选C.6.(2019·宁波市余姚中学期中检测)已知函数f (x )=|x |x +2-kx 2(k ∈R )有四个不同的零点,则实数k 的取值范围是( )A .k <0B .k <1C .0<k <1D .k >1解析:选D.分别画出y =|x |x +2与y =kx 2的图象如图所示,当k <0时,y =kx 2的开口向下,此时与y =|x |x +2只有一个交点,显然不符合题意; 当k =0时,此时与y =|x |x +2只有一个交点,显然不符合题意, 当k >0,x ≥0时, 令f (x )=|x |x +2-kx 2=0, 即kx 3+2kx 2-x =0, 即x (kx 2+2kx -1)=0, 即x =0或kx 2+2kx -1=0,因为Δ=4k 2+4k >0,且-1k<0,所以方程有一正根,一负根,所以当x >0时,方程有唯一解.即当x ≥0时,方程有两个解.当k >0,x <0时,f (x )=|x |x +2-kx 2=0, 即kx 3+2kx 2+x =0,kx 2+2kx +1=0,此时必须有两个解才满足题意,所以Δ=4k 2-4k >0,解得k >1, 综上所述k >1.7.(2019·金丽衢十二校高三联考)设函数f (x )=⎩⎪⎨⎪⎧tan[π2(x -1)],0<x ≤1ln x ,x >1,则f (f (e))=________,函数y =f (x )-1的零点为________.解析:因为f (x )=⎩⎪⎨⎪⎧tan[π2(x -1)],0<x ≤1ln x ,x >1, 所以f (e)=ln e =1,f (f (e))=f (1)=tan 0=0,若0<x ≤1,f (x )=1⇒tan[π2(x -1)]=1, 方程无解;若x >1,f (x )=1⇒ln x =1⇒x =e. 答案:0 e 8.已知函数f (x )=23x+1+a 的零点为1,则实数a 的值为________. 解析:由已知得f (1)=0,即231+1+a =0,解得a =-12. 答案:-129.已知函数f (x )=⎩⎪⎨⎪⎧2x,x ≤0,|log 2x |,x >0,则函数g (x )=f (x )-12的零点所构成的集合为________.解析:令g (x )=0,得f (x )=12,所以⎩⎪⎨⎪⎧x ≤0,2x =12或⎩⎪⎨⎪⎧x >0,|log 2x |=12,解得x =-1或x =22或x =2,故函数g (x )=f (x )-12的零点所构成的集合为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫-1,22,2. 答案:⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫-1,22,2 10.(2019·杭州学军中学模拟)已知函数f (x )=|x 3-4x |+ax -2恰有2个零点,则实数a 的取值范围为________.解析:函数f (x )=|x 3-4x |+ax -2恰有2个零点即函数y =|x 3-4x |与y =2-ax的图象有2个不同的交点.作出函数y =|x 3-4x |的图象如图,当直线y =2-ax 与曲线y =-x 3+4x ,x ∈[0,2]相切时,设切点坐标为(x 0,-x 30+4x 0),则切线方程为y -(-x 30+4x 0)=(-3x 20+4)(x -x 0),且经过点(0,2),代入解得x 0=1,此时a =-1,由函数图象的对称性可得实数a 的取值范围为a <-1或a >1.答案:a<-1或a >111.设函数f (x )=ax 2+bx +b -1(a ≠0). (1)当a =1,b =-2时,求函数f (x )的零点;(2)若对任意b ∈R ,函数f (x )恒有两个不同零点,求实数a 的取值范围. 解:(1)当a =1,b =-2时,f (x )=x 2-2x -3,令f (x )=0,得x =3或x =-1. 所以函数f (x )的零点为3和-1.(2)依题意,f (x )=ax 2+bx +b -1=0有两个不同实根,所以b 2-4a (b -1)>0恒成立,即对于任意b ∈R ,b 2-4ab +4a >0恒成立,所以有(-4a )2-4×(4a )<0⇒a 2-a <0,解得0<a <1,因此实数a 的取值范围是(0,1).12.已知函数f (x )=-x 2-2x ,g (x )=⎩⎪⎨⎪⎧x +14x ,x >0,x +1,x ≤0.(1)求g (f (1))的值;(2)若方程g (f (x ))-a =0有4个实数根,求实数a 的取值范围. 解:(1)利用解析式直接求解得g (f (1))=g (-3)=-3+1=-2.(2)令f (x )=t ,则原方程化为g (t )=a ,易知方程f (x )=t 在t ∈(-∞,1)内有2个不同的解,则原方程有4个解等价于函数y =g (t )(t <1)与y =a 的图象有2个不同的交点,作出函数y =g (t )(t <1)的图象(图略),由图象可知,当1≤a <54时,函数y =g (t )(t <1)与y =a 有2个不同的交点,即所求a 的取值范围是⎣⎢⎡⎭⎪⎫1,54. [能力提升]1.(2019·杭州市富阳二中高三质检)已知函数f (x )=⎩⎪⎨⎪⎧e x-2(x ≤0)ln x (x >0),则下列关于函数y =f [f (kx )+1]+1(k ≠0)的零点个数的判断正确的是( )A .当k >0时,有3个零点;当k <0时,有4个零点B .当k >0时,有4个零点;当k <0时,有3个零点C .无论k 为何值,均有3个零点D .无论k 为何值,均有4个零点 解析:选C.令f [f (kx )+1]+1=0得,⎩⎪⎨⎪⎧f (kx )+1≤0,e f (kx )+1-2+1=0或⎩⎪⎨⎪⎧f (kx )+1>0ln[f (kx )+1]+1=0, 解得f (kx )+1=0或f (kx )+1=1e ;由f (kx )+1=0得,⎩⎪⎨⎪⎧kx ≤0,e kx -2+1=0或⎩⎪⎨⎪⎧kx >0ln (kx )=-1; 即x =0或kx =1e ;由f (kx )+1=1e得,⎩⎪⎨⎪⎧kx ≤0,e kx -2+1=1e 或⎩⎪⎨⎪⎧kx >0ln (kx )+1=1e ; 即e kx=1+1e (无解)或kx =e 1e -1;综上所述,x =0或kx =1e 或kx =e 1e -1;故无论k 为何值,均有3个解,故选C.2.(2019·宁波市高三教学评估)设函数f (x )=ax 2+bx +c (a ,b ,c ∈R 且a >0),则“f ⎝ ⎛⎭⎪⎫f ⎝ ⎛⎭⎪⎫-b 2a <0”是“f (x )与f (f (x ))都恰有两个零点”的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件解析:选C.由已知a >0,函数f (x )开口向上,f (x )有两个零点,最小值必然小于0,当取得最小值时,x =-b2a ,即f ⎝ ⎛⎭⎪⎫-b 2a <0,令f (x )=-b2a ,则f (f (x ))=f ⎝ ⎛⎭⎪⎫-b 2a ,因为f ⎝ ⎛⎭⎪⎫-b 2a <0,所以f (f (x ))<0,所以f (f (x ))必有两个零点.同理f ⎝ ⎛⎭⎪⎫f ⎝ ⎛⎭⎪⎫b 2a <0⇒f ⎝ ⎛⎭⎪⎫-b 2a <0⇒x =-b2a ,因为x =-b2a 是对称轴,a >0,开口向上,f ⎝ ⎛⎭⎪⎫-b 2a <0,必有两个零点所以C 选项正确.3.(2019·瑞安市龙翔高中高三月考)若关于x 的不等式x 2+|x -a |<2至少有一个正数解,则实数a 的取值范围是________.解析:不等式为2-x 2>|x -a |,则0<2-x 2.在同一坐标系画出y =2-x 2(y ≥0,x ≥0)和y =|x |两个函数图象,将绝对值函数y =|x |向左移动,当右支经过(0,2)点时,a =-2;将绝对值函数y =|x |向右移动让左支与抛物线y =2-x 2(y ≥0,x ≥0)相切时,由⎩⎪⎨⎪⎧y -0=-(x -a )y =2-x2,可得x 2-x +a -2=0, 再由Δ=0解得a =94.数形结合可得,实数a 的取值范围是⎝ ⎛⎭⎪⎫-2,94. 答案:⎝⎛⎭⎪⎫-2,944.已知函数f (x )=⎝ ⎛⎭⎪⎫12x,g (x )=log 12x ,记函数h (x )=⎩⎪⎨⎪⎧g (x ),f (x )≤g (x ),f (x ),f (x )>g (x ),则函数F (x )=h (x )+x -5的所有零点的和为________.解析:由题意知函数h (x )的图象如图所示,易知函数h (x )的图象关于直线y =x 对称,函数F (x )所有零点的和就是函数y =h (x )与函数y =5-x 图象交点横坐标的和,设图象交点的横坐标分别为x 1,x 2,因为两函数图象的交点关于直线y =x 对称,所以x 1+x 22=5-x 1+x 22,所以x 1+x 2=5.答案:55.已知函数f (x )=-x 2+2e x +m -1,g (x )=x +e2x(x >0).(1)若y =g (x )-m 有零点,求m 的取值范围;(2)确定m 的取值范围,使得g (x )-f (x )=0有两个相异实根. 解:(1)法一:因为g (x )=x +e 2x≥2e 2=2e ,等号成立的条件是x =e , 故g (x )的值域是[2e ,+∞),因而只需m ≥2e ,则y =g (x )-m 就有零点. 所以m 的取值范围是[2e ,+∞).法二:作出g (x )=x +e2x(x >0)的大致图象如图:可知若使y =g (x )-m 有零点,则只需m ≥2e,即m 的取值范围是[2e ,+∞).(2)若g (x )-f (x )=0有两个相异的实根,即g (x )与f (x )的图象有两个不同的交点,作出g (x )=x +e2x(x >0)的大致图象.因为f (x )=-x 2+2e x +m -1=-(x -e)2+m -1+e 2. 所以其图象的对称轴为x =e ,开口向下, 最大值为m -1+e 2.故当m -1+e 2>2e ,即m >-e 2+2e +1时,g (x )与f (x )有两个交点,即g (x )-f (x )=0有两个相异实根.所以m 的取值范围是(-e 2+2e +1,+∞).6.(2019·绍兴一中高三期中)已知函数f (x )=x |x -a |+bx . (1)当a =2,且f (x )是R 上的增函数,求实数b 的取值范围;(2)当b =-2,且对任意a ∈(-2,4),关于x 的方程f (x )=tf (a )有三个不相等的实数根,求实数t 的取值范围.解:(1)f (x )=x |x -2|+bx =⎩⎪⎨⎪⎧x 2+(b -2)x ,x ≥2-x 2+(b +2)x ,x <2,因为f (x )连续,所以f (x )在R 上递增等价于这两段函数分别递增, 所以⎩⎪⎨⎪⎧2-b2≤22+b 2≥2,解得,b ≥2.(2)f (x )=x |x -a |-2x =⎩⎪⎨⎪⎧x 2-(a +2)x ,x ≥a -x 2+(a -2)x ,x <a ,tf (a )=-2ta ,当2≤a <4时,a -22<a +22≤a ,f (x )在⎝ ⎛⎭⎪⎫-∞,a -22上单调递增,在⎝ ⎛⎭⎪⎫a -22,a 上单调递减,在(a ,+∞)上单调递增,所以f (x )极大值=f ⎝ ⎛⎭⎪⎫a -22=a 24-a +1, f (x )极小值=f (a )=-2a ,所以⎩⎪⎨⎪⎧-2a <-2ta ,a 24-a +1>-2ta 对2≤a <4恒成立,解得0<t <1,当-2<a <2时,a -22<a <a +22,f (x )在⎝ ⎛⎭⎪⎫-∞,a -22上单调递增,在⎝ ⎛⎭⎪⎫a -22,a +22上单调递减,在⎝ ⎛⎭⎪⎫a +22,+∞上单调递增,所以f (x )极大值=f ⎝ ⎛⎭⎪⎫a -22=a 24-a +1, f (x )极小值=f ⎝ ⎛⎭⎪⎫a +22=-a 24-a -1,所以-a 24-a -1<-2ta <a 24-a +1对-2<a <2恒成立,解得0<t <1,综上所述,0<t <1.。

2020年高三一轮复习数学教案第8讲《导数的计算及几何意义》(教师版)

2020年高三一轮复习数学教案第8讲《导数的计算及几何意义》(教师版)

个性化教学辅导教案1、已知函数,则函数的大致图像是( )A .B .C .D .2.设奇函数f (x )在(0,+∞)上为增函数,且f (1)=0,则不等式()()0f x f x x--<的解集为( )A .(-1,0)∪(1,+∞)B .(-∞,-1)∪(0,1)C .(-∞,-1)∪(1,+∞)D .(-1,0)∪(0,1)解析:选D 因为f (x )为奇函数,所以不等式f x-f -x x <0可化为f xx<0,即xf (x )<0,f (x )的大致图象如图所示.所以xf (x )<0的解集为(-1,0)∪(0,1).3、函数f (x )=x -cos x 在[0,+∞)内 ( ).A .没有零点B .有且仅有一个零点C .有且仅有两个零点D .有无穷多个零点解析 令f (x )=0,得x =cos x ,在同一坐标系内画出两个函数y =x 与y =cos x 的图象如图所示,由图象知,两个函数只有一个交点,从而方程x =cos x 只有一个解. ∪函数f (x )只有一个零点. 答案 B4、设f (x )=ln x +x -2,则函数f (x )的零点所在的区间为( ) A .(0,1) B .(1,2) C .(2,3) D .(3,4)答案 B解析 ∪f (1)=ln 1+1-2=-1<0,f (2)=ln 2>0, ∪f (1)·f (2)<0,∪函数f (x )=ln x +x -2的图象是连续的, ∪f (x )的零点所在的区间是(1,2).1.(教材改编)若f (x )=x ·e x ,则f ′(1)等于( ) A .0 B .e C .2e D .e 2 答案 C解析 f ′(x )=e x +x ·e x ,∴f ′(1)=2e.2.如图所示为函数y =f (x ),y =g (x )的导函数的图象,那么y =f (x ),y =g (x )的图象可能是( )答案 D解析 由y =f ′(x )的图象知y =f ′(x )在(0,+∞)上单调递减,说明函数y =f (x )的切线的斜率在(0,+∞)上也单调递减,故可排除A ,C.又由图象知y =f ′(x )与y =g ′(x )的图象在x =x 0处相交,说明y =f (x )与y =g (x )的图象在x =x 0处的切线的斜率相同,故可排除B.故选D.3.设函数f (x )的导数为f ′(x ),且f (x )=f ′(π2)sin x +cos x ,则f ′(π4)= .答案 -2解析 因为f (x )=f ′(π2)sin x +cos x ,所以f ′(x )=f ′(π2)cos x -sin x ,所以f ′(π2)=f ′(π2)cos π2-sin π2,即f ′(π2)=-1,所以f (x )=-sin x +cos x .f ′(x )=-cos x -sin x .故f ′(π4)=-cos π4-sin π4=- 2.4.曲线y =-5e x +3在点(0,-2)处的切线方程是 . 答案 5x +y +2=0解析 因为y ′|x =0=-5e 0=-5,所以曲线在点(0,-2)处的切线方程为y -(-2)=-5(x -0),即5x +y +2=0.学科分析:从近五年的考查情况来看,本讲一直是高考的热点,主要考查导数的运算、求导法则以及导数的几何意义.导数的运算一般不单独考查,而是在考查导数的应用时与单调性、极值与最值综合考查,导数的几何意义最常见的是求切线方程和已知切线方程求参数值,常以选择题、填空题的形式出现,有时也出现在解答题的第一问,难度中等. 学生分析:1、学习风格(动觉型、视觉型、听觉型)2、知识点分析: (1)导数的概念与运算 (2)导数的几何意义【精准突破一】学习目标:导数的概念与运算 目标分解:∴直线l 的方程为y =x -1,即x -y -1=0.故选B.1、f (x )=x (2 016+ln x ),若f ′(x 0)=2 017,则x 0等于( ) A .e 2 B .1 C .ln 2D .E答案 B 解析 f ′(x )=2 016+ln x +x ×1x =2 017+ln x ,故由f ′(x 0)=2 017,得2 017+ln x 0=2 017,则ln x 0=0,解得x 0=1.2、若函数f (x )=ax 4+bx 2+c 满足f ′(1)=2,则f ′(-1)等于( ) A .-1 B .-2 C .2D .0答案 B f ′(x )=4ax 3+2bx ,∵f ′(x )为奇函数且f ′(1)=2,∴f ′(-1)=-2. 3、已知曲线y =x 24-3ln x 的一条切线的斜率为12,则切点的横坐标为( )A .3B .2C .1 D.124、(2016·昆明模拟)设曲线y =1+cos x sin x 在点(π2,1)处的切线与直线x -ay +1=0平行,则实数a 等于( )A .-1 B.12 C .-2 D .2答案 3、A 4、A解析 3、设切点的横坐标为x 0,∵曲线y =x 24-3ln x 的一条切线的斜率为12,∴y ′=x 2-3x ,即x 02-3x 0=12,解得x 0=3或x 0=-2(舍去,不符合题意), 即切点的横坐标为3.4、∵y ′=-1-cos xsin 2x ,π2|1.x y ∴'==-由条件知1a=-1,∴a =-1.5、若存在过点O (0,0)的直线l 与曲线y =x 3-3x 2+2x 和y =x 2+a 都相切,求a 的值.解 易知点O (0,0)在曲线y =x 3-3x 2+2x 上. (1)当O (0,0)是切点时,由y ′=3x 2-6x +2,得y ′|x =0=2,即直线l 的斜率为2,故直线l 的方程为y =2x .由⎩⎪⎨⎪⎧y =2x ,y =x 2+a ,得x 2-2x +a =0, 依题意Δ=4-4a =0,得a =1.(2)当O (0,0)不是切点时,设直线l 与曲线y =x 3-3x 2+2x 相切于点P (x 0,y 0),则y 0=x 30-3x 20+2x 0,0|x x k y '===3x 20-6x 0+2,① 又k =y 0x 0=x 20-3x 0+2,②联立①②,得x 0=32(x 0=0舍去),所以k =-14,故直线l 的方程为y =-14x .由⎩⎪⎨⎪⎧y =-14x ,y =x 2+a ,得x 2+14x +a =0,依题意,Δ=116-4a =0,得a =164.综上,a =1或a =164.【查漏补缺】1.若f (x )=2xf ′(1)+x 2,则f ′(0)等于( ) A .2 B .0 C .-2 D .-4 答案 D解析 f ′(x )=2f ′(1)+2x ,令x =1,则f ′(1)=2f ′(1)+2,得f ′(1)=-2, 所以f ′(0)=2f ′(1)+0=-4.2.一质点沿直线运动,如果由始点起经过t 秒后的位移为s =13t 3-3t 2+8t ,那么速度为零的时刻是( )A .1秒B .1秒末和2秒末C .4秒末D .2秒末和4秒末答案 D解析 s ′(t )=t 2-6t +8,由导数的定义知v =s ′(t ), 令s ′(t )=0,得t =2或4,即2秒末和4秒末的速度为零.3.若直线y =x 是曲线y =x 3-3x 2+px 的切线,则实数p 的值为( ) A .1 B .2 C.134 D .1或134答案 D解析 ∵y ′=3x 2-6x +p ,设切点为P (x 0,y 0),∴⎩⎪⎨⎪⎧3x 20-6x 0+p =1,x 30-3x 20+px 0=x 0,解得⎩⎪⎨⎪⎧x 0=0,p =1或⎩⎨⎧x 0=32,p =134.4.(2017·郑州质检)已知y =f (x )是可导函数,如图,直线y =kx +2是曲线y =f (x )在x =3处的切线,令g (x )=xf (x ),g ′(x )是g (x )的导函数,则g ′(3)等于( )A .-1B .0C .2D .4 答案 B解析 由题图可知曲线y =f (x )在x =3处切线的斜率等于-13,∴f ′(3)=-13.∵g (x )=xf (x ),∴g ′(x )=f (x )+xf ′(x ), ∴g ′(3)=f (3)+3f ′(3), 又由题图可知f (3)=1, ∴g ′(3)=1+3×(-13)=0.5.已知曲线y =ln x 的切线过原点,则此切线的斜率为( ) A .e B .-e C.1e D .-1e答案 C解析 y =ln x 的定义域为(0,+∞),且y ′=1x ,设切点为(x 0,ln x 0),则001|x x y x '==, 切线方程为y -ln x 0=1x 0(x -x 0),即x +1x -a =0有解,∴a =x +1x≥2.【举一反三】1、(2016·泉州模拟)函数y =e x 的切线方程为y =mx ,则m = .2、已知f (x )=ln x ,g (x )=12x 2+mx +72(m <0),直线l 与函数f (x ),g (x )的图象都相切,与f (x )图象的切点为(1,f (1)),则m 等于( ) A .-1 B .-3 C .-4 D .-2 答案 1、e 2、D解析 1、设切点坐标为P (x 0,y 0),由y ′=e x , 得00|e xx x y ==,从而切线方程为000e e ()x xy x x -=-, 又切线过定点(0,0),从而000e e ()xxx -=-, 解得x 0=1,则m =e. 2、∵f ′(x )=1x,∴直线l 的斜率k =f ′(1)=1.又f (1)=0,∴切线l 的方程为y =x -1. g ′(x )=x +m ,设直线l 与g (x )的图象的切点为(x 0,y 0),则有x 0+m =1,y 0=x 0-1,y 0=12x 20+mx 0+72,m <0, 于是解得m =-2.故选D.3、如图,点A (2,1),B (3,0),E (x,0)(x ≥0),过点E 作OB 的垂线l .记△AOB 在直线l 左侧部分的面积为S ,则函数S =f (x )的图象为下图中的( )3、答案 D解析 函数的定义域为[0,+∞),当x ∈[0,2]时,在单位长度变化量Δx 内面积变化量ΔS 大于0且越来越大,即斜率f ′(x )在[0,2]内大于0且越来越大,因此,函数S =f (x )的图象是上升的且图象是下凸的;当x ∈(2,3)时,在单位长度变化量Δx 内面积变化量ΔS 大于0且越来越小,即斜率f ′(x )在(2,3)内大于0且越来越小,因此,函数S =f (x )的图象是上升的且图象是上凸的;当x ∈[3,+∞)时,在单位长度变化量Δx 内面积变化量ΔS 为0,即斜率f ′(x )在[3,+∞)内为常数0,此时,函数图象为平行于x 轴的射线.【方法技巧】导数的几何意义是切点处切线的斜率,应用时主要体现在以下几个方面: (1)已知切点A (x 0,f (x 0))求斜率k ,即求该点处的导数值:k =f ′(x 0). (2)已知斜率k ,求切点A (x 1,f (x 1)),即解方程f ′(x 1)=k .(3)若求过点P (x 0,y 0)的切线方程,可设切点为(x 1,y 1),由⎩⎪⎨⎪⎧y 1=f (x 1),y 0-y 1=f ′(x 1)(x 0-x 1)求解即可.(4)函数图象在每一点处的切线斜率的变化情况反映函数图象在相应点处的变化情况,由切线的倾斜程度可以判断出函数图象升降的快慢.1、若函数f (x )=e x •sinx ,则f'(0)= 。

高三数学第八讲对数函数的图象与性质

高三数学第八讲对数函数的图象与性质

【基础回归】1、(2009某某)2log 2的值为( )A .2-B .2C .-1/2D .1/2 2、下列各式,化简后其值不等于1的是 ( )A)22log 6log 3-B)lg 2lg5+C)log log a b b a ⋅D)82log 9log 3÷ 3、下列各式,化简后其值不等于2的是( )A)50.22log 10log 0.25-B)lg(1/4)lg 25-C)22log (log 16)D )3log 234、下列不等式中,不正确的是 ( )A)22log 3.4log 8.5<B)0.20.2log 3.4log 8.5>C) 1.13log 0.99log 1.1<D ) 1.13log 0.99log 1.1> 5、函数0.5log (43)y x =-的定义域是 ( )A){|3/4}x x >B){|1}x x <C){|3/41}x x <≤D){|3/41}x x <<6、(08某某)集合{}|lg ,1A y R y x x =∈=>,}{2,1,1,2B =--,则下列结论正确的是( )A )}{2,1AB =-- B )()(,0)RC A B =-∞C )(0,)A B =+∞D )}{()2,1R C A B =--7、若3log 21x =,则44x x -+的值为 ( )A)10/3B)82/9 C) 0D)5/27 8、(07某某)设0.5log 3a =,0.2(1/3)b =,1/32c =,则( )A)a b c <<B)c b a <<C)c a b <<D)b a c <<9、(07全国1)设1a >,函数()log a f x x =在区间[,2]a a 上的最大值与最小值之差为1/2,则a = ( )A)2 B)2 C)22 D)410、(08某某)在同一平面直角坐标系中,函数()y g x =的图象与xy e =的图象关于直线y x =对称。

2.8函数的零点与方程的解课件高三数学一轮复习

2.8函数的零点与方程的解课件高三数学一轮复习

角度 2:根据零点所在区间求参数 【例 3】 (2022·黑龙江省实验中学月考)若函数 f(x)=4x-m·2x+m+3 有两个不同的 零点 x1,x2,且 x1∈(0,1),x2∈(2,+∞),则实数 m 的取值范围为( C ) A.(-∞,-2) B.(-∞,-2)∪(6,+∞) C.(7,+∞) D.(-∞,-3) 【思路探索】 令 t=2x,通过换元转化为二次函数零点分布问题,再数形结合求解.
(2)令 f(x)=|lgx|-kx-2=0,得|lgx|=kx+2, 令 g(x)=|lgx|,h(x)=kx+2,所以 f(x)的零点个数即函数 g(x)与 h(x)图象的交点个数.当 k=0 时,如图 a,g(x)与 h(x)的图象有两个交点,则 f(x)有两个零点,故①正确;当 k>0 时, 如图 b,存在 h(x)=k0x+2 的图象与函数 g(x)=lgx(x>1)的图象相切,此时 h(x)与 g(x)的图 象有两个交点,当 0<k<k0 时,g(x)与 h(x)的图象有三个交点,则 f(x)有三个零点,故④正 确;当 k<0 时,如图 c,g(x)与 h(x)的图象最多有两个交点,g(x)与 h(x)相切时有一个交点, 如图 d,故②正确,③不正确.综上,正确结论的序号为①②④.
【解析】 ∵对任意 x∈R,都有 f(2-x)=f(x+2),∴函数 f(x)的图象关于直线 x=2 对称.
又∵当 x∈[-2,0]时,f(x)=2-x-1,且函数 f(x)是定义在 R 上的偶函数,∴可作出 f(x) 的图象,如图所示.
当 a>1 时,关于 x 的方程 f(x)-loga(x+2)=0 恰有三个不同的实数根,则函数 y=f(x) 与 y=loga(x+2)的图象有三个不同的交点.

2019届高三数学(理)一轮课件:第8讲-指数与指数函数(含答案)

2019届高三数学(理)一轮课件:第8讲-指数与指数函数(含答案)

课堂考点探究
考向2 解简单的指数方程或不等式

4
(1)已知函数
f(x)=
2������ -1,������ > 1,������ ≤ 1,
1,则不等
解集是
.
课堂考点探究
[答案] (析] (1)当 x≥2 时,2������≤1,不等式无解 f(x)<f 2 得 x<2,得 1<x< 2;当 0<x≤1
天道酬 勤
课堂考点探究
[答案] (1)A (2)D
[解析] (1)将函数解析式与图像对比分析 选项满足上述两个性质,故选 A.
课堂考点探究
[总结反思] (1)研究指数函数 y=ax(a>0 (2)与指数函数有关的函数图像问题的 称变换得到其图像.
课堂考点探究
变式题 (1)在同一平面直角坐标系中,函 y=ax(a>0 且 a≠1)与 y=(1-a)x 的图像可能
f(1-a)=f(a-1),则 a 的值为
.
课堂考点探究
4.【考向 2】若偶函数 f(x)满足 f(x)=2x-4(x≥0
等式 f(x-2)>0 的解集为
.
课堂考点探究
5.【考向 3】已知函数 f(x)=b·ax(其中 a,b
为常数且 a>0,a≠1)的图像经过点
A(1,6),B(3,24).若不等式
课前双基巩固
题组二 常错题
◆索引:忽略n的范围导致式子(a∈R 指数函数问题时刻注意底数的两种 情况.
课前双基巩固
6.若函数 f(x)=(a2-3)·ax 为指数函数,则
a=
.
课前双基巩固
7.若函数 f(x)=ax 在[-1,1]上的最大值为 2,

(艺术生专用)高考数学总复习 第二章 函数、导数及其应用 第8节 函数与方程课时冲关-人教版高三全册

(艺术生专用)高考数学总复习 第二章 函数、导数及其应用 第8节 函数与方程课时冲关-人教版高三全册

第8节 函数与方程1.下列图象表示的函数中能用二分法求零点的是( )解析:C [A 中函数没有零点,因此不能用二分法求零点;B 中函数的图象不连续;D 中函数在x 轴下方没有图象,故选C.]2.函数f (x )=⎩⎪⎨⎪⎧x 2+2x -3,x ≤0,-2+ln x ,x >0的零点个数为( )A .3B .2C .1D .0解析:B [当x ≤0时,由f (x )=x 2+2x -3=0,得x 1=1(舍去),x 2=-3;当x >0时,由f (x )=-2+ln x =0,得x =e 2,所以函数f (x )的零点个数为2,故选B.]3.(2020·乌鲁木齐市一模)函数f (x )=e x+2x -3的零点所在的一个区间是( )A.⎝ ⎛⎭⎪⎫-12,0B.⎝ ⎛⎭⎪⎫0,12C.⎝ ⎛⎭⎪⎫12,1 D.⎝ ⎛⎭⎪⎫1,32 解析:C [因为f ⎝ ⎛⎭⎪⎫12=e 12-2<0,f (1)=e -1>0,所以零点在区间⎝ ⎛⎭⎪⎫12,1上,故选C.] 4.(2020·某某市模拟)若定义在R 上的偶函数f (x )满足f (x +2)=f (x ),且x ∈[0,1]时,f (x )=x ,则方程f (x )=log 3|x |的解有( )A .2个B .3个C .4个D .多于4个解析:C [由f (x +2)=f (x )可得函数的周期为2, 又函数为偶函数且当x ∈[0,1]时,f (x )=x ,故可作出函数f (x )的图象.∴方程f (x )=log 3|x |的解个数等价于y =f (x )与y =log 3|x |图象的交点个数, 由图象可得它们有4个交点,故方程f (x )=log 3|x |的解的个数为4,故选C.] 5.(2020·某某市模拟)定义在R 上的偶函数f (x )满足f (x +1)=-f (x ),当x ∈[0,1]时,f (x )=-2x +1,设函数g (x )=⎝ ⎛⎭⎪⎫12|x -1|(-1<x <3),则函数f (x )与g (x )的图象所有交点的横坐标之和为( )A .2B .4C .6D .8解析:B [∵f (x +1)=-f (x ), ∴f (x +2)=-f (x +1)=f (x ), ∴f (x )的周期为2.∴f (1-x )=f (x -1)=f (x +1), 故f (x )的图象关于直线x =1对称.又g (x )=⎝ ⎛⎭⎪⎫12|x -1|(-1<x <3)的图象关于直线x =1对称,作出f (x )和g (x )的函数图象如图所示:由图象可知两函数图象在(-1,3)上共有4个交点, ∴所有交点的横坐标之和为2×2=4.故选B.] 6.已知函数f (x )=23x+1+a 的零点为1,则实数a 的值为 ________ . 解析:由已知得f (1)=0,即231+1+a =0,解得a =-12.答案:-127.已知函数f (x )=log a x +x -b (a >0,且a ≠1).当2<a <3<b <4时,函数f (x )的零点x 0∈(n ,n +1),n ∈N *,则n = ________ .解析:∵2<a <3<b <4,∴f (1)=log a 1+1-b =1-b <0,f (2)=log a 2+2-b <0,f (3)=log a 3+3-b ,又∵log a 3>1,-1<3-b <0,∴f (3)>0,即f (2)f (3)<0,故x 0∈(2,3),即n =2. 答案:28.已知函数f (x )=⎩⎪⎨⎪⎧2x,x ≤0,|log 2x |,x >0,则函数g (x )=f (x )-12的零点所构成的集合为________ .解析:令g (x )=0,得f (x )=12,所以⎩⎪⎨⎪⎧x ≤0,2x =12或⎩⎪⎨⎪⎧x >0,|log 2x |=12,解得x =-1或x =22或x =2,故函数g (x )=f (x )-12的零点所构成的集合为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫-1,22,2.答案:⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫-1,22,2 9.设函数f (x )=ax 2+bx +b -1(a ≠0). (1)当a =1,b =-2时,求函数f (x )的零点;(2)若对任意b ∈R ,函数f (x )恒有两个不同零点,某某数a 的取值X 围. 解:(1)当a =1,b =-2时,f (x )=x 2-2x -3, 令f (x )=0,得x =3或x =-1. ∴函数f (x )的零点为3或-1.(2)依题意,f (x )=ax 2+bx +b -1=0有两个不同实根, ∴b 2-4a (b -1)>0恒成立,即对于任意b ∈R ,b 2-4ab +4a >0恒成立,所以有(-4a )2-4×(4a )<0⇒a 2-a <0,解得0<a <1,因此实数a 的取值X 围是(0,1).10.设函数f (x )=⎪⎪⎪⎪⎪⎪1-1x (x >0).(1)作出函数f (x )的图象;(2)当0<a <b 且f (a )=f (b )时,求1a +1b的值;(3)若方程f (x )=m 有两个不相等的正根,求m 的取值X 围. 解:(1)如图所示.(2)∵f (x )=⎪⎪⎪⎪⎪⎪1-1x =⎩⎪⎨⎪⎧1x -1,x ∈(0,1],1-1x ,x ∈(1,+∞),故f (x )在(0,1]上是减函数,而在(1,+∞)上是增函数. 由0<a <b 且f (a )=f (b ),得0<a <1<b 且1a -1=1-1b,∴1a +1b=2.(3)由函数f (x )的图象可知,当0<m <1时,方程f (x )=m 有两个不相等的正根.。

高三数学第二章第8课时优质课件

高三数学第二章第8课时优质课件
a+b (2)将 称为区间[a,b]的中点. 2
目录
课前热身 1.(2013· 蚌埠月考)若函数 y=f(x)在 R 上递增,则函数 y=f(x) 的零点( )
A.至少有一个 B.至多有一个 C.有且只有一个 D.可能有无数个
答案:B
目录
2.下列函数图像与 x 轴均有公共点,其中能用二分法求零点 的是( )
解析:由表中f(1.562 5)=0.003,f(1.556 2)=-0.029.可知零
点近似值为1.56.
答案:1.56
目录
5.(2013· 济源模拟)函数 f(x)=ex+2x-6(e≈2.718)的零点属于 区间(n,n+1)(n∈Z),则 n=________.
解析:可以估算相邻两个自然数的函数值,f(1)=e-4<0,f(2) =e2-2>0,从而可知函数 f(x)的零点位于区间(1,2)内,故 n =1.
目录
ln 3 因为直线 l1 的斜率 k1= , 设直线 l2 与曲线 y=ln x, x∈[1,3] 3
k2x0=ln x0 1 相切的切点横坐标是 x0, 则有 1 , 由此解得 k2= , e x0=k2 ln 3,1 ,故选 A. 因此满足题意的实数 a 的取值范围是 3 e
目录
考点 3
二分法
例3 用二分法求函数 f(x)=x3-x-1 在区间(1,1.5)内的一
个零点(精确到 0.1).
【解】 由于 f(1)=1-1-1=-1<0,f(1.5)>0,
∴f(x)在区间[1,1.5]内存在零点. 取区间[1,1.5]作为计算的初始区间,
目录
用二分法逐次计算列表如下: 计算中点 端点(中点)坐标 的函数值 1+1.5 x0= =1.25 2 1.25+1.5 x1= =1.375 2 1.25+1.375 x2= = 2 1.312 5 1.312 5+1.375 x3= = 2 1.343 75 f(x0)<0 f(x1)>0 f(x2)<0

2022届高三数学第八章 §8.1 直线的方程

2022届高三数学第八章 §8.1 直线的方程

§8.1 直线的方程考试要求 1.在平面直角坐标系中,结合具体图形,探索确定直线位置的几何要素.2.理解直线的倾斜角和斜率的概念,经历用代数方法刻画直线斜率的过程,掌握过两点的直线斜率的计算公式.3.根据确定直线位置的几何要素,探索并掌握直线方程的几种形式(点斜式、两点式及一般式).1.直线的倾斜角(1)定义:当直线l 与x 轴相交时,我们以x 轴作为基准,x 轴正向与直线l 向上的方向之间所成的角α叫做直线l 的倾斜角.(2)范围:直线的倾斜角α的取值范围为0°≤α<180°. 2.直线的斜率(1)定义:把一条直线的倾斜角α的正切值叫做这条直线的斜率.斜率常用小写字母k 表示,即k =tan_α(α≠90°). (2)过两点的直线的斜率公式如果直线经过两点P 1(x 1,y 1),P 2(x 2,y 2)(x 1≠x 2),其斜率k =y 2-y 1x 2-x 1.3.直线方程的五种形式名称 方程适用范围 点斜式 y -y 0=k(x -x 0) 不含直线x =x 0 斜截式 y =kx +b不含垂直于x 轴的直线 两点式 y -y 1y 2-y 1=x -x 1x 2-x 1(x 1≠x 2,y 1≠y 2) 不含直线x =x 1和直线y =y 1 截距式 x a +yb=1 不含垂直于坐标轴和过原点的直线 一般式Ax +By +C =0(A 2+B 2≠0)平面直角坐标系内的直线都适用微思考1.直线的倾斜角越大,斜率越大对吗?提示 不对.设直线的倾斜角为α,斜率为k.α的大小 0° 0°<α<90° 90° 90°<α<180° k 的范围 k =0 k>0不存在k<0k 的增减性随α的增大而增大随α的增大而增大2.“截距”与“距离”有何区别?当截距相等时应注意什么?提示 “截距”是直线与坐标轴交点的坐标值,它可正,可负,也可以是零,而“距离”是一个非负数.应注意过原点的特殊情况是否满足题意.题组一 思考辨析1.判断下列结论是否正确(请在括号中打“√”或“×”) (1)根据直线的倾斜角的大小不能确定直线的位置.( √ ) (2)若直线的斜率为tanα,则其倾斜角为α.( × ) (3)斜率相等的两直线的倾斜角不一定相等.( × )(4)经过定点A(0,b)的直线都可以用方程y =kx +b 表示.( × ) 题组二 教材改编2.若过点M(-2,m),N(m,4)的直线的斜率等于1,则m 的值为( ) A .1 B .4 C .1或3 D .1或4答案 A解析 由题意得m -4-2-m=1,解得m =1.3.已知直线斜率的绝对值等于1,则直线的倾斜角为________. 答案π4或3π4解析 由|k|=|tanα|=1知tanα=±1, ∴α=π4或3π4.4.已知三点A(-3,-1),B(0,2),C(m,4)在同一直线上,则实数m 的值为________. 答案 2解析 因为A ,B ,C 三点在同一直线上,所以k AB =k BC ,即2--10--3=4-2m -0,故m =2. 题组三 易错自纠5.(多选)下列说法正确的是( ) A .有的直线斜率不存在B .若直线l 的倾斜角为α,且α≠90°,则它的斜率k =tanαC .若直线l 的斜率为1,则它的倾斜角为3π4D .截距可以为负值 答案 ABD6.过点P(2,3)且在两坐标轴上截距相等的直线方程为________________. 答案 3x -2y =0或x +y -5=0解析 当截距为0时,直线方程为3x -2y =0; 当截距不为0时,设直线方程为x a +ya=1,则2a +3a=1,解得a =5.所以直线方程为x +y -5=0.题型一直线的倾斜角与斜率例1 (1)已知两点A(-1,2),B(m,3),且m∈⎣⎢⎡⎦⎥⎤-33-1,3-1,则直线AB 的倾斜角α的取值范围是( )A.⎣⎢⎡⎭⎪⎫π6,π2B.⎝ ⎛⎦⎥⎤π2,2π3C.⎣⎢⎡⎭⎪⎫π6,π2∪⎝ ⎛⎦⎥⎤π2,2π3 D.⎣⎢⎡⎦⎥⎤π6,2π3 答案 D解析 ①当m =-1时,α=π2;②当m≠-1时,∵k=1m +1∈(-∞,- 3 ]∪⎣⎢⎡⎭⎪⎫33,+∞,∴α∈⎣⎢⎡⎭⎪⎫π6,π2∪⎝ ⎛⎦⎥⎤π2,2π3. 综合①②知直线AB 的倾斜角α的取值范围是⎣⎢⎡⎦⎥⎤π6,2π3.(2)(2020·安阳模拟)已知点A(1,3),B(-2,-1).若直线l :y =k(x -2)+1与线段AB 相交,则k 的取值范围是( ) A .k≥12B .k≤-2C .k≥12或k≤-2D .-2≤k≤12答案 D解析 直线l :y =k(x -2)+1经过定点P(2,1),∵k PA =3-11-2=-2,k PB =-1-1-2-2=12,又直线l :y =k(x -2)+1与线段AB 相交, ∴-2≤k≤12.本例(2)直线l 改为y =kx ,若l 与线段AB 相交,则k 的取值范围是______.答案 ⎝ ⎛⎦⎥⎤-∞,12∪[3,+∞) 解析 直线l 过定点P(0,0), ∵k PA =3,k PB =12,∴k≥3或k≤12.思维升华 (1)斜率的两种求法:定义法、斜率公式法.(2)倾斜角和斜率范围求法:①图形观察(数形结合);②充分利用函数k =tanα的单调性. 跟踪训练1 (1)(2021·宿州模拟)若图中直线l 1,l 2,l 3的斜率分别为k 1,k 2,k 3,则( )A .k 1<k 2<k 3B .k 3<k 1<k 2C .k 3<k 2<k 1D .k 1<k 3<k 2答案 D解析 因为直线l 2,l 3的倾斜角为锐角,且直线l 2的倾斜角大于直线l 3的倾斜角,所以0<k 3<k 2.直线l 1的倾斜角为钝角,斜率k 1<0,所以k 1<k 3<k 2.(2)直线l 过点P(1,0),且与以A(2,1),B(0,3)为端点的线段有公共点,则直线l 的斜率的取值范围是______________. 答案 (-∞,- 3 ]∪[1,+∞) 解析 如图所示,当直线l 过点B 时,k 1=3-00-1=- 3.当直线l 过点A 时,k 2=1-02-1=1,∴要使直线l 与线段AB 有公共点,则直线l 的斜率的取值范围是(-∞,- 3 ]∪[1,+∞).题型二求直线的方程1.(2021·荆门期末)经过点P(2,-3),且倾斜角为45°的直线方程为( ) A .x +y +1=0 B .x +y -1=0 C .x -y +5=0 D .x -y -5=0答案 D解析 倾斜角为45°的直线的斜率为tan45°=1,又该直线经过点P(2,-3),所以用点斜式求得直线的方程为y +3=x -2,即x -y -5=0.2.已知点M 是直线l :2x -y -4=0与x 轴的交点,将直线l 绕点M 按逆时针方向旋转45°,得到的直线方程是( ) A .x +y -3=0 B .x -3y -2=0 C .3x -y +6=0 D .3x +y -6=0答案 D解析 设直线l 的倾斜角为α,则tanα=k =2,直线l 绕点M 按逆时针方向旋转45°,所得直线的斜率k′=tan ⎝ ⎛⎭⎪⎫α+π4=2+11-2×1=-3,又点M(2,0),所以y =-3(x -2),即3x +y -6=0.3.经过两条直线l 1:x +y =2,l 2:2x -y =1的交点,且直线的一个方向向量v =(-3,2)的直线方程为__________. 答案 2x +3y -5=0解析 联立⎩⎪⎨⎪⎧x +y =2,2x -y =1,解得x =1,y =1,∴直线过点(1,1),∵直线的方向向量v =(-3,2), ∴直线的斜率k =-23.则直线的方程为y -1=-23(x -1),即2x +3y -5=0.4.过点(2,1)且在x 轴上截距与在y 轴上截距之和为6的直线方程为_________________. 答案 x +y -3=0或x +2y -4=0 解析 由题意可设直线方程为x a +yb =1.则⎩⎪⎨⎪⎧a +b =6,2a +1b=1,解得a =b =3,或a =4,b =2.故所求直线方程为x +y -3=0或x +2y -4=0.思维升华 (1)求直线方程一般有以下两种方法:①直接法:由题意确定出直线方程的适当形式,然后直接写出其方程.②待定系数法:先由直线满足的条件设出直线方程,方程中含有待定的系数,再由题设条件求出待定系数,即得所求直线方程.(2)在求直线方程时,应选择适当的形式,并注意各种形式的适用条件,特别是对于点斜式、截距式方程,使用时要注意分类讨论思想的运用.题型三直线方程的综合应用 命题点1 直线过定点问题例2已知k∈R,写出以下动直线所过的定点坐标: (1)若直线方程为y =kx +3,则直线过定点________; (2)若直线方程为y =kx +3k ,则直线过定点________; (3)若直线方程为x =ky +3,则直线过定点________. 答案 (1)(0,3) (2)(-3,0) (3)(3,0)解析 (1)当x =0时,y =3,所以直线过定点(0,3). (2)直线方程可化为y =k(x +3),故直线过定点(-3,0). (3)当y =0时,x =3,所以直线过定点(3,0). 命题点2 与直线有关的多边形面积的最值例3已知直线l 过点M(2,1),且分别与x 轴的正半轴,y 轴的正半轴交于A ,B 两点,O 为原点,当△AOB 面积最小时,求直线l 的方程.解 方法一 设直线l 的方程为y -1=k(x -2),则可得A ⎝ ⎛⎭⎪⎫2k -1k ,0,B(0,1-2k).∵与x 轴,y 轴正半轴分别交于A ,B 两点,∴⎩⎪⎨⎪⎧2k -1k >0,1-2k>0⇒k<0.于是S △AOB =12·|OA|·|OB|=12·2k -1k ·(1-2k)=12⎝ ⎛⎭⎪⎫4-1k -4k ≥12⎣⎢⎡⎦⎥⎤4+2⎝ ⎛⎭⎪⎫-1k ·-4k =4. 当且仅当-1k =-4k ,即k =-12时,△AOB 面积有最小值为4,此时,直线l 的方程为y -1=-12(x -2),即x +2y -4=0.方法二 设所求直线l 的方程为x a +yb =1(a>0,b>0),则2a +1b=1.又∵2a +1b ≥22ab ⇒12ab≥4,当且仅当2a =1b =12,即a =4,b =2时,△AOB 面积S =12ab 有最小值为4.此时,直线l 的方程是x 4+y2=1.本例中,当|MA|·|MB|取得最小值时,求直线l 的方程.解 方法一 由本例知A ⎝ ⎛⎭⎪⎫2k -1k ,0,B(0,1-2k)(k<0).∴|MA|·|MB|=1k 2+1·4+4k 2=21+k 2|k|=2⎣⎢⎡⎦⎥⎤-k +1-k ≥4.当且仅当-k =-1k ,即k =-1时取等号.此时直线l 的方程为x +y -3=0.方法二 由本例知A(a,0),B(0,b),a>0,b>0,2a +1b =1.∴|MA|·|MB|=|MA →|·|MB →|=-MA →·MB →=-(a -2,-1)·(-2,b -1) =2(a -2)+b -1=2a +b -5=(2a +b)⎝ ⎛⎭⎪⎫2a +1b -5=2⎝ ⎛⎭⎪⎫b a +a b ≥4, 当且仅当a =b =3时取等号,此时直线l 的方程为x +y -3=0.思维升华 (1)直线过定点问题可以利用直线点斜式方程的结构特征,对照得到定点坐标. (2)求解与直线方程有关的面积问题,应根据直线方程求解相应坐标或者相关长度,进而求得多边形面积.(3)求参数值或范围.注意点在直线上,则点的坐标适合直线的方程,再结合函数的单调性或基本不等式求解.跟踪训练2已知直线l :kx -y +1+2k =0(k∈R). (1)证明:直线l 过定点;(2)若直线不经过第四象限,求k 的取值范围;(3)若直线l 交x 轴负半轴于A ,交y 轴正半轴于B ,△AOB 的面积为S(O 为坐标原点),求S 的最小值并求此时直线l 的方程.(1)证明 直线l 的方程可化为k(x +2)+(1-y)=0,令⎩⎪⎨⎪⎧x +2=0,1-y =0,解得⎩⎪⎨⎪⎧x =-2,y =1.∴无论k 取何值,直线l 总经过定点(-2,1).(2)解 由方程知,当k≠0时直线在x 轴上的截距为-1+2kk,在y 轴上的截距为1+2k ,要使直线不经过第四象限,则必须有⎩⎪⎨⎪⎧-1+2k k ≤-2,1+2k≥1,解得k>0;当k =0时,直线为y =1,符合题意,故k 的取值范围是[0,+∞). (3)解 由题意可知k≠0,再由l 的方程,得A ⎝ ⎛⎭⎪⎫-1+2k k ,0,B(0,1+2k). 依题意得⎩⎪⎨⎪⎧-1+2k k <0,1+2k>0,解得k>0.∵S=12·|OA|·|OB|=12·⎪⎪⎪⎪⎪⎪1+2k k ·|1+2k|=12·1+2k2k=12⎝ ⎛⎭⎪⎫4k +1k +4≥12×(2×2+4)=4,“=”成立的条件是k>0且4k =1k ,即k =12,∴S min =4,此时直线l 的方程为x -2y +4=0.课时精练1.(2021·清远期末)倾斜角为120°且在y 轴上的截距为-2的直线方程为( ) A .y =-3x +2 B .y =-3x -2 C .y =3x +2 D .y =3x -2答案 B解析 斜率为tan120°=-3,利用斜截式直接写出方程,即y =-3x -2.2.(2021·菏泽模拟)若平面内三点A(1,-a),B(2,a 2),C(3,a 3)共线,则a 等于( ) A .1±2或0 B.2-52或0 C.2±52D.2+52或0 答案 A解析 由题意知k AB =k AC ,即a 2+a 2-1=a 3+a3-1,即a(a 2-2a -1)=0,解得a =0或a =1± 2.3.(2021·广东七校联考)若过点P(1-a,1+a)和Q(3,2a)的直线的倾斜角为钝角,则实数a 的取值范围是( ) A .(-2,1) B .(-1,2)C .(-∞,0)D .(-∞,-2)∪(1,+∞)答案 A解析 由题意知2a -1-a 3-1+a <0,即a -12+a<0,解得-2<a<1.4.(2020·北京丰台区模拟)若直线y =ax +c 经过第一、二、三象限,则有( ) A .a>0,c>0 B .a>0,c<0 C .a<0,c>0 D .a<0,c<0 答案 A解析 ∵直线y =ax +c 经过第一、二、三象限, ∴直线的斜率a>0,在y 轴上的截距c>0.5.直线2xcosα-y -3=0⎝ ⎛⎭⎪⎫α∈⎣⎢⎡⎦⎥⎤π6,π3的倾斜角的取值范围是 ( )A.⎣⎢⎡⎦⎥⎤π6,π3B.⎣⎢⎡⎦⎥⎤π4,π3C.⎣⎢⎡⎦⎥⎤π4,π2 D.⎣⎢⎡⎦⎥⎤π4,2π3答案 B解析 直线2xcosα-y -3=0的斜率k =2cosα, 因为α∈⎣⎢⎡⎦⎥⎤π6,π3,所以12≤cosα≤32,因此k =2cosα∈[1, 3 ].设直线的倾斜角为θ,则有tanθ∈[1, 3 ].又θ∈[0,π),所以θ∈⎣⎢⎡⎦⎥⎤π4,π3, 即倾斜角的取值范围是⎣⎢⎡⎦⎥⎤π4,π3. 6.(多选)在下列四个命题中,错误的有( ) A .坐标平面内的任何一条直线均有倾斜角和斜率 B .直线倾斜角的取值范围是[0,π)C .若一条直线的斜率为tanα,则此直线的倾斜角为αD .若一条直线的倾斜角为α,则此直线的斜率为tanα 答案 ACD解析 对于A ,当直线与x 轴垂直时,直线的倾斜角为90°,斜率不存在,∴A 错误; 对于B ,直线倾斜角的取值范围是[0,π),∴B 正确;对于C ,一条直线的斜率为tan α,此直线的倾斜角不一定为α,∴C 错误;对于D ,一条直线的倾斜角为α时,它的斜率为tan α或不存在,D 错误. 故选ACD.7.(多选)若直线过点A(1,2),且在两坐标轴上截距的绝对值相等,则直线l 的方程为( ) A .x -y +1=0 B .x +y -3=0 C .2x -y =0 D .x -y -1=0答案 ABC解析 当直线经过原点时,斜率为k =2-01-0=2,所求的直线方程为y =2x ,即2x -y =0;当直线不过原点时,设所求的直线方程为x±y=k ,把点A(1,2)代入可得1-2=k ,或1+2=k , 求得k =-1,或k =3,故所求的直线方程为x -y +1=0,或x +y -3=0. 综上知,所求的直线方程为 2x -y =0,x -y +1=0, 或x +y -3=0.8.(多选)垂直于直线3x -4y -7=0,且与两坐标轴围成的三角形的面积为6的直线在x 轴上的截距是( ) A .4 B .-4 C .3 D .-3答案 CD解析 设直线方程是4x +3y +d =0,分别令x =0和y =0,得直线在两坐标轴上的截距分别是-d3,-d 4,所以6=12×⎪⎪⎪⎪⎪⎪-d 3×⎪⎪⎪⎪⎪⎪-d 4=d224.所以d =±12,则直线在x 轴上的截距为3或-3. 9.直线l 过(-1,-1),(2,5)两点,点(1011,b)在l 上,则b 的值为________. 答案 2023解析 直线l 的方程为y --15--1=x --12--1,即y +16=x +13,即y =2x +1. 令x =1011,得y =2023,∴b=2023.10.设直线l 的方程为2x +(k -3)y -2k +6=0(k≠3),若直线l 的斜率为-1,则k =______;若直线l 在x 轴、y 轴上的截距之和等于0,则k =________. 答案 5 1解析 因为直线l 的斜率存在,所以直线l 的方程可化为y =-2k -3x +2,由题意得-2k -3=-1,解得k =5.直线l 的方程可化为x k -3+y2=1,由题意得k -3+2=0,解得k =1. 11.已知三角形的三个顶点A(-5,0),B(3,-3),C(0,2),则BC 边上中线所在的直线方程为____________.答案 x +13y +5=0解析 BC 的中点坐标为⎝ ⎛⎭⎪⎫32,-12,∴BC 边上中线所在直线方程为y -0-12-0=x +532+5,即x +13y +5=0. 12.(八省联考)若正方形一条对角线所在直线的斜率为2,则该正方形的两条邻边所在直线的斜率分别为________.答案 13,-3 解析 方法一 设正方形一边所在直线的倾斜角为α,其斜率k =tanα.则其中一条对角线所在直线的倾斜角为α+π4,其斜率为tan ⎝⎛⎭⎪⎫α+π4. 依题意知:tan ⎝ ⎛⎭⎪⎫α+π4=2,即tanα+tanπ41-tanα·ta n π4=tanα+11-tanα=2,∴tanα=13, ∴正方形一边的斜率k =13,可知相邻一边所在直线的斜率为-3. 方法二 正方形两条相邻边与对角线的夹角为 π4, 设正方形的边所在直线的斜率为k ,则由夹角公式得tan π4=⎪⎪⎪⎪⎪⎪k -21+2k ⇒k =13或k =-3.13.已知P(-3,2),Q(3,4)及直线ax +y +3=0.若沿PQ →的方向延长线段PQ 与直线有交点(不含Q点),则a 的取值范围是________.答案 ⎝ ⎛⎭⎪⎫-73,-13 解析 直线l :ax +y +3=0是过点A(0,-3)的直线系,斜率为参变数-a ,易知PQ ,QA ,l 的斜率分别为:k PQ =13,k AQ =73,k l =-a.若l 与PQ 延长线相交,由图可知k PQ <k l <k AQ ,解得-73<a<-13.14.已知数列{a n }的通项公式为a n =1n n +1(n∈N *),其前n 项和S n =910,则直线x n +1+y n=1与坐标轴所围成的三角形的面积为________.答案 45解析 由a n =1n n +1可知a n =1n -1n +1, 所以S n =⎝ ⎛⎭⎪⎫1-12+⎝ ⎛⎭⎪⎫12-13+⎝ ⎛⎭⎪⎫13-14+…+⎝ ⎛⎭⎪⎫1n -1n +1=1-1n +1, 又知S n =910,所以1-1n +1=910,所以n =9. 所以直线方程为x 10+y 9=1,且与坐标轴的交点为(10,0)和(0,9),所以直线与坐标轴所围成的三角形的面积为12×10×9=45.15.(多选)已知直线xsinα+ycosα+1=0(α∈R),则下列命题正确的是( )A .直线的倾斜角是π-αB .无论α如何变化,直线不过原点C .直线的斜率一定存在D .当直线和两坐标轴都相交时,它和坐标轴围成的三角形的面积不小于1答案 BD解析 根据直线倾斜角的范围为[0,π),而π-α∈R,所以A 不正确;当x =y =0时,xsinα+ycosα+1=1≠0,所以直线必不过原点,B 正确;当α=π2时,直线斜率不存在,C 不正确;当直线和两坐标轴都相交时,它和坐标轴围成的三角形的面积为S =12⎪⎪⎪⎪⎪⎪1-sinα·⎪⎪⎪⎪⎪⎪1-cosα=1|sin2α|≥1,所以D 正确. 16.如图,射线OA ,OB 分别与x 轴正半轴成45°和30°角,过点P(1,0)作直线AB 分别交OA ,OB 于A ,B 两点,当AB 的中点C 恰好落在直线y =12x 上时,则直线AB 的方程是______.答案 (3+3)x -2y -3-3=0解析 由题意可得k OA =tan45°=1,k OB =tan(180°-30°)=-33, 所以直线l OA :y =x ,l OB :y =-33x. 设A(m ,m),B(-3n ,n),所以AB 的中点C ⎝ ⎛⎭⎪⎫m -3n 2,m +n 2, 由点C 在直线y =12x 上,且A ,P ,B 三点共线得 ⎩⎪⎨⎪⎧ m +n2=12·m -3n 2,m -0·-3n -1=n -0·m -1, 解得m =3,所以A(3,3).又P(1,0),所以k AB =k AP =33-1=3+32,所以l AB :y =3+32(x -1),即直线AB 的方程为(3+3)x -2y -3-3=0.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第 8 讲 函数与方程的思想【开心自测】1.(2011辽宁)已知函数f(x)= ex-2x+a 有零点,则的取值范围是 (-∞,2ln2-2] .2.(2102北京)函数xx x f )21()(21-=的零点个数为 ( B ) (A )0 (B )1(C )2 (D )33. (2012四川) 函数(0,1)x y a a a a =->≠的图象可能是( C )【教学重难点】函数与方程思想是最重要的一种数学思想,高考中所占比重较大,综合知识多、题型多、应用技巧多.函数思想简单,即将所研究的问题借助建立函数关系式亦或构造中间函数,结合初等函数的图象与性质,加以分析、转化、解决有关求值、解(证)不等式、解方程以及讨论参数的取值范围等问题;方程思想即将问题中的数量关系运用数学语言转化为方程模型加以解决.【秒杀方略】函数与方程是两个不同的概念,但它们之间有着密切的联系,方程f(x)=0的解就是函数y =f(x)的图像与x 轴的交点的横坐标,函数y =f(x)也可以看作二元方程f(x)-y =0通过方程进行研究。

就中学数学而言,函数思想在解题中的应用主要表现在两个方面:一是借助有关初等函数的性质,解有关求值、解(证)不等式、解方程以及讨论参数的取值范围等问题:二是在问题的研究中,通过建立函数关系式或构造中间函数,把所研究的问题转化为讨论函数的有关性质,达到化难为易,化繁为简的目的.许多有关方程的问题可以用函数的方法解决,反之,许多函数问题也可以用方程的方法来解决。

函数与方程的思想是中学数学的基本思想,也是历年高考的重点。

1.函数的思想,是用运动和变化的观点,分析和研究数学中的数量关系,建立函数关系或构造函数,运用函数的图像和性质去分析问题、转化问题,从而使问题获得解决。

函数思想是对函数概念的本质认识,用于指导解题就是善于利用函数知识或函数观点观察、分析和解决问题。

2.方程的思想,就是分析数学问题中变量间的等量关系,建立方程或方程组,或者构造方程,通过解方程或方程组,或者运用方程的性质去分析、转化问题,使问题获得解决。

方程的数学是对方程概念的本质认识,用于指导解题就是善于利用方程或方程组的观点观察处理问题。

方程思想是动中求静,研究运动中的等量关系.3.(1) 函数和方程是密切相关的,对于函数y =f(x),当y =0时,就转化为方程f(x)=0,也可以把函数式y =f(x)看做二元方程y -f(x)=0。

函数问题(例如求函数的值域等)可以转化为方程问题来求解,方程问题也可以转化为函数问题来求解,如解方程f(x)=0,就是求函数y =f(x)的零点。

(2) 函数与不等式也可以相互转化,对于函数y =f(x),当y>0时,就转化为不等式f(x)>0,借助于函数图像与性质解决有关问题,而研究函数的性质,也离不开解不等式。

(3) 数列的通项或前n 项和是自变量为正整数的函数,用函数的观点处理数列问题十分重要。

(4) 解析几何中的许多问题,例如直线和二次曲线的位置关系问题,需要通过解二元方程组才能解决,涉及到二次方程与二次函数的有关理论。

(5) 立体几何中有关线段、角、面积、体积的计算,经常需要运用布列方程或建立函数表达式的方法加以解决。

【金题精讲】【例1】(高考山东)等比数列{n a }的前n 项和为n S ,已知对任意的n N +∈,点(,)n n S ,均在函数(01,,)xy b r b b b r =+>≠且均为常数的图像上.(Ⅰ)求r 的值;(Ⅱ)当b=2时,记 22(l o g 1)()n n b a n N +=+∈ 证明:对任意的n N +∈,不等式1212111·······n nb b b b b b +++>成立【解析】(Ⅰ) 由题意知: n n S b r =+,当2n ≥时,1111()(1)n n n n n n n n a S S b r b r b b b b ----=-=+-+=-=-, 由于0b >且1,b ≠所以当2n ≥时, {n a }是以b 为公比的等比数列, 又11a S b r ==+,2(1)a b b =-,21,a b a =即(1),b b b b r -=+解得1r =-. (Ⅱ)∵21n n S =-,∴当2n ≥时,111(21)(21)2n n n n n n a S S ---=-=---=, 又当1n =时, 111211a S ==-=,适合上式,∴12n n a -=,122(log 21)2n n b n -=+=, ∴111b b +⋅221b b +⋅1n nb b +⋅=L 357(21)2123nn n ⨯⨯⨯⨯+⋅⨯⨯⨯⨯L L , 下面用数学归纳法来证明不等式:357(21)2123nn n⨯⨯⨯⨯+>⋅⨯⨯⨯⨯L L 证明:(1)当1n =时,左边=32=>=右边,不等式成立. (2)假设当()n k k N *=∈时,不等式成立,即357(21)2123k k k⨯⨯⨯⨯+>⋅⨯⨯⨯⨯L L 则当1n k =+时, 不等式左边=11212111113572123 (246222)k k k k b b b b k k b b b b k k ++++++++⋅=⋅⋅⋅⋅⋅+L2322k k +>=+所以当1n k =+时,不等式也成立, 综上(1)(2)可知:当n N *∈时,不等式357(21)2123nn n⨯⨯⨯⨯+>⋅⨯⨯⨯⨯L L , 所以对任意的n N *∈,不等式111b b +⋅221b b +⋅1n n b b +⋅>L .【例2】如图,椭圆22221y x a b+=(a >b >0)的左、右焦点分别为F 1、F 2,M 、N ,且120F M F N ⋅=.(1)设C 是以MN 为直径的圆,试判断原点O 与圆C 的位置关系; (2)设椭圆的离心率为12,MN的最小值为.【解】(1)设椭圆22221y x a b+=的焦距为2c (c >0), 则其右准线方程为x =2a ,且F 1(-c , 0), F 2(c , 0). 、 设M ()()2212,,a a y N y c c ,,则1F M =()()22122,,a a c y F N c y c c +=- ,,()()2212,,a a OM y ON y c c== ,.因为120F M F N ⋅=,所以()()22120a a c c y y c c +-+=,即()22212a y y c c+=.于是()222120a OM ON y y c c⋅=+=>,故∠MON 为锐角.所以原点O 在圆C 外.(2)因为椭圆的离心率为12,所以a =2c ,于是M ()()124,4,c y N c y ,,且()22221215.ay y c c c=-=-MN 2=(y 1-y 2)2=y 12+y 22-2y 1y 22221212122460y y y y y y c =++=≥. 当且仅当 y 1=-y 2或y 2=-y 1时取“=”号, 所以(MN )min = 215c =215,于是c =1, 从而a =2,b =3,故所求的椭圆方程是22143y x +=. 【例3】已知函数f (x )=x 2–(m +1)x +m (m ∈R )(1)若tan A ,tan B 是方程f (x )+4=0的两个实根,A 、B 是锐角三角形ABC 的两个内角.求证:m ≥5; (2)对任意实数α,恒有f (2+cos α)≤0,证明m ≥3; (3)在(2)的条件下,若函数f (sin α)的最大值是8,求m . 解析:(1)证明:f (x )+4=0即x 2–(m +1)x +m +4=0.依题意:⎪⎩⎪⎨⎧>+=⋅>+=+≥+-+=∆04tan tan 01tan tan 0)4(4)1(2m B A m B A m m 又A 、B 锐角为三角形内两内角 ∴2π<A +B <π ∴tan(A +B )<0,即031tan tan 1tan tan )tan(<--+=-+=+m m B A B A B A∴⎪⎪⎪⎩⎪⎪⎪⎨⎧>++>+>+≥--031040101522m m m m m m ∴m ≥5 (2)证明:∵f (x )=(x –1)(x –m )又–1≤cos α≤1,∴1≤2+cos α≤3,恒有f (2+cos α)≤0 即1≤x ≤3时,恒有f (x )≤0即(x –1)(x –m )≤0 ∴m ≥x 但x max =3,∴m ≥x max =3(3)解:∵f (sin α)=sin 2α–(m +1)sin α+m =4)1()21(sin 22+-++-m m m α 且21+m ≥2,∴当sin α=–1时,f (sin α)有最大值8. 即1+(m +1)+m =8,∴m =3【例4】某厂家拟在2009年举行促销活动,经调查测算,该产品的年销售量(即该厂的年产量)x 万件与年促销费用0()m m ≥万元满足31kx m =-+(k 为常数),如果不搞促销活动,则该产品的年销售量是1万件. 已知2009年生产该产品的固定投入为8万元,每生产1万件该产品需要再投入16万元,厂家将每件产品的销售价格定为每件产品年平均成本的1.5倍(产品成本包括固定投入和再投入两部分资金,不包括促销费用). (1)将2009年该产品的利润y 万元表示为年促销费用m 万元的函数; (2)该厂家2009年的促销费用投入多少万元时,厂家的利润最大? 解:(1)由题意可知,当0=m 时,1=x ,∴13k =-即2=k ,∴231x m =-+,每件产品的销售价格为8161.5xx+⨯元. ∴2009年的利润)168(]1685.1[m x xxx y ++-+⨯= m m m x -+-+=-+=)123(8484)0(29)]1(116[≥++++-=m m m (2)∵0m ≥时,16(1)81m m ++≥=+. ∴82921y ≤-+=,当且仅当1611m m =++,即3m =时,max 21y =. 答:该厂家2009年的促销费用投入3万元时,厂家的利润最大,最大为21万元.【专题精练】1.某建筑的金属支架如图所示,根据要求AB 至少长 2.8m ,C 为AB 的中点,B 到D 的距离比CD 的长小0.5m ,060BCD ∠=,已知建筑支架的材料每米的价格一定,问怎样设计,AB CD 的长,可使建造这个支架的成本最低?则21(1)3422(1)347,4t b a t t tt+-+=++=++≥等号成立时0.50.4, 1.5, 4.t a b =>==答:当3,4AB m CD m ==时,建造这个支架的成本最低.2.已知函数f (x )=xa 11- (a >0,x >0). (1)求证:f (x )在(0,+∞)上是增函数;(2)若f (x )≤2x 在(0,+∞)上恒成立,求a 的取值范围;(3)若f (x )在[m ,n ]上的值域是[m ,n ](m ≠n ),求a 的取值范围. (1)证明:任取x 1>x 2>0,f (x 1)–f (x 2)=2121122111)11()11(x x x x x x x a x a-=-=--- ∵x 1>x 2>0,∴x 1x 2>0,x 1–x 2>0,∴f (x 1)–f (x 2)>0,即f (x 1)>f (x 2),故f (x )在(0,+∞)上是增函数. (2)解:∵xa 11-≤2x 在(0,+∞)上恒成立,且a >0, ∴a ≥x x 121+在(0,+∞)上恒成立,令421221121)(=⋅≤+=xx xx x g (当且仅当2x =x 1即x =22时取等号),要使a ≥xx 21+在(0,+∞)上恒成立,则a ≥42.故a 的取值范围是[42,+∞). (3)解:由(1)f (x )在定义域上是增函数. ∴m =f (m ),n =f (n ),即m 2–a 1m +1=0,n 2–a1n +1=0 故方程x 2–a 1x +1=0有两个不相等的正根m ,n ,注意到m ·n =1,故只需要Δ=(a1)2–4>0,由于a >0,则0<a <21.3. 讨论关于x 的方程lg(x -1)+lg(3-x )=lg(a -x )的实根个数解:原方程转化为10300(1)(3)x x a x x x a x->->->--=-⎧⎪⎪⎨⎪⎪⎩,即方程x 2-5x+a+3=0在区间(1,3)内是否有根,由0∆≥得:134a ≤,设f(x)= x 2-5x+a+3,对称轴是52x =,若(1)10(3)30f a f a =->=-<⎧⎨⎩得有一根在区间(1,3)内,即当{}13(1,3)4a ∈⋃时,原方程有一根; 若(1)10(3)300f a f a =->=->∆>⎧⎪⎨⎪⎩得13(3,)4a ∈时,原方程有两根; 13(1,]4a ∉时, 原方程无解.【互动答疑】。

相关文档
最新文档