盖梁计算书
盖梁计算书

墩身、盖梁模板计算书计算基本参考文献:1、公路桥涵施工技术规范 JTJ 041-20002、公路施工计算手册(人民交通出版社)3、施工结构计算方法与设计手册第二章:盖梁模板计算一、结构形式模板面采用6mm厚钢板,大肋采用∠75×50×6角钢,最大间距为350mm,最大 跨度为1.2m,背带采用2[20b槽钢,背带最大控制高度为1.2m,拉杆采用Φ25IV 级精轧螺纹钢筋。
二、荷载分析1、混凝土对模板压力= 60.00 Kpa2、倾倒荷载= 2.0 Kpa强度验算,荷载组合为P1= 62.0 Kpa刚度验算,荷载组合为P2= 60.0 Kpa三、面板计算取10mm宽的板条作为计算单元,按五跨等跨连续梁计算。
1、计算参数q= 0.620 N/mm1= 350 mmM=kq12= 0.008 KN.mQ=kq1= 0.132 kN2、强度验算:δ=M/W= 132.91 Mpa<[δ]=170Mpaτ=QS/Ib= 5.48 Mpa<[δ]=100Mpa3、绕度验算:q= 0.600 N/mmf=kq14/100EI= 0.8 mm<1.5mm经计算,结构强度、刚度满足要求。
1、肋采用∠75×50×6角钢,面板参与受力的有效宽度取板厚的50倍,经计算, 肋截面特性为:肋按简支梁计算,跨度 I= 1200 mmq= 21.700 N/mmM= 3.91 KN.mQ= 26.04 KN2、强度验算δ=M/W= 128.43 Mpa<[δ]=170Mpaτ=QS/Ib= 64.26 Mpa<[τ]=100Mpa3、绕度验算f= 1.5 mm<L/400=3mm经计算,结构强度、刚度满足要求。
五、背带计算1、背带采用2[12,背带最大控制高度为1.05m。
背带截面特性:背带按简支梁计算。
q= 74.40 N/mm1= 1050 mmM=q12/8= 10.25 KN.mQ=q1/2= 39.06 KN2、强度验算δ=M/W= 137.50 Mpa<[δ]=170Mpaτ=QS/Ib= 99.77 Mpa<[τ]=100Mpa3、绕度计算f=5q14/384EI= 0.7 mm<L/400=2.6mm经计算,结构强度,刚度满足要求。
盖梁模板支撑受力计算书_secret

盖梁模板支撑受力计算书某大桥墩柱盖梁模板支撑受力计算,取左4#墩进行受力计算。
一、荷载计算1、盖梁荷载:系梁钢筋砼自重:G=61m3×25KN/m3=1525KN墩柱顶面部分的混凝土由墩柱承载,故不计算G´=1525-3.14×1²×(1.9×2.1)×25=1227偏安全考虑,以全部重量作用于底板上计算单位面积压力:F1=G´÷S=1227KN÷(2.1m×16.05m)=38.23KN/m22、施工荷载:取F2=1.5KN/m23、振捣混凝土产生荷载:取F3=2.0KN/m24、3mm厚钢模板:取F5=0.5KN/m25、方木:取F6=7.5KN/m36、45b号工字钢:取F7=0.87KN/m二、底模强度计算底模采用组合钢模板,面板厚t=3mm,肋板高h=50mm,厚b=4mm,面板及肋板总高H=53mm,验算模板强度采用宽B=300mm平面钢模板。
1、钢模板力学性能(1)弹性模量E=2.1×105MPa。
(2)截面惯性矩:I=[by23+By13-(B-b)(y1-t)3]/3 (公式1)其中:y1=[bH2+(B-b)t2]/[2(Bt+bh)]=[4×532+(300-4)×32]/[2(300×3+4×55)]=6.205mm y2=H-y1=53-6.205=46.795mm将y1=6.205mm,y2=46.795mm代入公式1得:I=[4×46.7953+300×6.2053-(300-4)(6.205-3)3]/3=15.73cm4(3)截面抵抗矩:W=I/y2=15.73/4.6795=3.36cm3(4)截面积:A=Bt+bh=300×3+4×50=11cm22、钢模板受力计算(1)底模板均布荷载:F= F1+F2+F3=38.23+2+1.5=41.73KN/m2q=F×B=41.73×0.3=12.51KN/m(2)跨中最大弯矩:M=qL2/8=12.51×0.32/8=0.14KN·m(3)弯拉应力:σ=M/W=0.14×103/3.36×10-6=41.7MPa<[σ]=140MPa 钢模板弯拉应力满足要求。
盖梁计算书

盖梁计算书一、计算说明、参数本标段盖梁累计71个,均为双柱盖梁。
总体分一般构造盖梁和框架墩盖梁(即预应力盖梁)两种。
其中一般构造盖梁种尺寸。
普通盖梁采用C35土,框架墩盖梁采用C50混凝土。
一般构造盖梁共18个;15.736*2.1*1.5个;11.2*2.2*1.6共12个;11.595*2.2*1.6共18个,适用于松林大桥5#墩;24.2*2.4*2.2个,适用于松林大桥4#、6#墩。
由于11.2*1.9*1.4(1.595*1.9*1.4为斜交)盖梁具有代表性,故以下计算按11.2*1.9*1.4盖梁进行受力计算分析。
盖梁采用大块定型钢模板施工方法。
模板设置横加劲楞,横向加劲楞直接焊接在模板上;竖向][12加劲楞则布置在外侧,间距为0.8m,且其上安装对拉螺杆。
计算参数:A3钢强度设计值:抗拉、抗压、抗弯:[σ]=12.5KN/cm2二、计算依据和参考资(1)揭阳至惠来高速公路A7标合同段两阶段施工图设计(2)公路桥涵施工技术规范(JTJ041-2000)(3)公路桥涵钢结构及木结构设计规范(JTJ025-86)(4)路桥施工计算手册.人民交通出版社.2002(5)公路桥涵施工技术规范实施手册.人民交通出版社.2002(6)机械工程师手册.机械工业出版社.2004三、模板计算荷载分项系数是在设计计算中,反映了荷载的不确定性并与结构可靠度概念相关联的揭惠高速公路A7一个数值。
对永久荷载和可变荷载,规定了不同的分项系数。
永久荷载分项系数γG:当永久荷载对结构产生的效应对结构不利时,对由可变荷载效应控制的组合取G=1.35。
当产生的效应对结构有利时,—般情况下取γG=1.0;当验算倾覆、滑移或漂浮时,取γG=0.9;对其余某些特殊情况,应按有关规范采用。
可变荷载分项系数γQ:—般情况下取γQ=1.4。
1、荷载分析:盖梁底板面积为:(11.2-2.9)m1.4m=11.62m2(最不利状态下,偏于保守计算)盖梁砼自重:G=27.1m326KN/m3=704.6KN;q1=704.611.62=60.6KN/m2注:含筋量>2%。
盖梁计算书

盖梁计算书一、计算说明、参数段家咀互通主线左幅P38-P40、右幅P42-P44、ZK7+348.5滠口高架桥1-10#、K7+295.6滠口高架桥2/3/4/5/7/6/8/9/10#共26个墩位,墩柱直径1.8m,盖梁尺寸为15.45m*1.9m*1.8m,累计26个盖梁,均为双柱一般构造盖梁,采用C35混凝土。
盖梁采用大块定型钢模板施工方法。
侧模板设置横肋:横肋[10槽钢,间距为0.3m,横向加劲楞直接焊接在模板上;竖肋:竖肋[12槽钢,间距为1.00m,且其上安装对拉螺杆。
计算参数:Q235钢强度设计值:抗拉、抗压、抗弯:[σ]=170Mpa,抗剪[σ]=100Mpa二、计算依据和参考资(1)武汉至大悟高速公路武汉至河口段工程段家咀互通主线、ZK7+348.5滠口高架桥和K7+295.6滠口高架桥上构设计图纸;(2)公路桥涵施工技术规范(JTJ041-2011)(3)路桥施工计算手册.人民交通出版社.2002(4)公路桥涵施工技术规范实施手册.人民交通出版社.2002(5)机械工程师手册.机械工业出版社.2004(6)《建筑施工模板安全技术规范》(JGJ 162-2008)三、荷载1、混凝土对模板的侧压力(7)根据《建筑施工模板安全技术规范》(JGJ 162-2008)中提出的采用内部振捣器时,新浇筑的混凝土作用于模板的最大侧压力,可按下列二式计算,并取二式中的较小值:2/121022.0V t F ββγ=HF γ=式中F 为新浇注混凝土对模板的最大侧压力(2/m kN )γ为钢筋混凝土的重力密度(3/m kN )0t 为新浇注混凝土的初凝时间(h),可按实测确定,或采用经验公式152000+=T t 计算(T 为混凝土的温度℃),本计算0t 取10h。
V 为混凝土浇注速度(h m /),V 取0.45h m /。
H 为混凝土侧压力计算位置处到新浇注混凝土顶面的总高度(m),本计算H=1.8m。
普通钢筋混凝土桥墩盖梁计算书

普通钢筋混凝土桥墩盖梁计算书范本一(正式风格):1. 混凝土桥墩盖梁计算书1.1 引言此计算书旨在详细描述普通钢筋混凝土桥墩盖梁的设计和计算过程,以确保结构的安全性和稳定性。
1.2 结构概述桥墩盖梁由混凝土桥墩以及上部预应力混凝土梁组成。
计算书将分别讨论桥墩和盖梁的设计和计算。
2. 桥墩设计和计算2.1 材料特性2.1.1 混凝土特性参考标准:GB 50010《混凝土结构设计规范》参数:抗压强度、抗拉强度、弹性模量等2.1.2 钢筋特性参考标准:GB 50010《混凝土结构设计规范》参数:屈服强度、抗拉强度、弹性模量等2.2 桥墩尺寸2.2.1 基础尺寸根据设计要求和现场条件确定桥墩基础的宽度、长度和高度。
2.2.2 桥墩截面尺寸根据设计要求和荷载计算结果确定桥墩的截面尺寸和形状。
2.3 桥墩荷载计算2.3.1 水平荷载考虑车辆荷载、风荷载、温度荷载等对桥墩的影响。
2.3.2 垂直荷载考虑自重、活荷载、附加荷载等对桥墩的影响。
2.4 桥墩设计方案根据荷载计算结果,选择合适的桥墩设计方案,包括墩身形状、墩身厚度、墩台的形式等。
3. 盖梁设计和计算3.1 材料特性参考第2.1节中的混凝土特性和钢筋特性。
3.2 盖梁尺寸根据设计要求和荷载计算结果确定盖梁的宽度、长度和高度。
3.3 盖梁荷载计算考虑自重、活荷载、预应力等对盖梁的影响。
3.4 盖梁设计方案根据荷载计算结果,选择合适的盖梁设计方案,包括预应力筋的布置、截面形状等。
4. 结论经过详细设计和计算,桥墩盖梁结构满足设计要求,并具备足够的安全性和稳定性。
5. 附件本文档涉及的附件如下:- 绘图文件:包括桥墩截面图、盖梁截面图等。
6. 法律名词及注释1) 抗压强度:混凝土在受压状态下能够承受的最大应力。
2) 抗拉强度:混凝土在受拉状态下能够承受的最大应力。
3) 弹性模量:材料在弹性变形范围内,应力与应变之间的比值。
...(根据实际情况添加其他法律名词和注释)。
盖梁计算书

盖梁计算书注:横向加载位置仅按左偏、右偏、里对称、外对称加载。
注:1、加载方式为自动加载。
重要性系数为1.1。
2、横向布载时车道、车辆均采用1到2列(辆)分别加载计算。
注:集中荷载Pk已经乘以1.2系数,使得竖直力效应最大。
双孔加载按左孔或右孔的较大跨径作为计算跨径。
注:盖梁与立柱线刚度比小于或等于5,按刚架计算盖梁。
注:外边柱之间盖梁截面按钢筋混凝土盖梁构件配筋计算。
其余按钢筋混凝土一般构件配筋计算。
注:1、“人群/每米”指横向1米宽度的支反力,不是总宽度对应的支反力。
总宽度为0米。
2、“总轴重”指一联加载长度内(双孔或左孔或右孔加载)的轮轴总重。
计算水平制动力使用。
3、“左、右支反力”未计入汽车冲击力的作用。
4、车道荷载均布荷载为10.5kN/m,集中荷载为:双孔加载284.448kN,左孔加载284.448kN,右孔加载284.448kN。
5、双孔支反力合计:人群荷载60.021kN/m,1辆车辆荷载436.682kN,1列车道荷载499.987kN。
6、左孔(或右孔)加载时同1辆车的前后轮轴可作用在另一孔内,保证单孔支反力最大,另一孔即便有轮轴支反力仍未计。
7、左孔、右孔冲击系数同双孔加载冲击系数。
注:1、线荷载为54kN/m,指盖梁的总重量除以盖梁长度得到的每延米重量。
2、车道和车辆双孔、左孔、右孔加载均指1列荷载作用,采用值已计冲击系数。
3、车道双孔加载控制,车辆双孔加载控制。
注:1、表中横向分配系数采用“杠杆法(支点)过渡到偏心受压法(1/4跨)”,即纵向荷载位于支点与1/4跨之间按“杠杆法”与“偏心受压法”插值计算,1/4跨之间按“偏心受压法”计算。
2、车道荷载布载两列及以上时横向分配系数值已经计入车列数和横向折减系数。
注:1、“过渡法”由纵向影响值结合横向分配系数由杠杆法过渡偏心法计算得到。
点击“纵向影响线”看详细计算。
注:1、耳墙、背墙、盖梁比重均按25kN/m3取用。
注:1、耳墙、背墙、盖梁比重均按25kN/m3取用。
盖梁计算书
计算书一、钢管柱抱箍施工方法1、工程概况盖梁宽为3.32m,中间1.42m宽混凝土结构最高为3.9m,下部混凝土结构最高为2.1m。
双层H700型钢间距为1.9m,30工字钢间距为0.6m,长度为7.5m 标准段H700型钢中间钢管柱跨度为10m,两侧跨度为6m,外侧悬臂3.3m(有2m为工作面)2、施工荷载中间1.42m混凝土均布荷载为3.9*2.6=10.14t/m两侧各0.95m范围混凝土均布荷载为2.1*2.6=5.46t/m施工人员,机具、材料荷载:=2.5kN/m2P1砼冲击及振捣砼时产生的荷载:P=2.5kN/m22模板自重荷载:=1.5kN/m2P43、30工字钢计算:中间1.42m 101.4+2.5+2.5+1.5=107.6kN/m2*0.6=64.56kN/m两侧0.95m 54.6+2.5+2.5+1.5=61.1kN/m2*0.6=36.66kN/m结果最大应力为40.5MPa<210MPa,符合要求。
最大变形为0.3mm<3320/400=8.3mm支点反力为80.351KN.80.351+1.2=81.551KN4、H700型钢计算:最大应力为160.2 MPa<210MPa,符合要求。
最大变形为19mm<10000/400=25mm,符合要求。
抱箍处支点反力为846.163KN,钢管柱支点反力为1125.719KN。
5、钢管柱计算钢管柱最大应力为84.952 MPa<210MPa,符合要求。
最大变形为4mm钢管柱基础计算:1125.719/(3.14*0.3*0.3)=3983.4KPa=4MPa<20MPa(混凝土强度),符合要求。
6、抱箍计算抱箍受竖向力为846.2KN,即该值为抱箍需产生的摩擦力,螺栓数目计算:M24螺栓的允许承载力:[NL]=Pμn/K式中P为高强螺栓的预拉力,取225kNμ摩擦系数取0.3传力接触数目取1.6*1.6*0.5=1.28K为安全系数取1.7[NL]=50.82KN螺栓数目m=846.2/50.82=16.6≈17,实际布置螺栓为24个。
盖梁模板及支架受力计算书
盖梁模板及支架受力计算书一、计算参数荷载: ① 模板自重 40 KN(侧)+8.22KN(底.)=48.22KN36a 工钢 0. 6*12*2=14.4KN② 砼自重 22.83m 3 *25=570.75 KN③ 施工人员及机具荷载 1.5KN/m 2*4.4m*1.9m=12.54KN④ 新浇砼对模板产生荷载 0.22*24*1.5*1.51/2=9.7KN/m 2⑤ 振捣砼产生荷载 2 KN/m 2*4.4m*1.4m=12.32 KN (水平面) 4*4.4*1.5=26.4KN (垂直面)⑥ 倾倒砼产生荷载 4 KN/m 2*4.4m*1.9m=28.56 KN二、对工钢进行验算36a 工钢 I x =15796cm 4 W x =877.6cm 3 S x =508.8cm 3E=2.1*105MPa [δs ] =145MPa τmax =85MPa∑=48.22+14.4+570.75+12.54+12.32+28.56=686.79 KN故qc=34.3410*279.686 KN/m (1) 弯曲强度M max =25*1.6*34.34*[(1-1.95/5)(1+2*1.95/6.1)-5/6.1]=94.435KN.m δmax =3610*6.87710*435.94=103.6MPa<145MPa[δs ]计算简图:q c =34.34KN/m(2) 抗剪强度验算Qmax=21.6*34.34=104.737KNτmax =10*10*1579610*8.508*10*737.104433=33.74MPa<[τ]=85MPa(3)挠度验算ƒmax =3845*El ql 4=45410*15796*10*1.2*3846100*34.34*5=18<2506100=24.4mm三、支架方木验算(1)强度计算∑P=672.39KN ∑q c =9.1*1039.672=35.39KN/m 2q c =35.39*0.5=17.7KN/mM max =87.1*7.172=6.4KN.mΣ=26200*200*6110*4.6=4.8MPa<15Mpa(可)(2)挠度计算ƒmax =)12200*200(*10*10*3841700*7.17*5334=1.4mm<4.3mm计算简图:四、竹胶底模计算1.8CM 厚竹胶底模参数: W x =54mm 3 I x =486mmE=9.0*10 3 M pa δ=14.5Mpa σ=85Mpa(1) 强度验算∑P=632.39KN ∑q c =9.1*1039.632=33.3 KN/m 2M max =103.0*033.02=0.0003KN.mδ=5410*0003.06=5.5Mpa<14.5Mpa(可)ƒmax =486*10*9*384300*033.0*534=0.8 mm =400300=0.8mm计算简图:五、侧钢模背楞及面板验算10a 槽钢: W x =39.4cm 3 I x =198.3cm 4 S x =23.5cm 3E=2.1*105 δ=145Mpa γ=85Mpa q c =9.8KN/m(1)外背楞(间距0.9m 一道)P=4.59KN R A =R B =9.18KN经计算:M max =4.13KN.mδmax =3610*4.3910*13.4=104MPa<140Mpa 故可 ƒmax =45410*3.198*10*1.2*3841700*5.13*5=3.5mm =4001700=4.25mm(2 钢侧模面板及其内背楞由于内背楞及钢侧模面板材料强度及刚度大于底背楞及底模强度及刚度,且底部荷载大于侧面荷载,故模板力学性能无需再进行验算。
盖梁支撑计算书.
盖梁抱箍、分配梁计算书(以简支墩为例)本合同段盖梁施工分为两种,其中圆柱墩盖梁材料抱箍与型钢支撑进行施工,矩形墩盖梁施工采用Ф120mm穿心棒与型钢支撑进行施工,其中简支墩为为最不利墩位,以下门里大桥简支墩为例进行计算。
(一)抱箍承载力计算(以Ф2.0m墩柱抱箍为例)1、荷载组合计算(1)盖梁砼自重:G1=67.08m3×26kN/m3=1744.1kN(2)模板自重:G2=122.6kN(3)施工荷载与其它荷载:G3=20kN(4)I20a工字钢:G4=4×26×27.9㎏/m=29.0kN(5)I45a型钢自重:G5=80.4㎏/m×16×4=51.5kNGZ=G1+G2+G3+G4+G5=1744.1+122.6+20+29.0+51.5=1967.2kN每个盖梁按墩柱设二个抱箍体支承上部荷载,由静力平衡方程解得:RA=RB=1967.2/2=983.6kN值为抱箍体需承受的竖向压力N,即为抱箍体需产生的摩擦力。
2、抱箍受力计算①螺栓数目计算抱箍体需承受的竖向压力N=983.6kN抱箍所受的竖向压力由M24的高强螺栓的抗剪力产生,查《路桥施工计算手册》第426页:M24螺栓的允许承载力:]=Pμn/K[NL式中:P---高强螺栓的预拉力,取225kN;μ---摩擦系数,取0.4;n---传力接触面数目,取1;K---安全系数,取1.7。
则:[NL]= 225×0.4×1/1.7=53kN螺栓数目m计算:m=N’/[NL]=983.6/53=11.26≈19个,现场加工抱箍螺栓共计24个,如下图所示,以24个螺栓进行截面计算,则每条高强螺栓提供的抗剪力:P′=N/24=983.6/24=40.98KN<[NL]=53kN故能承担所要求的荷载,满足实际施工需要。
②螺栓轴向受拉计算砼与钢之间设一层橡胶,按橡胶与钢之间的摩擦系数取μ=0.4计算抱箍产生的压力Pb= N/μ=983.6kN/0.4=2459kN由高强螺栓承担。
盖梁钢棒法计算书
盖梁施工钢棒法计算书 附表1一、施工总荷载薄壁墩盖梁尺寸如图1所示。
图1 薄壁墩盖梁尺寸示意图盖梁模板施工体系选用墩身预埋PVC 管并插入钢棒,其钢棒中心距边缘30cm 。
上置千斤顶,I45a 工字钢作纵梁,纵梁上放置[18a 槽钢支撑悬臂端模板的三角支架。
具体布置如图2所示。
空心薄壁墩工字钢纵梁槽钢横梁角钢三角支撑盖梁Ф钢棒图2 盖梁结构示意图施工荷载包括:平台及盖梁模板自重,钢筋混凝土重量,施工人员及设备重量,灌注砼时振捣产生的冲击力等。
施工平台包括:墩身预埋PVC 管,采用φ95mm 钢棒4.6m*2根,两边露出各80cm ;钢棒上安装牛腿,架设I45a工字钢2根作为纵梁,每根12.6m,形成支撑纵梁以承受盖梁施工荷载,并通过调整横梁下的木楔调整盖梁横坡;支撑平台横梁拟采用[18a槽钢作为横梁,每根长4.6m,在悬臂部分按照(4@50+30)cm等间距布置,共需12根。
因空心薄壁墩墩顶实心段承担了大部分盖梁自身荷载,浇筑时只有悬臂部分荷载和混凝土流动对悬臂部分倾斜模板产生的侧压力由支架承担,故盖梁悬臂部分加上挡块按照(均布荷载+集中力)计算(取钢筋砼与模板共同容重取γ=26kN/m3,其中变截面段按照线性荷载计算,安全系数恒载乘以系数1.2,活载乘以1.4):变截面段:q1=26*1*3.2/2-26*2*3.2/2=(41.6-83.2)kN/m悬臂等截面段:q2=26*2*3.2/2=83.2kN/m墩顶前后悬出段(包括钢筋砼与侧模板,全部作用于纵梁跨中部位):q3=0.1*2*25+ [11.1 *1+(11.1+6.5)*1/2]*130*9.8/1000/6=9.2kN/m 挡块集中力:F1=0.3*0.5*(3.2-0.03*2)*26/2=6.1kN施工人员、运输工具、堆放材料荷载:q4=2.5KN/m2*3.2m/2=4kN/m下料冲击、振捣时产生的荷载(主要指对悬臂端倾斜模板底模的冲击荷载的竖向分力):q5=2.0kPa*3.2m/2=3.2kN/m;横梁自重(一端,查结构计算手册:[18a槽钢质量为20.17Kg/m)加悬臂端三角支撑荷载(一端,不考虑变形,L75*75*7角钢质量7.4kg/m):q6=(7.4kg/m*45m*9.8/1000/2.1m+20.17*4*6*9.8/1000/2.1)/2=1.91kN/mA3钢容许弯曲应力=1.25*[σ]=1.25*145MPa=181 MPa容许剪切应力=1.25*[τ]=1.25*85MPa=106 MPa16Mn钢容许弯曲应力=1.25*[σ]=1.25*210 MPa=262.5 MPa容许剪切应力=1.25*[τ]=1.25*120 MPa=150 MPa弹性模量E=2.1*105Mpa二、横梁计算根据《路桥施工计算手册》P176表8-5注,支架属于临时结构,其强度设计采用容许应力法,并不考虑荷载分项系数,且根据表8-9,其提高系数k=1.25。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
盖梁计算书单柱墩中墩盖梁一.工程概述二. 设计规范与技术指标1.《公路工程技术标准》JTG B01-20032.《公路桥涵设计通用规范》JTG D60-20043.《公路桥涵施工技术规范》JTJ041-20004.桥梁设计荷载:公路-Ⅱ级、公路-Ⅰ级同时考虑三. 材料指标原盖梁混凝土为30号混凝土,相当于04规范中的C28混凝土。
四. 参数选择及计算方法1.本桥静力分析采用桥梁博士,采用平面杆系法对桥梁在施工及运营阶段的受力情况进行了分析、验算,计算中考虑了恒载、活载、温度荷载及混凝土的收缩徐变等。
2.混凝土收缩徐变混凝土徐变采用公桥规理论3.温度变化不考虑温度的影响。
4.恒载边梁反力:1234KN 中梁反力:1130KN5.偏载汽车反力采用基本资料中支反力影响系数Vmax=1.2LV=1.2×30×10.5+280=658KN冲击系数计算取μ=0.23。
V反=(1+0.23)×658=809.34KN四片梁偏载反力影响系数为:0.618、0.602、0.577、0.545 四片梁偏载支反力为:500KN、487KN、467KN、441KN6.按图纸中配筋进行结构验算。
五.计算结果(一)公路—Ⅰ级1.持久状况承载能力极限状态最小抗弯承载能力及对应最小弯矩(单位:KN·m)2.持久状况正常使用极限状态短期效应组合应力正截面顶缘最大、最小应力(单位:MPa)正截面底缘最大、最小应力(单位:MPa)截面主压(绿)主拉(蓝)缘应力(单位:MPa)(二)公路—Ⅱ级1.持久状况承载能力极限状态最小抗弯承载能力及对应最小弯矩(单位:KN·m)2.持久状况正常使用极限状态短期效应组合应力正截面顶缘最大、最小应力(单位:MPa)正截面底缘最大、最小应力(单位:MPa)截面主压(绿)主拉(蓝)缘应力(单位:MPa)六.结果分析承载能力方面,在公路-Ⅰ级汽车荷载下,墩顶中间1个截面最小抗弯能力不满足规范要求,荷载效应超出承载能力11.8%,其余截面均满足规范要求;在公路-Ⅱ级汽车荷载作用下,墩顶中间1个截面最小抗弯能力不满足规范要求,荷载效应超出承载能力3.4%,其余截面承载能力均满足规范要求。
按规范4.24条,考虑折减弯矩为,M´=1/8×6623/(2+2)×(2+2)2=3311KN·m,最多能折减未折减的10%,折减后,公路-Ⅰ级汽车荷载下,墩顶中间1个截面最小抗弯能力不满足规范要求,荷载效应超出承载能力0.7%,公路-Ⅱ级汽车荷载下,所有截面最小抗弯能力均满足规范要求,故承载能力可认为能满足规范要求,不需要对盖梁进行加强。
抗裂验算方面正截面拉应力,中间5个截面超过规范要求值0.96MPa的拉应力,不满足规范要求,中间3个截面位于墩顶,向外侧两截面和墩边缘平齐,拉应力为1.4MPa,故可能在此处出现裂缝。
单柱墩分隔墩盖梁一.工程概述二. 设计规范与技术指标1.《公路工程技术标准》JTG B01-20032.《公路桥涵设计通用规范》JTG D60-20043.《公路桥涵施工技术规范》JTJ041-20004.桥梁设计荷载:公路-Ⅱ级、公路-Ⅰ级同时考虑三. 材料指标原盖梁混凝土为30号混凝土,相当于04规范中的C28混凝土。
四. 参数选择及计算方法1.本桥静力分析采用桥梁博士,采用平面杆系法对桥梁在施工及运营阶段的受力情况进行了分析、验算,计算中考虑了恒载、活载、温度荷载及混凝土的收缩徐变等。
2.混凝土收缩徐变混凝土徐变采用公桥规理论3.温度变化不考虑温度的影响。
4.恒载(单侧)边梁反力:547KN 中梁反力:511KN5.偏载汽车反力(单侧)采用基本资料中支反力影响系数Vmax=0.45LV=0.45×30×10.5+280/2=281.75KN冲击系数计算取μ=0.23。
V反=(1+0.23)×281.75=346.55KN四片梁偏载反力影响系数为:0.618、0.602、0.577、0.545四片梁偏载支反力为:214KN、209KN、200KN、189KN6.按图纸中配筋进行结构验算。
五.计算结果(一)公路—Ⅰ级1.持久状况承载能力极限状态最小抗弯承载能力及对应最小弯矩(单位:KN·m)2.持久状况正常使用极限状态短期效应组合应力正截面顶缘最大、最小应力(单位:MPa)正截面底缘最大、最小应力(单位:MPa)截面主压(绿)主拉(蓝)缘应力(单位:MPa)(二)公路—Ⅱ级1.持久状况承载能力极限状态最小抗弯承载能力及对应最小弯矩(单位:KN·m)2.持久状况正常使用极限状态短期效应组合应力正截面顶缘最大、最小应力(单位:MPa)正截面底缘最大、最小应力(单位:MPa)截面主压(绿)主拉(蓝)缘应力(单位:MPa)六.结果分析从计算结果中可以看出:承载能力方面,在公路-Ⅰ级汽车荷载下,仅跨中一个截面最小抗弯能力不满足规范要求,荷载效应超出承载能力7.7%,其余均满足规范要求;在公路-Ⅱ级汽车荷载作用下,所有截面承载能力均满足规范要求。
抗裂验算方面正截面拉应力,中间3个截面超过规范要求值0.96MPa的拉应力,不满足规范要求,中间3个截面位于墩顶,出现裂缝的可能不大。
30m跨径下板式墩中墩盖梁一.工程概述二. 设计规范与技术指标1.《公路工程技术标准》JTG B01-20032.《公路桥涵设计通用规范》JTG D60-20043.《公路桥涵施工技术规范》JTJ041-20004.桥梁设计荷载:公路-Ⅱ级、公路-Ⅰ级同时考虑三. 材料指标原盖梁混凝土为30号混凝土,相当于04规范中的C28混凝土。
四. 参数选择及计算方法1.本桥静力分析采用桥梁博士,采用平面杆系法对桥梁在施工及运营阶段的受力情况进行了分析、验算,计算中考虑了恒载、活载、温度荷载及混凝土的收缩徐变等。
2.混凝土收缩徐变混凝土徐变采用公桥规理论3.温度变化不考虑温度的影响。
4.恒载边梁反力:1234KN 中梁反力:1130KN5.偏载汽车反力采用基本资料中支反力影响系数Vmax=1.2LV=1.2×30×10.5+280=658KN冲击系数计算取μ=0.23。
V反=(1+0.23)×658=809.34KN四片梁偏载反力影响系数为:0.618、0.602、0.577、0.545四片梁偏载支反力为:500KN、487KN、467KN、441KN6.按图纸中配筋进行结构验算。
五.计算结果(一)公路—Ⅰ级1.持久状况承载能力极限状态最小抗弯承载能力及对应最小弯矩(单位:KN·m)(二)公路—Ⅱ级1.持久状况承载能力极限状态最小抗弯承载能力及对应最小弯矩(单位:KN·m)六.结果分析从计算结果中可以看出:承载能力方面,在公路-Ⅰ级和公路-Ⅱ级汽车荷载下,有绝大部分截面承载能力均不满足规范要求,需要进行加强。
30m跨径下板式墩分隔墩盖梁一.工程概述二. 设计规范与技术指标1.《公路工程技术标准》JTG B01-20032.《公路桥涵设计通用规范》JTG D60-20043.《公路桥涵施工技术规范》JTJ041-20004.桥梁设计荷载:公路-Ⅱ级、公路-Ⅰ级同时考虑三. 材料指标原盖梁混凝土为30号混凝土,相当于04规范中的C28混凝土。
四. 参数选择及计算方法1.本桥静力分析采用桥梁博士,采用平面杆系法对桥梁在施工及运营阶段的受力情况进行了分析、验算,计算中考虑了恒载、活载、温度荷载及混凝土的收缩徐变等。
2.混凝土收缩徐变混凝土徐变采用公桥规理论3.温度变化不考虑温度的影响。
4.恒载(单侧)边梁反力:547KN 中梁反力:511KN5.偏载汽车反力(单侧)采用基本资料中支反力影响系数Vmax=0.45LV=0.45×30×10.5+280/2=281.75KN冲击系数计算取μ=0.23。
V反=(1+0.23)×281.75=346.55KN四片梁偏载反力影响系数为:0.618、0.602、0.577、0.545四片梁偏载支反力为:214KN、209KN、200KN、189KN6.按图纸中配筋进行结构验算。
五.计算结果(一)公路—Ⅰ级1.持久状况承载能力极限状态最小抗弯承载能力及对应最小弯矩(单位:KN·m)(二)公路—Ⅱ级1.持久状况承载能力极限状态最小抗弯承载能力及对应最小弯矩(单位:KN·m)六.结果分析从计算结果中可以看出:承载能力方面,在公路-Ⅰ级和公路-Ⅱ级汽车荷载下,有绝大部分截面承载能力均不满足规范要求,需要进行加强。
20m跨径下板式墩中墩盖梁一.工程概述二. 设计规范与技术指标1.《公路工程技术标准》JTG B01-20032.《公路桥涵设计通用规范》JTG D60-20043.《公路桥涵施工技术规范》JTJ041-20004.桥梁设计荷载:公路-Ⅱ级、公路-Ⅰ级同时考虑三. 材料指标原盖梁混凝土为30号混凝土,相当于04规范中的C28混凝土。
四. 参数选择及计算方法1.本桥静力分析采用桥梁博士,采用平面杆系法对桥梁在施工及运营阶段的受力情况进行了分析、验算,计算中考虑了恒载、活载、温度荷载及混凝土的收缩徐变等。
2.混凝土收缩徐变混凝土徐变采用公桥规理论3.温度变化不考虑温度的影响。
4.恒载(桥梁博士计算反力)边梁反力:618KN 中梁反力:506KN5.汽车反力采用基本资料中支反力影响系数Vmax=1.2178LV=1.2178×20×10.5+240=495.7KN冲击系数计算取μ=0.31。
V反=(1+0.31)×495.7=649.4KN偏载时,六板横向分布系数分别为:0.413 0.412 0.406 0.391 0.369 0.349故六板荷载反力为(单位:KN):268.4 267.8 263.6 253.8 239.6 226.46.按图纸中配筋进行结构验算。
五.计算结果(一)公路—Ⅰ级1.持久状况承载能力极限状态最小抗弯承载能力及对应最小弯矩(单位:KN·m)2. 持久状况正常使用极限状态短期效应组合裂缝宽度上缘裂缝宽度(单位:mm)(二)公路—Ⅱ级1.持久状况承载能力极限状态最小抗弯承载能力及对应最小弯矩(单位:KN·m)2. 持久状况正常使用极限状态短期效应组合裂缝宽度上缘裂缝宽度(单位:mm)六.结果分析承载能力方面,在公路-Ⅰ级汽车荷载下,墩顶中间1个截面最小抗弯能力不满足规范要求,荷载效应超出承载能力17.1%,其余截面均满足规范要求;在公路-Ⅱ级汽车荷载作用下,墩顶中间1个截面最小抗弯能力不满足规范要求,荷载效应超出承载能力4.3%,其余截面承载能力均满足规范要求。