人工智能贝叶斯网络精品PPT课件
合集下载
Bayesiannetwork贝叶斯网络精品PPT课件

Parameter Learning
• In order to fully specify the Bayesian network and thus fully represent the joint probability distribution, it is necessary to specify for each node X the probability distribution for X conditional upon X's parents
prior possibility P(Y) ( rankings, recent history of their performance)
Introduction
• First half is over • The outcome of the first period may be
treated as a random variable X, the óbserved evidence' that influence your prediction of the final value of Y.
• Prior confidence --------belief • Process--------belief propagation dynamics
causal relationships
statistical dependence between
Bayesian Networks
• DAG: Directed Acyclic Graph • CPT: Conditioanl Probability Tables
• P(Y|X)= PX |YPY Hale Waihona Puke XIntroduction
高级人工智能贝叶斯公式PPT课件

P(D|T,L,B)
Dyspnoea
T L B D=0 D=1 0 0 0 0.1 0.9 0 0 1 0.7 0.3 0 1 0 0.8 0.2 0 1 1 0.9 0.1
...
P(A, S, T, L, B, C, D) = P(A) P(S) P(T|A) P(L|S) P(B|S) P(C|T,L) P(D|T,L,B)
贝叶斯方法正在以其独特的不确定性知识 表达形式、丰富的概率表达能力、综合先 验知识的增量学习特性等成为当前数据挖 掘众多方法中最为引人注目的焦点之一。
2020/9/29
史忠植 高级人工智能
3
贝叶斯网络是什么
贝叶斯(Reverend Thomas Bayes 1702-1761) 学派奠基性的工作是贝叶斯的论文“关于几率性 问题求解的评论”。或许是他自己感觉到它的学 说还有不完善的地方,这一论文在他生前并没有 发表,而是在他死后,由他的朋友发表的。著名 的数学家拉普拉斯(Laplace P. S.)用贝叶斯的 方法导出了重要的“相继律”,贝叶斯的方法和 理论逐渐被人理解和重视起来。但由于当时贝叶 斯方法在理论和实际应用中还存在很多不完善的 地方,因而在十九世纪并未被普遍接受。
2020/9/29
史忠植 高级人工智能
6
贝叶斯网络的应用领域
辅助智能决策 数据融合 模式识别 医疗诊断 文本理解 数据挖掘
2020/9/29
史忠植 高级人工智能
7
统计概率
统计概率:若在大量重复试验中,事件A发生的频 率稳定地接近于一个固定的常数p,它表明事件A 出现的可能性大小,则称此常数p为事件A发生的 概率,记为P(A), 即
P(A·B)=P(A)·P(B|A) 或 P(A·B)=P(B)·P(A|B)
第7章贝叶斯网络.ppt

计算已知参加晚会的情况下,第二天早晨呼吸有 酒精味的概率。
P(+SA)=P(+HO)P(+SA|+HO)+P(-HO)P(+SA|-HO)
计算已知参加晚会的情况下,头疼发生的概率。
2019/10/19
数据仓库与数据挖掘
15
7.4.2 贝叶斯网络的预测算法
输入:给定贝叶斯网络B(包括网络结构m个节点以及某些节点间的连线、原因 节点到中间节点的条件概率或联合条件概率),给定若干个原因节点发生与 否的事实向量F(或者称为证据向量);给定待预测的某个节点t。
2019/10/19
数据仓库与数据挖掘
11
7.3.3 贝叶斯网络的3个主要议题
贝叶斯网络预测:从起因推测一个结果的理论, 也称为由顶向下的推理。目的是由原因推导出结 果。
贝叶斯网络诊断:从结果推测一个起因的推理, 也称为由底至上的推理。目的是在已知结果时, 找出产生该结果的原因。
贝叶斯网络学习:由先验的贝叶斯网络得到后验 贝叶斯网络的过程。
13
7.4.1 概率和条件概率数据
P(PT)
P(BT)
P(HO|PT)
PT=True
True False
0.200 0.800
0.001 0.999
True False
0.700 0.300
PT=False 0
1.000
左表给出了事件发生的概率:PT发生 的概率是0.2,不发生的概率是0.8
右表给出了事件发生的条件概率:PT 发生时,HO发生的概率是0.7
概率分布,并把节点n标记为已处理; (5)重复步骤(2)-(4)共m次。此时,节点t的概率分布就是它的发生/不发
贝叶斯网络全解课件

等。
评分函数
定义一个评分函数来评估网络结构的优劣,常用的评分函数包 括BIC(贝叶斯信息准则)和AIC(赤池信息准则)等。
参数学习优化
1 2
参数学习
基于已知的网络结构和数据集,学习网络中各节 点的条件概率分布,使得网络能够最好地拟合数 据集。
最大似然估计
使用最大似然估计方法来估计节点的条件概率分 布,即寻找使得似然函数最大的参数值。
案例三
异常检测:使用贝叶斯网络检测金融市场中的异常交易行为。
06
贝叶斯网络展望
当前研究热点
概率图模型研究
贝叶斯网络作为概率图模型的一种,其研究涉及到对概率图 模型基本理论的研究,包括对概率、图、模型等基本概念的 理解和运用。
深度学习与贝叶斯网络的结合
随着深度学习技术的发展,如何将深度学习技术与贝叶斯网 络相结合,发挥各自的优势,是当前研究的热点问题。
未来发展方向
可解释性机器学习
随着人工智能技术的广泛应用,人们对机器学习模型的可解释性要求越来越高 。贝叶斯网络作为一种概率模型,具有天然的可解释性优势,未来可以在这方 面进行更深入的研究。
大规模贝叶斯网络
随着数据规模的增大,如何构建和处理大规模贝叶斯网络成为未来的一个重要 研究方向。
技术挑战与展望
联合概率
两个或多个事件同时发生的概率。联合概率 的计算公式为 P(A∩B)=P(A|B)⋅P(B)+P(B|A)⋅P(A)。
条件独立性
01
条件独立的概念
在给定某个条件时,两个事件之 间相互独立,即一个事件的发生 不影响另一个事件的发生。
02
条件独立性的应用
03
条件独立性的判断
在贝叶斯网络中,条件独立性用 于简化概率计算,降低模型复杂 度。
评分函数
定义一个评分函数来评估网络结构的优劣,常用的评分函数包 括BIC(贝叶斯信息准则)和AIC(赤池信息准则)等。
参数学习优化
1 2
参数学习
基于已知的网络结构和数据集,学习网络中各节 点的条件概率分布,使得网络能够最好地拟合数 据集。
最大似然估计
使用最大似然估计方法来估计节点的条件概率分 布,即寻找使得似然函数最大的参数值。
案例三
异常检测:使用贝叶斯网络检测金融市场中的异常交易行为。
06
贝叶斯网络展望
当前研究热点
概率图模型研究
贝叶斯网络作为概率图模型的一种,其研究涉及到对概率图 模型基本理论的研究,包括对概率、图、模型等基本概念的 理解和运用。
深度学习与贝叶斯网络的结合
随着深度学习技术的发展,如何将深度学习技术与贝叶斯网 络相结合,发挥各自的优势,是当前研究的热点问题。
未来发展方向
可解释性机器学习
随着人工智能技术的广泛应用,人们对机器学习模型的可解释性要求越来越高 。贝叶斯网络作为一种概率模型,具有天然的可解释性优势,未来可以在这方 面进行更深入的研究。
大规模贝叶斯网络
随着数据规模的增大,如何构建和处理大规模贝叶斯网络成为未来的一个重要 研究方向。
技术挑战与展望
联合概率
两个或多个事件同时发生的概率。联合概率 的计算公式为 P(A∩B)=P(A|B)⋅P(B)+P(B|A)⋅P(A)。
条件独立性
01
条件独立的概念
在给定某个条件时,两个事件之 间相互独立,即一个事件的发生 不影响另一个事件的发生。
02
条件独立性的应用
03
条件独立性的判断
在贝叶斯网络中,条件独立性用 于简化概率计算,降低模型复杂 度。
AI-05-15-贝叶斯网络-----人工智能课程--浙江大学研究生PPT课件

(C) 0.50
工作压力 大(W)
U P(W)
t 0.90 f 0.05
学校政策 (U)
C P(U) t 0.95 f 0.01
身体状况 差(B)
U P(B) t 0.30 f 0.01
W B P(A)
过劳死 (D)
t t 0.335 t f 0.30
f t 0.05
-
f f 0.00
26
已知:一个事件e = {学校政策U = true, and 工作压力大 = true},
-
28
多连通网络及其CPT: P(C) 0.50 Cloudy
C P(S) t 0.10 f 0.50
Sprinkler
Rain
C P(R) t 0.80 f 0.20
Wet Grass
S R P(W) t t 0.99 t f 0.90 f t 0.90 f f 0.00
-
29
等价的联合树及其CPT:
A. 贝叶斯网络的由来 B. 贝叶斯网络的定义 C. 贝叶斯网络的别名 D. 独立和条件独立 E. 贝叶斯网络示例
-
3
A. 贝叶斯网络的由来
全联合概率计算复杂性十分巨大
朴素贝叶斯太过简单
现实需要一种自然、有效的方式来捕捉 和推理——不确定性知识
变量之间的独立性和条件独立性可大大 减少为了定义全联合概率分布所需的概 率数目
“因果模型”比“诊断模型”需要更少的数 据,且这些数据也更容易得到
-
12
贝叶斯网络中的条件独立关系:
给定父节点,一个节点与它的非后代节点是 条件独立的
给定一个节点的父节点、子节点以及子节点 的父节点——马尔可夫覆盖(Markov blanket), 这个节点和网络中的所有其它节点是条件独 立的
工作压力 大(W)
U P(W)
t 0.90 f 0.05
学校政策 (U)
C P(U) t 0.95 f 0.01
身体状况 差(B)
U P(B) t 0.30 f 0.01
W B P(A)
过劳死 (D)
t t 0.335 t f 0.30
f t 0.05
-
f f 0.00
26
已知:一个事件e = {学校政策U = true, and 工作压力大 = true},
-
28
多连通网络及其CPT: P(C) 0.50 Cloudy
C P(S) t 0.10 f 0.50
Sprinkler
Rain
C P(R) t 0.80 f 0.20
Wet Grass
S R P(W) t t 0.99 t f 0.90 f t 0.90 f f 0.00
-
29
等价的联合树及其CPT:
A. 贝叶斯网络的由来 B. 贝叶斯网络的定义 C. 贝叶斯网络的别名 D. 独立和条件独立 E. 贝叶斯网络示例
-
3
A. 贝叶斯网络的由来
全联合概率计算复杂性十分巨大
朴素贝叶斯太过简单
现实需要一种自然、有效的方式来捕捉 和推理——不确定性知识
变量之间的独立性和条件独立性可大大 减少为了定义全联合概率分布所需的概 率数目
“因果模型”比“诊断模型”需要更少的数 据,且这些数据也更容易得到
-
12
贝叶斯网络中的条件独立关系:
给定父节点,一个节点与它的非后代节点是 条件独立的
给定一个节点的父节点、子节点以及子节点 的父节点——马尔可夫覆盖(Markov blanket), 这个节点和网络中的所有其它节点是条件独 立的
第8章贝叶斯网导论【本科研究生通用机器学习课程精品PPT系列】

Burglary 独立假设2
独立假设2 Earthquake
Alarm
Alarm
JohnCalls
MaryCalls
1.5解决方案
•合并独立假设1和独立假设2,可得:P(John| Burglary, Earthquake, Alarm)=P(John| Alarm)
合并独立假设1和2
Burglary
P(E e) P( X ) 是 X 的先验分布, P(X | E e) 是 X 的后验分布, P(E e | X ) 称为 X 的似然函数。 P(E e) 是一个归一化常数
后验分布正比于先验分布和似然函数的乘积。
1.3几个重要原理
链规则(chain rule)
利用变量间条件独立性
1.3不确定性推理与联合概率分布
n n 9.1E-1
1.3不确定性推理与联合概率分布
从联合概率分布 P(Burglary,Earthquake, Alarm,John,Mary)出发,先计算边缘分布
P(Burglary, Mary)
P(Burglary, Earthquake, Alarm, John, Mary)
Earthquake, Alarm,John
0.000115
0.61
P(Burglary y, Mary y) P(Burglary n, Mary y) 0.000115 0.000075
1.4存在的问题
直接使用联合分布进行不确定性推理的困难很明显,即它的复杂度
极高。上图中有 5 个二值随机变量,整个联合分布包含25 1 31 个独
n n 2.8E-4 n
n
y
n n 2.9E-5
y
n
人工智能贝叶斯网络.ppt

• Directed Acyclic Graph (DAG)
– Nodes are random variables – Edges indicate causal influences
Burglary
Earthquake
Alarm
JohnCalls
MaryCalls
3
Conditional Probability Tables
– Bayesian Networks: Directed acyclic graphs that indicate causal structure.
– Markov Networks: Undirected graphs that capture general dependencies.
2
Bayesian Networks
JohnCalls
MaryCalls
However, this ignores the prior probability of John calling.
12
Bayes Net Inference
• Example: Given that John calls, what is the probability that there is a Burglary?
7
Independencies in Bayes Nets
• If removing a subset of nodes S from the network renders nodes Xi and Xj disconnected, then Xi and Xj are independent given S, i.e. P(Xi | Xj, S) = P(Xi | S)
贝叶斯网络简介PPT课件

而在贝叶斯网络中,由于存在前述性质,任意随 机变量组合的联合条件概率分布被化简成
其中Parents表示xi的直接前驱节点的联合,概率 值可以从相应条件概率表中查到。
.
6
例子
P(C, S,R,W) = P(C)P(S|C)P(R|S,C)P(W|S,R,C) chain rule
= P(C)P(S|C)P(R|C)P(W|S,R,C) since
= P(C)P(S|C)P(R|C)P.(W|S,R) since
7
贝叶斯网络的构造及训练
1、确定随机变量间的拓扑关系,形成DAG 。这一步通常需要领域专家完成,而想要 建立一个好的拓扑结构,通常需要不断迭 代和改进才可以。
2、训练贝叶斯网络。这一步也就是要完成 条件概率表的构造,如果每个随机变量的 值都是可以直接观察的,方法类似于朴素 贝叶斯分类。但是通常贝叶斯网络的中存 在隐藏变量节点,那么训练方法就是比较 复杂。
4、将收敛结果作为推. 断值。
9
贝叶斯网络应用
医疗诊断,
工业,
金融分析,
计算机(微软Windows,Office),
模式识别:分类,语义理解
军事(目标识别,多目标跟踪,战争身份识别
等),
生态学,
生物信息学(贝叶斯网络在基因连锁分析中应
用),
编码学,
分类聚类,
时序数据和动态模型 .
• 用概率论处理不确定性的主要优点是保 证推理结果的正确性。
.
2
几个重要原理
• 链规则(chain rule)
P ( X 1 , X 2 ,X . n ) . P ( . X 1 ) , P ( X 2 |X 1 ) P ( X .n | . X 1 , . X 2 ,X . n ) ..,
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
• No realistic amount of training data is sufficient to estimate so many parameters.
• If a blanket assumption of conditional independence is made, efficient training and inference is possible, but such a strong assumption is rarely warranted.
Independencies in Bayes Nets
• If removing a subset of nodes S from the network renders nodes Xi and Xj disconnected, then Xi and Xj are independent given S, i.e. P(Xi | Xj, S) = P(Xi | S)
• Each node has a conditional probability table (CPT) that gives the probability of each of its values given every possible combination of values for its parents (conditioning case).
• Graphical models use directed or undirected graphs over a set of random variables to explicitly specify variable dependencies and allow for less restrictive independence assumptions while limiting the number of parameters that must be estimated.
– Roots (sources) of the DAG that have no parents are given prior probabilities.
P(B)
.001
Burglary
P(E)
Earthquake .002
Alarm
B E P(A) T T .95 T F .94 F T .29 F F .001
– Bayesian Networks: Directed acyclic graphs that indicate causal structure.
– Markov Networks: Undirected graphs that capture general dependencies.
2
Bayesian Networks
• Directed Acyclic Graph (DAG)
– Nodes are random variables – Edges indicate causal influences
Burglary
Earthquake
Alarm
JohnCalls
MaryCalls
3
Conditional Probability Tables
• Therefore an inefficient approach to inference is:
– 1) Compute the joint distribution using this equation. – 2) Compute any desired conditional probability using
• However, this is too strict a criteria for conditional independence since two nodes will still be considered independent if their simply exists some variable that depends on both.
Artificial Intelligence: Bayesian Networks
1
Graphical Models
• If no assumption of independence is made, then an exponential number of parameters must be estimated for sound probabilistic inference.
the joint distribution.
6
Naïve Bayes as a Bayes Net
• Naïve Bayes is a simple Bayes Net
Y
… X1
X2
Xn
• Priors P(Y) and conditionals P(Xi|Y) for Naïve Bayes provide CPTs for the network.
• Number of parameters in the CPT for a node is exponential in the number of parents (fan-in).
5
Joint Distributions for Bayes Nets
• A Bayesian Network implicitly defines a joint distribution.
n
P(x1,x2,.x.n.) P(xi|Par(eXin))ts i1
• Example
P (J M A B E )
P ( J |A ) P ( M |A ) P ( A | B E ) P ( B ) P ( E )
0 .9 0 .7 0 .0 0 .91 9 0 .99 9 0 .08 006
A P(J) T .90 F .05
JohnCalls
MaryCalls
A P(M) T .70 F .01
4
CPT Comments
• Probability of false not given since rows must add to 1.
• Example requires 10 parameters rather than 25–1 = 31 for specifying the full joint distribution.
• If a blanket assumption of conditional independence is made, efficient training and inference is possible, but such a strong assumption is rarely warranted.
Independencies in Bayes Nets
• If removing a subset of nodes S from the network renders nodes Xi and Xj disconnected, then Xi and Xj are independent given S, i.e. P(Xi | Xj, S) = P(Xi | S)
• Each node has a conditional probability table (CPT) that gives the probability of each of its values given every possible combination of values for its parents (conditioning case).
• Graphical models use directed or undirected graphs over a set of random variables to explicitly specify variable dependencies and allow for less restrictive independence assumptions while limiting the number of parameters that must be estimated.
– Roots (sources) of the DAG that have no parents are given prior probabilities.
P(B)
.001
Burglary
P(E)
Earthquake .002
Alarm
B E P(A) T T .95 T F .94 F T .29 F F .001
– Bayesian Networks: Directed acyclic graphs that indicate causal structure.
– Markov Networks: Undirected graphs that capture general dependencies.
2
Bayesian Networks
• Directed Acyclic Graph (DAG)
– Nodes are random variables – Edges indicate causal influences
Burglary
Earthquake
Alarm
JohnCalls
MaryCalls
3
Conditional Probability Tables
• Therefore an inefficient approach to inference is:
– 1) Compute the joint distribution using this equation. – 2) Compute any desired conditional probability using
• However, this is too strict a criteria for conditional independence since two nodes will still be considered independent if their simply exists some variable that depends on both.
Artificial Intelligence: Bayesian Networks
1
Graphical Models
• If no assumption of independence is made, then an exponential number of parameters must be estimated for sound probabilistic inference.
the joint distribution.
6
Naïve Bayes as a Bayes Net
• Naïve Bayes is a simple Bayes Net
Y
… X1
X2
Xn
• Priors P(Y) and conditionals P(Xi|Y) for Naïve Bayes provide CPTs for the network.
• Number of parameters in the CPT for a node is exponential in the number of parents (fan-in).
5
Joint Distributions for Bayes Nets
• A Bayesian Network implicitly defines a joint distribution.
n
P(x1,x2,.x.n.) P(xi|Par(eXin))ts i1
• Example
P (J M A B E )
P ( J |A ) P ( M |A ) P ( A | B E ) P ( B ) P ( E )
0 .9 0 .7 0 .0 0 .91 9 0 .99 9 0 .08 006
A P(J) T .90 F .05
JohnCalls
MaryCalls
A P(M) T .70 F .01
4
CPT Comments
• Probability of false not given since rows must add to 1.
• Example requires 10 parameters rather than 25–1 = 31 for specifying the full joint distribution.