高考分类汇编 文科数学 真题 12 专题四 三角函数与解三角形 第十二讲 解三角形【微信客服:brcola】

合集下载

三角函数、解三角形——2024届高考数学试题分类汇编(解析版)

三角函数、解三角形——2024届高考数学试题分类汇编(解析版)

2024高考复习·真题分类系列2024高考试题分类集萃·三角函数、解三角形
微专题总述:三角函数的图像与性质
【扎马步】2023高考三角函数的图像与性质方面主要考察“卡根法”的运用,是最为基础的表现
【雕龙头】在稳中求新的过程中,2023高考试题也透露出了新的风向,加强图像考察与其他知识点如几何、函数的结合,对称思想的隐含
微专题总述:正弦定理与余弦定理的应用
【扎马步】2023高考解三角形小题部分紧抓“教考衔接”基础不放,充分考察正余弦定理的运用
【雕龙头】在稳中求新的过程中,2023高考试题也透露出了新的风向,在考察正余弦定理时与角平分线定理结合(初中未涉及此定理)
微专题总述:解三角形综合问题
【扎马步】2023高考解三角形大题部分仍然与前几年保持一直模式,结构不良题型日益增多,但方向不变,均是化为“一角一函数”模式是达到的最终目的,考察考生基本计算与化简能力
【雕龙头】在稳中求新的过程中,2023高考试题也透露出了新的风向,如新高考卷中出现的数形结合可加快解题速度,利用初中平面几何方法快速求出对应参量在近几年高考题中频繁出现,可见初高中结合的紧密 2023年新课标全国Ⅰ卷数学
16.已知在ABC 中,
()3,2sin sin A B C A C B +=−=. (1)求sin A ;
(2)设5AB =,求AB 边上的高.
2023高考试题分类集萃·三角函数、解三角形参考答案
2。

专题四三角函数与解三角形第十二讲解三角形十年高考数学(理科)真题题型分类汇编

专题四三角函数与解三角形第十二讲解三角形十年高考数学(理科)真题题型分类汇编

专题四三角函数与解三角形第十二讲解三角形2019年1.(2019 全国Ⅰ理 17)△ABC 的内角 A ,B , C 的对边分别为 a , b ,c ,设(sinBs inC)2sin 2A sinB sinC.1)求A ;2)若2ab2c ,求sinC .2.(2019全国Ⅱ理15)△ABC的内角A,B,C 的对边分别为 a,b,c.若b6,a 2c,B π,3 则△ABC 的面积为__________.3(.2019全国Ⅲ理18)△ABC 的内角A 、B 、C 的对边分别为a 、b 、c ,已知asinACbsinA .2(1)求B ; (2)若△ABC 为锐角三角形,且 c=1,求△ABC 面积的取值范围. 4.(2019江苏12)如图,在△ABC 中,D 是BC 的中点,E 在边AB 上,BE=2EA ,AD 与CE 交于点O.若ABAC 6AOEC ,则AB的值是.AC5.(2019 江苏15)在△ABC 中,角A ,B ,C 的对边分别为 a ,b ,c .(1)若a=3c ,b=2,cosB=2,求c 的值;3(2)若sinAcosB,求sin(B )的值.a 2b 2 6.(2019 浙江14)在△ABC 中,ABC 90,AB 4,BC 3,点D 在线段AC 上, 若 BDC 45,则BD____,cos ABD________.(2019北京15)在△ABC中,a=3,b-c=2,cosB.7.12(Ⅰ)求b,c的值;(Ⅱ)求sin(B-C)的值.8.(2019天津理15)在△ABC中,内角A,B,C所对的边分别为a,b,c.已知bc2a,3csinB4asinC.(Ⅰ)求cosB的值;(Ⅱ)求sin2B的值.62010-2018年一、选择题1.(2018全国卷Ⅱ)在△ABC中,cos C5,BC1,AC5,则AB25A.42B.30C.29D.252(2018全国卷Ⅲ)ABC的内角A,B,C的对边分别为a,b,c,若ABC的面积.为a2b2c2,则C4A.B.3C.D.6 243.(2017山东)在ABC中,角A,B,C的对边分别为a,b,c.若ABC为锐角三角形,且知足sinB(12cosC)2sinAcosCcosAsinC,则以下等式建立的是A.a2b B.b2a C.A2B D.B2A.(2016年天津)在ABC中,若AB=13,BC=3,C120,则AC=4A.1B.2C.3D.45.(2016年全国III)在△ABC中,B=π,BC边上的高等于1BC,则cosA=43A.310B.10C.-10D.-310 101010106.(2014新课标Ⅱ)钝角三角形ABC的面积是1,AB1,BC2,则AC=2A.5B.5C.2D.17.(2014重庆)已知ABC的内角A,B,C知足sin2Asin(A B C)=sin(C A B) 12,面积S知足1≤S≤2,记a,b,c分别为A,B,C所对的边,则以下不等式必定建立的是A.bc(b c)8B.ab(a b)162C.6abc12D.12abc2482014江西)在ABC中,a,b,c分别为内角A,B,C所对的边长,若.(c2(a b)26,C,则ABC的面积是3A.3B.9333D.33 2C.29.(2014四川)如图,从气球A上测得正前面的河流的两岸B,C的俯角分别为75,30,此时气球的高是60cm,则河流的宽度BC等于A30°°7560mBCA.240(31)mB.180(21)m C.120(31)mD.30(31)m10.(2013新课标Ⅰ)已知锐角ABC的内角A,B,C的对边分别为a,b,c,23cos2Acos2A0,a7,c 6,则bA.10B.9C.8D.511.(2013辽宁)在ABC,内角A,B,C所对的边长分别为a,b,c.若asinBcosCcsinBcosA1b,且a b,则B=2C.2D.5A.B.6336 12.(2013天津)在△ABC中,ABC,AB2,BC3,则sinBAC= 4A .10B .10C .310D . 510 5 105 13.(2013陕西)设△ABC 的内角A,B,C 所对的边分别为 a,b,c,若bcosCccosBasinA,则△ABC 的形状为A .锐角三角形B .直角三角形C .钝角三角形D .不确立 14.(2012广东)在ABC 中,若A 60, B 45,BC 32,则ACA .4 3B .23C .D .15.(2011辽宁)△ABC 的三个内角A ,B ,C 所对的边分别为a ,b ,c ,asinAcosBbcos 2A 2a ,则baA .2 3B .22C .3D .2.( 天津)如图,在△ ABC 中, D 是边AC 上的点,且ABAD,2AB 3BD , 162011BC 2BD ,则sinC 的值为BADC3B .366A .6 C .D .33 616.(2010湖南)在 ABC 中,角A,B,C 所对的边长分别为a,b,c .若 C120,c2a ,则A .abB .abC .abD .a 与b 的大小关系不可以确立二、填空题 18.(2018江苏)在△ABC 中,角A,B,C 所对的边分别为 a,b,c ,ABC 120, ABC 的平分线交AC 于点D ,且BD 1,则4a c 的最小值为 . 19(2018 ) 在 ABC 中,角 A , B , C 所对的边分别为 a, b ,c .若 a7 , b2,. 浙江 A 60,则sinB=___________,c=___________.20.(2017浙江)已知ABC,AB AC 4 ,BC 2 .点D 为AB 延伸线上一点,BD 2, 连接CD,则BDC 的面积是___________,cos BDC=__________. 21.(2017浙江)我国古代数学家刘徽创办的 “割圆术”能够估量圆周率 ,理论上能把 的值计算到随意精度。

2012年高考真题文科数学汇编4:三角函数.pdf

2012年高考真题文科数学汇编4:三角函数.pdf

一、主要内容:东胜神州傲来国有一花果山,山顶一石,产下一猴。

石猴求师学艺,得名孙悟空,学会七十二般变化,一个筋斗去可行十万八千里,自称"美猴王"。

他盗得定海神针,化作如意金箍棒,可大可小,重一万三千五百斤。

又去阴曹地府,把猴属名字从生死簿上勾销。

玉帝欲遣兵捉拿,太白金星建议,把孙悟空召入上界,做弼马温。

当猴王得知弼马温只是个管马的小官后,便打出天门,返回花果山,自称"齐天大圣"。

玉帝派天兵天将捉拿孙悟空,美猴王连败巨灵神、哪咤二将。

孙悟空又被请上天管理蟠桃园。

他偷吃了蟠桃,搅闹了王母娘娘的蟠桃宴、盗食了太上老君的金丹,逃离天宫。

玉帝又派天兵捉拿。

孙悟空与二郎神赌法斗战,不分胜负。

太上老君用暗器击中孙悟空,猴王被擒。

经刀砍斧剁,火烧雷击,丹炉锻炼,孙悟空毫发无伤。

玉帝请来佛祖如来,才把孙悟空压在五行山下。

如来派观音菩萨去东土寻一取经人,来西天取经,劝化众生。

观音点化陈玄奘去西天求取真经。

唐太宗认玄奘做御弟,赐号三藏。

唐三藏西行,在五行山,救出孙悟空。

孙悟空被带上观世音的紧箍,唐僧一念紧箍咒,悟空就头疼难忍。

师徒二人西行,在鹰愁涧收伏白龙,白龙化作唐僧的坐骑。

在高老庄,收伏猪悟能八戒,猪八戒做了唐僧的第二个徒弟;在流沙河,又收伏了沙悟净,沙和尚成了唐僧的第三个徒弟。

师徒四人跋山涉水,西去求经。

观音菩萨欲试唐僧师徒道心,和黎山老母、普贤,文殊化成美女,招四人为婿,唐僧等三人不为所动,只有八戒迷恋女色,被菩萨吊在树上。

在万寿山五庄观,孙悟空等偷吃人参果,推倒仙树。

为了赔偿,孙悟空请来观音,用甘露救活了仙树。

白骨精三次变化,欲取唐僧,都被悟空识破。

唐僧不辨真伪,又听信八戒谗言,逐走悟空,自己却被黄袍怪拿住。

八戒、沙僧斗不过黄袍怪,沙僧被擒,唐僧被变成老虎。

八戒在白龙马的苦劝下,到花果山请转孙悟空,降伏妖魔,师徒四人继续西行。

乌鸡国国王被狮精推人井内淹死,狮精变作国王。

9年全国高考文科数学试题分类汇编之专题四三角函数与解三角形第十二讲解三角形及答案

9年全国高考文科数学试题分类汇编之专题四三角函数与解三角形第十二讲解三角形及答案

9年全国高考文科数学试题分类汇编之专题四三角函数与解三角形第十二讲解三角形及答案 专题四 三角函数与解三角形 第十二讲 解三角形 一、选择题1.(2018全国卷Ⅱ)在△ABC 中,cos25=C ,1=BC ,5=AC ,则=ABA .B D .2.(2018全国卷Ⅲ)ABC △的内角A ,B ,C 的对边分别为a ,b ,c .若ABC ∆的面积为2224a b c +-,则C = A .2πB .3πC .4πD .6π3.(2017新课标Ⅰ)ABC ∆的内角A 、B 、C 的对边分别为a 、b 、c .已知sin sin (sin cos )B A C C +- 0=,2a =,c =则C =A .12πB .6πC .4πD .3π4.(2016全国I )△ABC 的内角A 、B 、C 的对边分别为a 、b 、c .已知a =2c =,2cos 3A =,则b =A ..2 D .3 5.(2016全国III )在ΔABC 中,4B π=,BC 边上的高等于13BC,则sin A =A .310B .10C .5D .106.(2016山东)ABC △中,角A ,B ,C 的对边分别是a ,b ,c ,已知22,2(1sin )b c a b A ==-,则A = A .3π4 B .π3 C .π4 D .π67.(2015广东)设ΑΒC ∆的内角,,A B C 的对边分别为a ,b ,c .若2a =,c =,cos A =,且b c <,则b =A .3 B..2 D8.(2014新课标2)钝角三角形ABC 的面积是12,1AB =,BC ,则AC = A .5 B..2 D .19.(2014重庆)已知ABC ∆的内角A ,B ,C 满足sin 2sin()A A B C +-+=sin()C A B --12+,面积S 满足12S ≤≤,记a ,b ,c 分别为A ,B ,C 所对的边,则下列不等式一定成立的是A .8)(>+c b bc B.()ab a b +>.126≤≤abc D .1224abc ≤≤10.(2014江西)在ABC ∆中,a ,b ,c 分别为内角A ,B ,C 所对的边长,若2c =2()6a b -+,3C π=,则ABC ∆的面积是A .3B .239C .233 D .3311.(2014四川)如图,从气球A 上测得正前方的河流的两岸B ,C 的俯角分别为75,30,此时气球的高是60cm ,则河流的宽度BC 等于A .1)mB .1)mC .1)mD .1)m12.(2013新课标1)已知锐角ABC ∆的内角,,A B C 的对边分别为,,a b c ,223cos A +cos 20A =,7a =,6c =,则b =A .10B .9C .8D .513.(2013辽宁)在ABC ∆,内角,,A B C 所对的边长分别为,,a b c .若sin cos a B C +1sin cos 2c B A b=,且a b >,则B ∠=A .6πB .3πC .23πD .56π14.(2013天津)在△ABC 中,,3,4AB BC ABC π∠===则sin BAC ∠=A .B .C .D .15.(2013陕西)设△ABC 的内角A , B , C 所对的边分别为a ,b ,c ,若cos cos sin b C c B a A +=,则△ABC 的形状为A .锐角三角形B .直角三角形C .钝角三角形D .不确定16.(2012广东)在ABC ∆中,若60,45,A B BC ︒︒∠=∠==则AC =A ...17.(2011辽宁)ABC ∆的三个内角A ,B ,C 所对的边分别为a ,b ,c ,2sin sin cos a A B b A +=,则=a bA .B . D18.(2011天津)如图,在△ABC 中,D 是边AC 上的点,且,2AB AD AB =,2BC BD =,则sin C 的值为CA .B .C .D .19.(2010湖南)在ABC ∆中,角,,A B C 所对的边长分别为,,a b c .若120C ∠=,c =,则 A .a b > B .a b < C .a b = D .a 与b 的大小关系不能确定 二、填空题20.(2018全国卷Ⅰ)△ABC 的内角A B C ,,的对边分别为a b c ,,,已知 sin sin 4sin sin b C c B a B C+=,2228b c a +-=,则△ABC 的面积为__.21.(2018浙江)在ABC ∆中,角A ,B ,C 所对的边分别为a ,b ,c .若a =2b =,60A =,则sin B =___________,c =___________.22.(2018北京)若ABC △的面积为222)a cb +-,且C ∠为钝角,则B ∠= ;c a 的取值范围是 .23.(2018江苏)在ABC △中,角,,A B C 所对的边分别为,,a b c ,120ABC ∠=︒,ABC ∠的平分线交AC 于点D ,且1BD =,则4a c +的最小值为 .24.(2017新课标Ⅱ)ABC ∆的内角A ,B ,C 的对边分别为a ,b ,c ,若2cos cos cos b B a C c A =+,则B =25.(2017新课标Ⅲ)ABC ∆的内角A ,B ,C 的对边分别为a ,b ,c .已知60C =,b =3c =,则A =_______.26.(2017浙江)已知ABC ∆,4AB AC ==,2BC =. 点D 为AB 延长线上一点,2BD =,连结CD ,则BDC ∆的面积是_______,cos BDC ∠=_______.27.(2016全国Ⅱ)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,若4cos 5A =,5cos 13C =,1a =,则b =_____.28.(2015北京)在△ABC 中,23,3a b A π==∠=,则B ∠= _________.29.(2015重庆)设ABC ∆的内角,,A B C 的对边分别为,,a b c ,且2a =,1cos 4C =-,3sin 2sin A B =,则c =________.30.(2015安徽)在ABC ∆中,6=AB , 75=∠A ,45=∠B ,则=AC .31.(2015福建)若锐角ABC ∆的面积为且5AB =,8AC =,则BC 等于 .32.(2015新课标1)在平面四边形ABCD 中,75A B C ∠=∠=∠=,2BC =,则AB 的取值范围是_______.33.(2015天津)在ABC ∆中,内角,,A B C 所对的边分别为,,a b c ,已知ABC ∆的面积为2b c -=,1cos 4A =-,则a 的值为 .34.(2015湖北)如图,一辆汽车在一条水平的公路上向正西行驶,到A 处时测得公路北侧一山顶D 在西偏北30的方向上,行驶600m 后到达B 处,测得此山顶在西偏北75的方向上,仰角为30,则此山的高度CD = m .35.(2014新课标1)如图,为测量山高MN ,选择A 和另一座山的山顶C 为测量观测点.从A 点测得M 点的仰角60MAN ∠=︒,C 点的仰角45CAB ∠=︒以及75MAC ∠=︒;从C 点测得60MCA ∠=︒.已知山高100BC m =,则山高MN =________m .36.(2014广东)在ABC ∆中,角C B A ,,所对应的边分别为c b a ,,,已知cos b C +cos 2c B b =,则=b a.37.(2013安徽)设ABC ∆的内角,,A B C 所对边的长分别为,,a b c .若2b c a +=,则3sin 5sin ,A B =则角C =_____.38.(2013福建)如图ABC ∆中,已知点D 在BC 边上,AD ⊥AC,sin 3BAC ∠=,AB =3AD =,则BD 的长为_______________.C39.(2012安徽)设ABC ∆的内角,,A B C 所对的边为,,a b c ;则下列命题正确的是 .①若2ab c >;则3C π<②若2a b c +>;则3C π<③若333a b c +=;则2C π<④若()2a b c ab +<;则2C π>⑤若22222()2a b c a b +<;则3C π>40.(2012北京)在ABC ∆中,若12,7,cos 4a b c B =+==-,则b = .41.(2011新课标)ABC ∆中,60,B AC =︒,则AB +2BC 的最大值为____. 42.(2011新课标)ABC ∆中,120,7,5B AC AB =︒==,则ABC ∆的面积为_ __. 43.(2010江苏)在锐角三角形ABC ,a ,b ,c 分别为内角A ,B ,C 所对的边长,6cos b a C a b +=,则tan tan tan tan C C A B +=_______.44.(2010山东)在ABC ∆中,角,,A B C 所对的边分别为,,a b c ,若2a b ==,sin cos B B +=,则角A 的大小为 . 三、解答题45.(2018天津)在ABC △中,内角A ,B ,C 所对的边分别为a ,b ,c .已知sin cos()6b A a B π=-.(1)求角B 的大小;(2)设2a =,3c =,求b 和sin(2)A B -的值.46.(2017天津)在ABC △中,内角,,A B C 所对的边分别为,,a b c .已知sin 4sin a A b B =,222)ac a b c --.(Ⅰ)求cos A 的值; (Ⅱ)求sin(2)B A -的值.47.(2017山东)在ABC ∆中,角A ,B ,C 的对边分别为a ,b ,c ,已知3b =,6AB AC ⋅=-,3ABC S ∆=,求A 和a .48.(2015新课标2)ABC ∆中,D 是BC 上的点,AD 平分∠BAC ,∆ABD 面积是∆ADC 面积的2倍.(Ⅰ)求 sin sin B C ;(Ⅱ) 若AD =1,DC =,求BD 和AC 的长.49.(2015新课标1)已知,,a b c 分别是ABC ∆内角,,A B C 的对边,2sin 2sin sin B A C =. (Ⅰ)若a b =,求cos ;B(Ⅱ)若90B =,且a =求ABC ∆的面积.50.(2014山东)ABC ∆中,a ,b ,c 分别为内角A ,B ,C 所对的边长.已知3a =,cos 2A B A π==+.(I)求b 的值; (II )求ABC ∆的面积.51.(2014安徽)设ABC ∆的内角,,A B C 所对边的长分别是,,a b c ,且3b =,1c =,2A B =. (Ⅰ)求a 的值;(Ⅱ)求sin()4A π+的值.52.(2013新课标1)如图,在ABC ∆中,∠ABC =90°,AB BC =1,P 为△ABC 内一点,∠BPC =90°.(Ⅰ)若PB =12,求PA ;(Ⅱ)若∠APB =150°,求tan ∠PBA .53.(2013新课标2)ABC ∆在内角,,A B C 的对边分别为,,a b c ,已知cos sin a b C c B =+. (Ⅰ)求B ;(Ⅱ)若2b =,求△ABC 面积的最大值.54.(2012安徽)设ABC ∆的内角C B A ,,所对边的长分别为,,,c b a ,且有2sin cos B A =sin cos cos sin A C A C +.(Ⅰ)求角A 的大小;(Ⅱ) 若2b =,1c =,D 为BC 的中点,求AD 的长.55.(2012新课标)已知a 、b 、c 分别为ABC ∆三个内角A 、B 、C 的对边,cos a C +sin 0C b c --=. (Ⅰ)求A ;(Ⅱ)若2=a ,ABC ∆的面积为3,求b 、c .56.(2011山东)在ABC ∆中,a ,b ,c 分别为内角A ,B ,C 所对的边长.已知cos 2cos 2cos A C c aB b --=. (I )求sin sin CA 的值;(II )若1cos 4B =,2b =,ABC ∆的面积S .57.(2011安徽)在ABC ∆中,a ,b ,c 分别为内角A ,B ,C 所对的边长,ab =12cos()0B C ++=,求边BC 上的高.58.(2010陕西)如图,A,B是海面上位于东西方向相距(53+海里的两个观测点,现位于A点北偏东45°,B点北偏西60°的D点有一艘轮船发出求救信号,位于B点南偏西60°且与B点相距海里的C点的救援船立即前往营救,其航行速度为30海里/小时,该救援船到达D点需要多长时间?59.(2010江苏)某兴趣小组测量电视塔AE的高度H(单位:m),如示意图,垂直放置的标杆BC的高度h=4m,仰角∠ABE=α,∠ADE=β.(1)该小组已经测得一组α、β的值,tanα=1.24,tanβ=1.20,请据此算出H的值;(2)该小组分析若干测得的数据后,认为适当调整标杆到电视塔的距离d(单位:m),使α与β之差较大,可以提高测量精确度。

2020年高考数学·高考真题-分类汇编-第12讲-解三角形精选全文完整版

2020年高考数学·高考真题-分类汇编-第12讲-解三角形精选全文完整版

精选全文完整版专题四 三角函数与解三角形第十二讲 解三角形2020年1.(2020•北京卷)在ABC 中,11a b +=,再从条件①、条件②这两个条件中选择一个作为己知,求: (Ⅰ)a 的值:(Ⅱ)sin C 和ABC 的面积.条件①:17,cos 7c A ==-;条件②:19cos ,cos 816A B ==.注:如果选择条件①和条件②分别解答,按第一个解答计分.【答案】选择条件①(Ⅰ)8(Ⅱ)sin C =, S =选择条件②(Ⅰ)6(Ⅱ)sin C =, S =.2.(2020•全国2卷)ABC 中,sin 2A -sin 2B -sin 2C =sin B sin C. (1)求A ;(2)若BC =3,求ABC 周长的最大值.【答案】(1)23π;(2)3+3.(2020•全国3卷)在△ABC 中,cos C =23,AC =4,BC =3,则cos B =( ) A.19B.13C. 12 D. 23【答案】A4.(2020•江苏卷)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,已知3,2,45a c B ===︒.(1)求sin C 的值;(2)在边BC 上取一点D ,使得4cos 5ADC ∠=-,求tan DAC ∠的值.【答案】(1)5sin C =(2)2tan 11DAC ∠=.5.(2020•新全国1山东)在①3ac =sin 3c A =,③3=c b 这三个条件中任选一个,补充在下面问题中,若问题中的三角形存在,求c 的值;若问题中的三角形不存在,说明理由. 问题:是否存在ABC ,它的内角,,A B C 的对边分别为,,a b c ,且sin 3sin A B ,6C π=,________?注:如果选择多个条件分别解答,按第一个解答计分. 【答案】详见解析6.(2020•天津卷)在ABC 中,角,,A B C 所对的边分别为,,a b c .已知22,5,13a b c === (Ⅰ)求角C 的大小; (Ⅱ)求sin A 的值; (Ⅲ)求sin 24A π⎛⎫+⎪⎝⎭的值. 【答案】(Ⅰ)4Cπ;(Ⅱ)13sin 13A =;(Ⅲ)172sin 2426A π⎛⎫+= ⎪⎝⎭.7.(2020•浙江卷)在锐角△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,且2sin b A =.(I )求角B ;(II )求cos A +cos B +cos C 的取值范围.【答案】(I )3B π=;(II )13,22⎛⎤⎥ ⎝⎦2016-2019年1.(2019全国Ⅰ理17)ABC △的内角A ,B ,C 的对边分别为a ,b ,c ,设22(sin sin )sin sin sin B C A B C -=-.(1)求A ;(2)若22a b c +=,求sin C .2.(2019全国Ⅱ理15)ABC △的内角,,A B C 的对边分别为,,a b c .若π6,2,3b ac B ===,则ABC △的面积为__________.3.(2019全国Ⅲ理18)△ABC 的内角A 、B 、C 的对边分别为a 、b 、c ,已知sin sin 2A Ca b A +=. (1)求B ;(2)若△ABC 为锐角三角形,且c =1,求△ABC 面积的取值范围.4.(2019江苏12)如图,在ABC △中,D 是BC 的中点,E 在边AB 上,BE =2EA ,AD 与CE 交于点O .若6AB AC AO EC ⋅=⋅,则ABAC的值是 .5.(2019江苏15)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c . (1)若a =3c ,b 2,cos B =23,求c 的值; (2)若sin cos 2A B a b =,求sin()2B π+的值. 6.(2019浙江14)在ABC △中,90ABC ∠=︒,4AB =,3BC =,点D 在线段AC 上,若45BDC ∠=︒,则BD =____,cos ABD ∠=________.7.(2019北京15)在ABC △中,a =3,b -c =2 ,1cos 2B =- .(Ⅰ)求b ,c 的值; (Ⅱ)求sin(B -C ) 的值.8.(2019天津理15)在ABC △中,内角,,A B C 所对的边分别为,,a b c .已知2b c a +=,3sin 4sin c B a C =.(Ⅰ)求cos B 的值; (Ⅱ)求sin 26B π⎛⎫+⎪⎝⎭的值.9.(2018全国卷Ⅱ)在△ABC 中,cos2=C 1=BC ,5=AC ,则=ABA .BCD .10.(2018全国卷Ⅲ)ABC ∆的内角A ,B ,C 的对边分别为a ,b ,c ,若ABC ∆的面积为2224a b c +-,则C = A .2π B .3π C .4π D .6π 11.(2017山东)在ABC ∆中,角A ,B ,C 的对边分别为a ,b ,c .若ABC ∆为锐角三角形,且满足sin (12cos )2sin cos cos sin B C A C A C +=+,则下列等式成立的是A .2a b =B .2b a =C .2A B =D .2B A = 12.(2016年天津)在ABC ∆中,若AB BC =3,120C ∠= ,则AC =A .1B .2C .3D .413.(2016年全国III )在ABC △中,π4B,BC 边上的高等于13BC ,则cos AA B C .1010 D .3101014.(2018江苏)在ABC △中,角,,A B C 所对的边分别为,,a b c ,120ABC ∠=︒,ABC ∠的平分线交AC 于点D ,且1BD =,则4a c +的最小值为 .15.(2018浙江)在ABC ∆中,角A ,B ,C 所对的边分别为a ,b ,c .若a =2b =,60A =,则sin B =___________,c =___________.16.(2017浙江)已知ABC ∆,4AB AC ==,2BC =. 点D 为AB 延长线上一点,2BD =,连结CD ,则BDC ∆的面积是___________,cos BDC ∠=__________.17.(2017浙江)我国古代数学家刘徽创立的“割圆术”可以估算圆周率π,理论上能把π的值计算到任意精度。

高考《三角函数与解三角形》(解析版)

高考《三角函数与解三角形》(解析版)

专题四 三角函数与解三角形第十二讲 解三角形答案部分 2019年1.解:(1)由已知得222sin sin sin sin sin B C A B C +-=,故由正弦定理得222b c a bc +-=.由余弦定理得2221cos 22b c a A bc +-==. 因为0180A ︒︒<<,所以60A ︒=.(2)由(1)知120B C ︒=-,()sin 1202sin A C C ︒+-=,1sin 2sin 2C C C ++=,可得()cos 602C ︒+=-.由于0120C ︒︒<<,所以()sin 60C ︒+=,故 ()sin sin 6060C C ︒︒=+-()()sin 60cos60cos 60sin 60C C ︒︒︒︒=+-+=. 2.解析:由余弦定理有2222cos b a c ac B =+-, 因为6b =,2a c =,π3B =,所以222π36(2)4cos 3c c c =+-,所以212c =,21sin sin 2ABC S ac B c B ===△3.解析(1)由题设及正弦定理得sin sinsin sin 2A CA B A +=. 因为sin 0A ≠,所以sinsin 2A CB +=.由180A B C ︒++=,可得sincos 22A C B +=,故cos 2sin cos 222B B B=. 因为cos02B ≠,故1sin 22B =,因此60B =︒. (2)由题设及(1)知△ABC的面积4ABC S a =△. 由正弦定理得()sin 120sin 1sin sin 2C c A a C C ︒-===.由于ABC △为锐角三角形,故090A ︒<<︒,090C ︒<<︒,由(1)知120A C +=︒,所以3090C ︒<<︒,故122a <<ABC S <<△. 因此,ABC △面积的取值范围是,82⎛⎫⎪ ⎪⎝⎭.4.解析 设()2AD AB A AO C λλ==+u u u u r u u u u u r u u u rr ,1()(1)3AO AE EO AE EC AE AC AE AE AC AB ACμμμμμμ-=+=+=+-=-+=+u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r ,所以1232λμλμ-⎧=⎪⎪⎨⎪=⎪⎩,解得1214λμ⎧=⎪⎪⎨⎪=⎪⎩,所以11()24AO AD AB AC ==+u u u r u u u r u u u r u u u r ,13EC AC AE AB AC =-=-+u u u r u u u r u u u r u u ur u u u r ,221131266()()()43233AO EC AB AC AB AC AB AB AC AC ⋅=⨯+⨯-+=-+⋅+=u u u r u u u r u u u r u u u r u u u r u u u r u u ur u u u r u u u r u u u r221322AB AB AC AC -+⋅+u u ur u u u r u u u r u u u r , 因为221322AB AC AB AB AC AC ⋅=-+⋅+u u u r u u u r u u u r u u u r u u u r u u u r ,所以221322AB AC =u u ur u u u r ,所以223AB AC=u u u r u u u r,所以AB AC =. 5.解析 (1)由余弦定理222cos 2a c b B ac +-=,得2222(3)323c c c c +-=⨯⨯,即213c =.所以3c =. (2)因为sin cos 2A Ba b =, 由正弦定理sin sin a b A B =,得cos sin 2B Bb b=,所以cos 2sin B B =. 从而22cos (2sin )B B =,即()22cos 41cos B B =-,故24cos 5B =.因为sin 0B >,所以cos 2sin 0B B =>,从而25cos B =. 因此π25sin cos 2B B ⎛⎫+== ⎪⎝⎭. 6.解析:在直角三角形ABC 中,4AB =,3BC =,5AC =,4sin 5C =, 在BCD △中,sin sin BD BC C BDC=∠,可得122BD =;135CBD C ∠=-o ,224372sin sin(135)(cos sin )225510CBD C C C ⎛⎫∠=-=+=⨯+=⎪⎝⎭o , 所以()72cos cos 90sin ABD CBD CBD ∠=-∠=∠=o.7.解析:(I )由余弦定理2222cos b a c ac B =+-,得22213232b c c ⎛⎫=+-⨯⨯⨯-⎪⎝⎭. 因为2b c =+,所以()222123232c c c ⎛⎫+=+-⨯⨯⨯- ⎪⎝⎭.解得5c =, 所以7b =.(II )由1cos 2B =-得sin B =.由正弦定理得sin sin c C B b ==在ABC △中,B ∠是钝角,所以C ∠为锐角.所以11cos 14C ==. 所以()sin sin cos cos sin B C B C B C -=-=. 8.解析(Ⅰ)在ABC △中,由正弦定理sin sin b cB C=,得sin sin b C c B =,又由3sin 4sin c B a C =,得3sin 4sin b C a C =,即34b a =.又因为2b c a +=,得到43b a =,23c a =.由余弦定理可得222222416199cos 22423a a a a cb B a a +-+-===-⋅⋅.(Ⅱ)由(Ⅰ)可得sin 4B ==,从而sin 22sin cos 8B B B ==-,227cos 2cos sin 8B B B =-=-,故πππ71sin 2sin 2cos cos 2sin 66682B B B ⎛⎫+=+=-⨯= ⎪⎝⎭.2010-2018年1.A 【解析】因为213cos 2cos121255=-=⨯-=-C C ,所以由余弦定理, 得22232cos 251251()325=+-⋅=+-⨯⨯⨯-=AB AC BC AC BC C ,所以=AB A .2.C 【解析】根据题意及三角形的面积公式知2221sin 24a b c ab C +-=,所以222sin cos 2a b c C C ab +-==,所以在ABC ∆中,4C π=.故选C . 3.A 【解析】由sin (12cos )2sin cos cos sin B C A C A C +=+,得sin 2sin cos sin cos sin B B C A C B +=+,即2sin cos sin cos B C A C =,所以2sin sin B A =,即2b a =,选A . 4.A 【解析】由余弦定理得213931AC AC AC =++⇒=,选A.5.C 【解析】设△ABC 中角A ,B ,C 的对边分别是a ,b ,c ,由题意可得1sin 34a c π==,则a =.在△ABC 中,由余弦定理可得222222295322b ac c c c c =+-=+-=,则b =.由余弦定理,可得22222259cos 2c c c b c a A bc +-+-===C . 6.B 【解析】11sin 22AB BC B ⋅⋅=,∴sin 2B =,所以45B =o 或135B =o. 当45B =o时,1AC ==,此时1,AB AC BC ===90A =o 与“钝角三角形”矛盾;当135B =o时,AC ==.7.A 【解析】因为A B C π++=,由1sin 2sin()sin()2A ABC C A B +-+=--+得1sin 2sin 2sin 22A B C ++=, 即1sin[()()]sin[()()]sin 22A B A B A B A B C ++-++--+=, 整理得1sin sin sin 8A B C =, 又111sin sin sin 222S ab C bc A ac B ===,因此322222211sin sin sin 864S a b c A B C a b c ==,由12S ≤≤ 得222311264a b c ≤≤,即8abc ≤≤C 、D 不一定成立.又0b c a +>>,因此()8bc b c bc a +>⋅≥,即()8bc b c +>,选项A 一定成立.又0a b c +>>,因此()8ab a b +>,显然不能得出()ab a b +>B 不一定成立.综上所述,选A .8.C 【解析】由22()6c a b =-+可得22226a b c ab +-=-①,由余弦定理及3C π=可得222a b c ab +-=②.所以由①②得6ab =,所以1sin 23ABC S ab π∆==9.C 【解析】∵tan15tan(6045)2=-=o o o∴60tan 6060tan151)BC =-=o o.10.D 【解析】225cos 10A -=,1cos 5A =,由余弦定理解得5b =. 11.A 【解析】边换角后约去sin B ,得1sin()2A C +=,所以1sin 2B =,但B 非最大角,所以6B π=.12.C 【解析】由余弦定理可得AC =sin 10A =. 13.B 【解析】∵cos cos sin bC c B a A +=,∴由正弦定理得2sin cos sin cos sin B C C B A +=,∴2sin()sin B C A +=,∴2sin sin A A =,∴sin 1A =,∴△ABC 是直角三角形.14.B 【解析】由正弦定理得:sin sin sin 60sin 45BC AC ACAC A B ︒︒=⇔=⇔=15.D 【解析】由正弦定理,得22sin sin sin cos A B B A A +=,即22sin (sin cos )B A A A ⋅+=,sin B A =,∴sin sin b B a A== 16.D 【解析】设AB c =,则AD c =,BD =,BC =ΔABD 中,由余弦定理得2222413cos 23c c c A c +-==,则sin 3A =,在ΔABC 中,由正弦定理得sin sin 3c BC C A ==,解得sin C =.17.A 【解析】因为120C ∠=o,c =,所以2222cos c a b ab C =+-,222122()2a ab ab =+--所以22,0,aba b ab a b a b a b-=-=>>+ 因为0,0a b >>,所以0aba b a b-=>+,所以a b >.故选A .18.9【解析】因为120ABC ∠=︒,ABC ∠的平分线交AC 于点D ,所以60ABD CBD ∠=∠=o,由三角形的面积公式可得111sin120sin 60sin 60222ac a c =+o o o , 化简得ac a c =+,又0a >,0c >,所以111a c+=,则1144(4)()559c a a c a c a c a c +=++=+++=≥, 当且仅当2c a =时取等号,故4a c +的最小值为9. 19.7;3【解析】因为a =2b =,60A =o,所以由正弦定理得2sin sin 7b AB a⨯===.由余弦定理2222cos a b c bc A =+-可得2230c c --=,所以3c =.202222224241cos 22424AB BC AC ABC AB BC +-+-∠===⨯⨯⨯⨯,由22sin cos 1ABC ABC ∠+∠=所以sin4ABC∠===,1sin2BDCS BD BC DBC∆=⨯⨯∠11sin()sin22BD BC ABC BD BC ABCπ=⨯⨯-∠=⨯⨯∠1222=⨯⨯=.C因为BD BC=,所以D BCD∠=∠,所以2ABC D BCD D∠=∠+∠=∠,cos cos24ABCBDC∠∠====.21.2【解析】单位圆内接正六边形是由6个边长为1的正三角形组成,所以61611sin602S=⨯⨯⨯⨯=o.22.2113【解析】∵4cos5A=,5cos13C=,所以3sin5A=,12sin13C=,所以()63sin sin sin cos cos sin65B AC A C A C=+=+=,由正弦定理得:sin sinb aB A=解得2113b=.23.1 【解析】由1sin2B=得6Bπ=或56π,因为6Cπ=,所以56Bπ≠,所以6Bπ=,于是23Aπ=.有正弦定理,得21sin32bπ=,所以1b=.24.7【解析】由已知得ABC ∆的面积为1sin 20sin 2AB AC A A ⋅==所以sin A =,(0,)2A π∈,所以3A π=. 由余弦定理得2222cos BC AB AC AB AC A =+-⋅=49,7BC =. 25.【解析】如图作PBC ∆,使75∠=∠=oB C ,2BC =,作出直线AD 分别交线段PB 、PC 于A 、D 两点(不与端点重合),且使75∠=oBAD ,则四边形ABCD 就是符合题意的四边形,过C 作AD 的平行线交PB 于点Q ,在PBC ∆中,可求得BP =QBC ∆中,可求得BQ =,所以AB 的取值范围为.26.1【解析】∵2223cos 24b c a A bc +-==, 而sin 22sin cos 243cos 21sin sin 64A A A a A C C c ⨯==⨯=⨯⨯=. 27.8 【解析】 因为0A π<<,所以sin A ==又1sin 28ABC S bc A ∆===24bc ∴=, 解方程组224b c bc -=⎧⎨=⎩,得6b =,4c =,由余弦定理得2222212cos 64264644a b c bc A ⎛⎫=+-=+-⨯⨯⨯-= ⎪⎝⎭,所以8a =.28.ο30=∠BAC ,ο105=∠ABC ,在ABC ∆中,由ο180=∠+∠+∠ACB BAC ABC ,所以ο45=∠ACB ,因为600=AB ,由正弦定理可得οο30sin 45sin 600BC=, 即2300=BC m ,在BCD Rt ∆中,因为ο30=∠CBD ,2300=BC , 所以230030tan CDBC CD ==ο,所以6100=CD m .29.150【解析】在三角形ABC 中,AC =,在三角形MAC 中,sin 60sin 45MA AC=o o,解得MA =在三角形MNA sin 60==o ,故150MN =. 30.2【解析】由b B c C b 2cos cos =+得:sin cos sin cos 2sin B C C B B +=,即sin()2sin B C B +=,sin 2sin A B =,∴2a b =,故2ab=. 31.π32【解析】3sin 5sin A B =, π32212cos 2,53222=⇒-=-+=⇒=+=⇒C ab c b a C a c b b a ,所以π32.32sin sin()cos 2BAC BAD BAD π∠=∠+=∠=∴根据余弦定理可得222cos 2AB AD BD BAD AB AD+-∠=•,2223BD ∴==33.①②③【解析】①222221cos 2223a b c ab ab ab c C C ab ab π+-->⇒=>=⇒< ②2222224()()12cos 2823a b c a b a b a b c C C ab ab π+-+-++>⇒=>≥⇒< ③当2C π≥时,22232233c a b c a c b c a b ≥+⇒≥+>+与333a b c +=矛盾④取2,1a b c ===满足()2a b c ab +<得:2C π<⑤取2,1a b c ===满足22222()2a b c a b +<得:3C π<.34.4【解析】根据余弦定理可得2214(7)22(7)()4b b b =+--⨯⨯-⨯-,解得b =4. 35. 在ABC ∆中,根据sin sin sin AB AC BCC B A==,得sin sin 2sin sin ACAB C C C B=⋅==,同理2sin BC A =, 因此22sin 4sin AB BC C A +=+22sin 4sin()3C C π=+-4sin )C C C ϕ=+=+.36【解析】根据sin sin AB ACC B=得5sin sin 7AB C B AC ===11cos 14C ==, 所以sin sin[()]sin cos cos sin A B C B C B C π=-+=+111142-= 37.4【解析】(方法一)考虑已知条件和所求结论对于角A 、B 和边a 、b 具有轮换性.当A =B 或a =b 时满足题意,此时有:1cos 3C =,21cos 1tan 21cos 2C C C -==+,tan22C =,1tan tan tan 2A B C===,tan tan tan tan C CA B+= 4. (方法二)226cos 6cos b aC ab C a b a b+=⇒=+, 2222222236,22a b c c ab a b a b ab +-⋅=++=tan tan sin cos sin sin cos sin sin()tan tan cos sin sin cos sin sin C C C B A B A C A B A B C A B C A B +++=⋅=⋅21sin cos sin sin C C A B =⋅.由正弦定理,得:上式22222214113cos ()662c c c c C ab a b =⋅===+⋅.38.6π【解析】由sin cos 2B B +=得12sin cos 2B B +=,即sin 21B =, 因02B π<<,所以2,24B B ππ==.又因为2,2,a b ==由正弦定理得22sin sin 4A π=,解得1sin 2A =,而,a b <则04A B π<<=,故6a π=. 39.【解析】(1)在ABC ∆中,∵1cos 7B =-,∴(,)2B ππ∈,∴243sin 1cos B B =-=. 由正弦定理得sin sin a b A B=⇒7sin 43A =,∴3sin A =. ∵(,)2B ππ∈,∴(0,)2A π∈,∴π3A ∠=.(2)在ABC ∆中,∵sin sin()sin cos cos sin C A B A B A B =+=+=31143()2727⨯-+⨯=3314. 如图所示,在ABC ∆中,∵sin hC BC=,∴sin h BC C =⋅=33337⨯=, ∴AC 边上的高为33.40.【解析】(1)在ABD △中,由正弦定理得sin sin BD ABA ADB=∠∠. 由题设知,52sin 45sin ADB=︒∠,所以2sin ADB ∠=.由题设知,90ADB ∠<︒,所以cos 5ADB ∠==.(2)由题设及(1)知,cos sin 5BDC ADB ∠=∠=. 在BCD △中,由余弦定理得2222cos BC BD DC BD DC BDC =+-⋅⋅⋅∠258255=+-⨯⨯25=. 所以5BC =.41.【解析】(1)在ABC △中,由正弦定理sin sin a bA B=,可得sin sin b A a B =, 又由πsin cos()6b A a B =-,得πsin cos()6a B a B =-,即πsin cos()6B B =-,可得tan B =又因为(0π)B ∈,,可得3B π=.(2)在ABC △中,由余弦定理及2a =,3c =,3B π=,有2222cos 7b a c ac B =+-=,故b =.由πsin cos()6b A a B =-,可得sin A =a c <,故cos A =.因此sin 22sin cos A A A ==21cos 22cos 17A A =-=.所以,sin(2)sin 2cos cos 2sin A B A B A B -=-=11727214-⨯= 42.【解析】(1)由题设得21sin 23sin a ac B A =,即1sin 23sin ac B A=由正弦定理得1sin sin sin 23sin AC B A =. 故2sin sin 3B C =.(2)由题设及(1)得121cos()cos cos sin sin 632B C B C B C +=-=-=-所以2π3B C +=,故π3A =. 由题设得21sin 23sin a bc A A=,即8bc =.由余弦定理得229b c bc +-=,即2()39b c bc +-=,得b c +=.故ABC △的周长为343.【解析】(1)由已知得tan A =,所以23A π=. 在ABC ∆中,由余弦定理得222844cos 3c c π=+-,即2+224=0c c -.解得6c =-(舍去),4c = (2)有题设可得2CAD π∠=,所以6BAD BAC CAD π∠=∠-∠=.故ABD ∆面积与ACD ∆面积的比值为1sin26112AB AD AC AD π⋅⋅=⋅. 又ABC ∆的面积为142sin 2BAC ⨯⨯∠=ABD ∆44.【解析】由题设及A B C π++=得2sin 8sin 2B B =,故sin 4(1cos )B B =-. 上式两边平方,整理得217cos 32cos 150B B -+=, 解得cos 1B =(舍去),15cos 17B =. (2)由15cos 17B =得8sin 17B =,故14sin 217ABC S ac B ac ∆==. 又2ABCS ∆=,则172ac =.由余弦定理及6a c +=得22222cos ()2(1cos )b a c ac B a c ac B =+-=+-+1715362(1)4217=-⨯⨯+=. 所以2b =.45.【解析】(Ⅰ)在ABC △中,因为a b >,故由3sin 5B =,可得4cos 5B =. 由已知及余弦定理,有2222cos 13b a c ac B =+-=,所以b =.由正弦定理sin sin a bA B=,得sin sin a B A b ==.所以,bsin A的值为13. (Ⅱ)由(Ⅰ)及a c <,得cos 13A =,所以12sin 22sin cos 13A A A ==, 25cos 212sin 13A A =-=-.故πππsin(2)sin 2cos cos 2sin 44426A A A +=+=. 46.【解析】(Ⅰ)在△ABC 中,因为60A ∠=︒,37c a =,所以由正弦定理得sin 3sin 7c A C a ==. (Ⅱ)因为37c a a =<,所以60C A ∠<∠=o,由7a =,所以3737c =⨯=.由余弦定理2222cos a b c bc A =+-得222173232b b =+-⨯⨯, 解得8b =或5b =-(舍).所以△ABC的面积11sin 8322S bc A ==⨯⨯=47.【解析】(Ⅰ)由tan tan 2(tan tan )cos cos A BA B B A +=+得sin sin sin 2cos cos cos cos cos cos C A BA B A B A B⨯=+,所以C B C sin sin sin +=2,由正弦定理,得c b a 2=+.(Ⅱ)由abc ab b a ab c b a C 22222222--+=-+=)(cos22233311112222()2c c a b ab =--=-=+….所以C cos 的最小值为12.48.【解析】(I )证明:由正弦定理sin sin sin a b cA B C==可知 原式可以化解为cos cos sin 1sin sin sin A B CA B C+==∵A 和B 为三角形内角 , ∴sin sin 0A B ≠则,两边同时乘以sin sin A B ,可得sin cos sin cos sin sin B A A B A B += 由和角公式可知,()()sin cos sin cos sin sin sin B A A B A B C C π+=+=-= 原式得证。

2021-2021 高考全国卷三角函数解三角形真题汇编(文科)

2021-2021 高考全国卷三角函数解三角形真题汇编(文科)

2021-2021 高考全国卷三角函数、解三角形真题汇编(文科)2021-2021 高考全国卷三角函数、解三角形真题汇编(文科)学校:姓名:班级:考号:评卷人得分一、选择题1. [2021・全国新课标卷I(文)]函数y=的部分图象大致为 ( ) -A. B. C.D.2. [2021・全国新课标卷I(文)]△ABC的内角A,B,C的对边分别为a,b,c.已知sinB+sin A(sin C-cos C)=0,a=2,c= ,则C= ( )A. B. C. D.3. [2021・全国新课标卷II(文)]函数f(x)=sin 的最小正周期为( ) A. 4πB. 2πC. πD.4. [2021・全国新课标卷III (文)]已知sin α-cos α=,则sin 2α= ( ) A. -B. -C.D.5. [2021・全国新课标卷III (文)]函数f(x)=sin +cos - 的最大值为 ( )A. B. 1 C. D. 6. [2021・全国新课标卷III (文)]函数y=1+x+的部分图象大致为( )第1页共4页A. B.C.D.7. [2021・高考全国新课标卷Ⅰ(文),4]△ABC的内角A,B,C的对边分别为a,b,c.已知a= ,c=2,cos A=,则b= ( )A. B. C. 2 D. 38. [2021・高考全国新课标卷Ⅰ(文),6]将函数y=2sin 的图象向右平移个周期后,所得图象对应的函数为 ( )A. y=2sinB. y=2sinC. y=2sin -D.y=2sin -9. [2021・高考全国新课标卷Ⅰ(文),12]若函数f(x)=x-sin 2x+asin x在(-∞,+∞)单调递增,则a的取值范围是 ( )A. [-1,1]B. -C. -D. - -10. [2021・高考全国新课标卷Ⅱ(文),3]函数y=Asin(ωx+φ)的部分图象如图所示,则 ( )A. y=2sin -B. y=2sin -C. y=2sinD. y=2sin11. [2021・高考全国新课标卷Ⅱ(文),11]函数f(x)=cos2x+6cos - 的最大值为( )A. 4B. 5C. 6D. 712. [2021・高考全国新课标卷Ⅲ(文),6]若tan θ=-,则cos 2θ= ( )第2页共4页A. -B. -C.D.13. [2021・高考全国新课标卷Ⅲ(文),9]在△ABC中,B=,BC边上的高等于BC,则sin A= ( ) A. B. C. D.14. [2021・高考全国新课标卷Ⅰ(文),8]函数f(x)=cos(ωx+φ)的部分图象如图所示,则f(x)的单调递减区间为( )A. - ,k∈ZB. - ,k∈ZC. - ,k∈ZD. - ,k∈Z15. [2021�q高考全国新课标卷Ⅰ(文),7]在函数①y=cos|2x|,②y=|cos x|,③y=cos(2x+),④y=tan(2x-)中,最小正周期为π的所有函数为( )A. ②④B. ①③④C. ①②③D. ①③16. [2021・高考全国新课标卷I(文),9]函数f(x)=(1-cosx)sinx在[-π,π]的图象大致为( )A. B.C. D.17. [2021・高考全国新课标卷I(文),10]已知锐角△ABC的内角A,B,C的对边分别为2a,b,c,23cosA+cos2A=0,a=7,c=6,则b=( ) A. 10 B. 9 C.8 D. 5第3页共4页18. [2021・高考全国新课标卷II(文),4]△ABC的内角A,B,C的对边分别为a,b,c,已知b=2,B=,C=,则△ABC的面积为( )A. 2 +2B. +1C. 2 -2D. -119. [2021・高考全国新课标卷II(文),6]已知sin2α=,则cos(α+)=( ) A.B. C. D. 评卷人得分二、填空题220. [2021・全国新课标卷I(文)]已知α∈ ,tan α=2,则cos - = . 21. [2021・全国新课标卷II(文)]函数f(x)=2cos x+sin x的最大值为 . 22. [2021・全国新课标卷II(文)]△ABC的内角A,B,C的对边分别为a,b,c,若2bcos B=acos C+ccos A,则B= .23. [2021・全国新课标卷III (文)]△ABC的内角A,B,C的对边分别为a,b,c.已知C=60°,b= ,c=3,则A= .24. [2021・高考全国新课标卷Ⅰ(文),14]已知θ是第四象限角,且sin ,则tan - = .25. [2021・高考全国新课标卷Ⅱ(文),15]△ABC的内角A,B,C的对边分别为a,b,c,若cos A=,cos C=,a=1,则b= .26. [2021・高考全国新课标卷Ⅲ(文),14]函数y=sin x- cos x的图象可由函数y=2sin x的图象至少向右平移个单位长度得到.27. [2021�q高考全国新课标卷Ⅰ(文),16]如图,为测量山高MN,选择A和另一座山的山顶C为测量观测点.从A点测得M点的仰角∠MAN=60°,C点的仰角∠CAB=45°以及∠MAC=75°;从C点测得∠MCA=60°.已知山高BC=100 m,则山高MN=________m.28. [2021�q高考全国新课标Ⅱ(文),14]函数f(x)=sin(x+φ)-2sin φcos x的最大值为________. 29. [2021・高考全国新课标卷I(文),16]设当x=θ时,函数f(x)=sinx-2cosx取得最大值,则cosθ= .30. [2021・高考全国新课标卷II(文),16]函数y=cos(2x+φ)(-π≤φ函数y=sin(2x+)的图象重合,则φ= .第4页共4页感谢您的阅读,祝您生活愉快。

专题四 三角函数与解三角形第十二讲 解三角形答案

专题四  三角函数与解三角形第十二讲 解三角形答案

专题四 三角函数与解三角形第十二讲 解三角形答案部分1.A 【解析】因为213cos 2cos121255=-=⨯-=-C C ,所以由余弦定理, 得22232cos 251251()325=+-⋅=+-⨯⨯⨯-=AB AC BC AC BC C ,所以=AB A .2.C 【解析】根据题意及三角形的面积公式知2221sin 24a b c ab C +-=,所以222sin cos 2a b c C C ab +-==,所以在ABC ∆中,4C π=.故选C . 3.B 【解析】由sin sin (sin cos )B A C C +-0=,得sin()sin (sin cos )0A C A C C ++-=,即sin cos cos sin sin sin sin cos 0A C A C A C A C ++-=,所以sin (sin cos )0C A A +=,因为C 为三角形的内角,所以sin 0C ≠, 故sin cos 0A A +=,即tan 1A =-,所以34A π=. 由正弦定理sin sin a c A C =得,1sin 2C =,由C 为锐角,所以6C π=,选B . 4.D 【解析】由余弦定理,得2422cos 5b b A +-⨯=,整理得23830b b --=,解得3b =或13b =- (舍去),故选D .5.D 【解析】设BC 边上的高为AD ,则3BC AD =,2DC AD =,所以AC ==.由正弦定理,知sin sin AC BCB A=,3sin 2ADA =,解得sin A =,故选D . 6.C 【解析】由余弦定理得222222cos 22cos a b c bc A b b A =+-=-,所以222(1sin )2(1cos )b A b A -=-,所以sin cos A A =,即tan 1A =,又0A π<<,所以4A π=.7.C 【解析】由余弦定理得:2222cos a b c bc A =+-,所以(222222b b =+-⨯⨯, 即2680b b -+=,解得:2b =或4b =,因为b c <,所以2b =,故选B .8.B 【解析】11sin 22AB BC B ⋅⋅=,∴sin 2B =,所以45B =或135B =.当45B =时,1AC ==,此时1,AB AC BC ===90A =与“钝角三角形”矛盾;当135B =时,AC ==.9.A 【解析】因为A B C π++=,由1sin 2sin()sin()2A ABC C A B +-+=--+得1sin 2sin 2sin 22A B C ++=, 即1sin[()()]sin[()()]sin 22A B A B A B A B C ++-++--+=, 整理得1sin sin sin 8A B C =, 又111sin sin sin 222S ab C bc A ac B ===, 因此322222211sin sin sin 864S a b c A B C a b c ==,由12S ≤≤得222311264a b c ≤≤,即8abc ≤≤C 、D 不一定成立.又0b c a +>>,因此()8bc b c bc a +>⋅≥,即()8bc b c +>,选项A 一定成立.又0a b c +>>,因此()8ab a b +>,显然不能得出()ab a b +>B 不一定成立.综上所述,选A .10.C 【解析】由22()6c a b =-+可得22226a b c ab +-=-①,由余弦定理及3C π=可得222a b c ab +-=②.所以由①②得6ab =,所以1sin 23ABC S ab π∆==11.C 【解析】∵tan15tan(6045)23=-=-,∴60tan 6060tan15120(31)BC =-=12.D 【解析】225cos 10A -=,1cos 5A =,由余弦定理解得5b = 13.A 【解析】边换角后约去sin B ,得1sin()2A C +=,所以1sin 2B =,但B 非最大角,所以6B π=.14.C 【解析】由余弦定理可得AC =sin A =. 15.B 【解析】∵cos cos sin b C c B a A +=,∴由正弦定理得2sin cos sin cos sin B C C B A +=,∴2sin()sin B C A +=,∴2sin sin A A =,∴sin 1A =,∴△ABC 是直角三角形.16.B【解析】由正弦定理得:sin sin sin 60sin 45BC AC ACAC A B ︒︒=⇔=⇔=17.D 【解析】由正弦定理,得22sin sin sin cos A B B A A+=,即22sin (sin cos )B A A A⋅+=,sin B A=,∴sin sin b B a A==. 18.D 【解析】设AB c =,则AD c =,BD =,BC =ΔABD 中,由余弦定理得2222413cos 23c c c A c +-==,则sin A =,在ΔABC 中,由正弦定理得sin sin c BC CA ==,解得sin C =.19.A 【解析】因为120C ∠=,c =,所以2222cos c a b ab C =+-,222122()2a ab ab =+--所以22,0,aba b ab a b a b a b-=-=>>+ 因为0,0a b >>,所以0aba b a b-=>+,所以a b >.故选A .20【解析】由sin sin 4sin sin b C c B a B C +=得, sin sin sin sin 4sin sin sin B C C B A B C +=,因为sin sin 0B C ≠,所以1sin 2A =, 因为2228b c a +-=,222cos 02b c a A bc +-=>,所以cos A =所以bc =,所以111sin 22323ABC S bc A ∆==⨯=. 21.7;3【解析】因为a =2b =,60A =,所以由正弦定理得2sin sin b AB a===2222cos a b c bc A =+-可得2230c c --=,所以3c =.22.60(2,)︒+∞【解析】ABC △的面积2221sin )2cos 2S ac B a c b ac B ==+-=,所以tan B =0180A <∠<,所以60B ∠=.因为C ∠为钝角,所以030A <∠<,所以0tan A <<,所以222sin()sin cos cos sin sin 13332sin sin sin 2A A Ac C a AA A πππ--====+>,故ca的取值范围为(2,)+∞. 23.9【解析】因为120ABC ∠=︒,ABC ∠的平分线交AC 于点D ,所以60ABD CBD ∠=∠=,由三角形的面积公式可得111sin120sin 60sin 60222ac a c =+, 化简得ac a c =+,又0a >,0c >,所以111a c+=,则1144(4)()559c a a c a c a c a c +=++=+++=≥, 当且仅当2c a =时取等号,故4a c +的最小值为9. 24.3π【解析】由正弦定理得2sin cos sin cos sin cos B B A C C A =+ 即2sin cos sin()B B A C =+, 所以1cos 2B =,又B 为三角形内角,所以π3B =. 25.75°【解析】由正弦定理sin sin b cB C=,即sin 2sin 3b C B c === , 结合b c < 可得45B = ,则18075A B C =--=.262222224241cos 22424AB BC AC ABC AB BC +-+-∠===⨯⨯⨯⨯,由22sin cos 1ABC ABC ∠+∠=所以sin ABC ∠===, 1sin 2BDC S BD BC DBC ∆=⨯⨯∠ 11sin()sin 22BD BC ABC BD BC ABC π=⨯⨯-∠=⨯⨯∠1222=⨯⨯=.CD因为BD BC =,所以D BCD ∠=∠,所以2ABC D BCD D ∠=∠+∠=∠,cos cos2ABC BDC ∠∠==== 27.2113【解析】∵4cos 5A =,5cos 13C =,所以3sin 5A =,12sin 13C =, 所以()63sin sin sin cos cos sin 65B AC A C A C =+=+=, 由正弦定理得:sin sin b a B A =解得2113b =. 28.4π【解析】由正弦定理,得sin sin a b A B =sin 2B=,所以sin B = 所以4B π∠=.29.4【解析】由3sin 2sin A B =及正弦定理知:32a b =,又因为2a =,所以3b =; 由余弦定理得:22212cos 49223()164c a b ab C =+-=+-⨯⨯⨯-=,所以4c =. 30.2【解析】由正弦定理可知:45sin )]4575(180sin[ACAB =+-245sin 60sin 6=⇒=⇒AC AC . 31.7【解析】由已知得ABC ∆的面积为1sin 20sin 2AB AC A A ⋅==sin A =,(0,)2A π∈,所以3A π=.由余弦定理得 2222cos BC AB AC AB AC A =+-⋅=49,7BC =.32.【解析】如图作PBC ∆,使75B C ∠=∠=,2BC =,作出直线AD 分别交线段PB 、PC 于A 、D 两点(不与端点重合),且使75BAD ∠=,则四边形ABCD 就是符合题意的四边形,过C 作AD 的平行线交PB 于点Q ,在PBC ∆中,可求得BP =,在QBC ∆中,可求得BQ =,所以AB 的取值范围为.33.8 【解析】因为0Aπ<<,所以sin A ==,又1sin 2ABC S bc A ∆===24bc ∴=, 解方程组224b c bc -=⎧⎨=⎩,得6b =,4c =,由余弦定理得2222212cos 64264644a b c bc A ⎛⎫=+-=+-⨯⨯⨯-= ⎪⎝⎭,所以8a =.34. 30=∠BAC ,105=∠ABC ,在ABC ∆中,由180=∠+∠+∠ACB BAC ABC ,所以45=∠ACB ,因为600=AB ,由正弦定理可得30sin 45sin 600BC=, 即2300=BC m ,在BCD Rt ∆中,因为30=∠CBD ,2300=BC ,所以230030tan CDBC CD ==,所以6100=CD m . 35.150【解析】在三角形ABC中,AC =,在三角形MAC 中,sin 60sin 45MA AC=,解得MA =,在三角形MNA3sin 60==,故150MN =. 36.2【解析】 由b B c C b 2cos cos =+得:sin cos sin cos 2sin B C C B B +=,即sin()2sin B C B +=,sin 2sin A B =,∴2a b =,故2ab=. 37.π32【解析】3sin 5sin A B =, π32212cos 2,53222=⇒-=-+=⇒=+=⇒C ab c b a C a c b b a ,所以π32.38sin sin()cos 23BAC BAD BAD π∠=∠+=∠=∴根据余弦定理可得222cos 2AB AD BD BAD AB AD+-∠=∙2223BD ∴==39.①②③【解析】 ①222221cos 2223a b c ab ab ab c C C ab ab π+-->⇒=>=⇒< ②2222224()()12cos 2823a b c a b a b a b c C C ab ab π+-+-++>⇒=>≥⇒< ③当2C π≥时,22232233c a b c a c b c a b ≥+⇒≥+>+与333a b c +=矛盾④取2,1a b c ===满足()2a b c ab +<得:2C π<⑤取2,1a b c ===满足22222()2a b c a b +<得:3C π<40.4【解析】根据余弦定理可得2214(7)22(7)()4b b b =+--⨯⨯-⨯-,解得b =4 41.ABC ∆中,根据sin sin sin AB AC BCC B A==,得sin sin 2sin sin ACAB C C C B=⋅==,同理2sin BC A =,因此22sin 4sin AB BC C A +=+22sin 4sin()3C C π=+-4sin )C C C ϕ=+=+42.4【解析】根据sin sin AB ACC B=得5sin sin 7214AB C B AC ==⨯=,11cos 14C ==, 所以sin sin[()]sin cos cos sin A B C B C B C π=-+=+111142-= 43.4【解析】(方法一)考虑已知条件和所求结论对于角A 、B 和边a 、b 具有轮换性.当A =B 或a =b 时满足题意,此时有:1cos 3C =,21cos 1tan 21cos 2C C C -==+,tan22C =,1tan tan tan 2A B C===,tan tan tan tan C CA B+= 4. (方法二)226cos 6cos b aC ab C a b a b+=⇒=+, 2222222236,22a b c c ab a b a b ab +-⋅=++=tan tan sin cos sin sin cos sin sin()tan tan cos sin sin cos sin sin C C C B A B A C A B A B C A B C A B +++=⋅=⋅21sin cos sin sin C C A B =⋅.由正弦定理,得:上式=22222214113cos ()662c c c c C ab a b =⋅===+⋅44.6π【解析】由sin cos B B +=12sin cos 2B B +=,即sin 21B =, 因02B π<<,所以2,24B B ππ==.又因为2,a b ==由正弦定理得2sin sin 4A π=,解得1sin 2A =,而,a b <则04A B π<<=,故6a π=. 45.【解析】(1)在ABC △中,由正弦定理sin sin a bA B=,可得sin sin b A a B =, 又由πsin cos()6b A a B =-,得πsin cos()6a B a B =-,即πsin cos()6B B =-,可得tan B =又因为(0π)B ∈,,可得3B π=.(2)在ABC △中,由余弦定理及2a =,3c =,3B π=,有2222cos 7b a c ac B =+-=,故b =.由πsin cos()6b A a B =-,可得sin A =a c <,故cos A =.因此sin 22sin cos A A A ==21cos 22cos 17A A =-=. 所以,sin(2)sin 2cos cos 2sin AB A B A B -=-=11727214-⨯= 46.【解析】(Ⅰ)由sin 4sin a A b B =,及sin sin a bA B=,得2a b =.由222)ac a b c =--,及余弦定理,得2225cos 2b c aA bcac +-===(Ⅱ)由(Ⅰ),可得sin A =sin 4sin a A b B =,得sin sin 45a A Bb ==. 由(Ⅰ)知,A为钝角,所以cos 5B ==. 于是4sin 22sin cos 5B B B ==,23cos 212sin 5B B =-=,故43sin(2)sin 2cos cos 2sin (55555B A B A B A -=-=⨯--⨯=-.47.【解析】因为6AB AC ⋅=-,所以cos 6bc A =-, 又 3ABC S ∆=, 所以sin 6bc A =,因此tan 1A =-,又0A π<<, 所以34A π=,又3b =,所以c =由余弦定理2222cos a b c bc A =+-,得29823(292a =+-⋅⋅-=,所以a =48.【解析】(Ⅰ)1sin 2ABD S AB AD BAD ∆=⋅∠ 1sin 2ADC S AC AD CAD ∆=⋅∠ 因为2ABD ADC S S ∆∆=,BAD CAD ∠=∠,所以2AB AC =. 由正弦定理可得sin 1sin 2B AC C AB ∠==∠.(Ⅱ)因为::ABD ADC S S BD DC ∆∆=,所以BD =ABD ∆和ADC ∆中,由余弦定理得2222cos AB AD BD AD BD ADB =+-⋅∠,2222cos AC AD DC AD DC ADC =+-⋅∠.222222326AB AC AD BD DC +=++=.由(Ⅰ)知2AB AC =,所以1AC =.49.【解析】(Ⅰ)由题设及正弦定理可得22b ac =.又a b =,可得2b c =,2a c =,由余弦定理可得2221cos 24a cb B ac +-==. (Ⅱ)由(Ⅰ)知22b ac =.因为90B =,由勾股定理得222a cb +=. 故222a c ac +=,得c a ==.所以ABC ∆的面积为1.50.【解析】(I )在ABC ∆中,由题意知sin A ==又因为2B A π=+,所有sin sin()cos 2B A A π=+==,由正弦定理可得3sin sin a Bb A=== (II )由2B A π=+得,cos cos()sin 2B A A π=+=-=, 由A B C π++=,得()C A B π=-+.所以sin sin[()]sin()C A B A B π=-+=+sin cos cos sin A B A B =+(=+13=. 因此,ABC ∆的面积111sin 3223S ab C ==⨯⨯=. 51.【解析】:(Ⅰ)∵2A B =,∴sin sin 22sin cos A B B B ==,由正弦定理得22222a c b a b ac+-=⋅∵3,1b c ==,∴212,a a ==(Ⅱ)由余弦定理得22291121cos 263b c a A bc +-+-===-, 由于0A π<<,∴sin 3A ===,故14sin()sin coscos sin()44432326A A A πππ-+=+=+-⨯=.52.【解析】(Ⅰ)由已知得,∠PBC =o60,∴∠PBA =30o ,在△PBA 中,由余弦定理得2PA =o 1132cos3042+-=74,∴P A (Ⅱ)设∠PBA =α,由已知得,PB =sin α,在△PBA 中,由正弦定理得,o o sin sin150sin(30)αα=-4sin αα=,∴tan α=4,∴tan PBA ∠=4. 53.【解析】(Ⅰ)因为cos sin a b C c B =+,所以由正弦定理得:sin sin cos sin sin A B C C B =+,所以sin()sin cos sin sin B C B C C B +=+,即cos sin sin sin B C C B =,因为sin C ≠0,所以tan 1B =,解得B =4π;(Ⅱ)由余弦定理得:2222cos4b ac ac π=+-,即224a c =+,由不等式得:222a c ac +≥,当且仅当a c =时,取等号,所以4(2ac ≥,解得4ac ≤+ABC 的面积为1sin 24ac π(44≤+1,所以△ABC 1.54.【解析】(Ⅰ),,(0,)sin()sin 0A C B A B A C B ππ+=-∈⇒+=>2sin cos sin cos cos sin sin()sin B A A C A C A C B =+=+=1cos 23A A π⇔=⇔=(II )2222222cos 2a b c bc A a b a c B π=+-⇔==+⇒=在Rt ABD ∆中,2AD ===55.【解析】(1)由正弦定理得:cos sin 0sin cos sin sin sin a C C b c A C A C B C --=⇔=+sin cos sin sin()sin 1cos 1sin(30)2303060A C A C a C C A A A A A ︒︒︒︒⇔=++⇔-=⇔-=⇔-=⇔=(2)1sin 42S bc A bc ==⇔= 2222cos 4a b c bc A b c =+-⇔+=,解得:2b c ==.56.【解析】(I )由正弦定理,设,sin sin sin a b ck A B C=== 则22sin sin 2sin sin ,sin sin c a k C k A C A b k B B ---==所以cos 2cos 2sin sin .cos sin A C C A B B--=即(cos 2cos )sin (2sin sin )cos A C B C A B -=-, 化简可得sin()2sin().A B B C +=+又A B C π++=, 所以sin 2sin C A =,因此sin 2.sin CA= (II )由sin 2sin CA=得2.c a = 由余弦定理222222112cos cos ,2,44.44b ac ac B B b a a a =+-==+-⨯及得4= 解得1a =.因此2c =. 又因为1cos ,0.4B B π=<<且所以sin B =因此11sin 122244S ac B ==⨯⨯⨯= 57.【解析】由A C B C B -=+=++π和0)cos(21,得.23sin ,21cos ,0cos 21===-A A A 再由正弦定理,得.22sin sin ==a Ab B .22sin 1cos ,2,,=-=<<<B B B B A B a b 从而不是最大角所以知由π由上述结果知).2123(22)sin(sin +=+=B A C 设边BC 上的高为h ,则有.213sin +==C b h 58.【解析】由题意知(53AB =海里,906030,45,DBA DAB ∠=︒-︒=︒∠=︒105ADB ∴∠=︒在DAB ∆中,由正弦定理得sin sin DB ABDAB ADB=∠∠sin sin AB DAB DB ADB ∙∠∴===∠2=,又30(9060)60,DBC DBA ABC BC ∠=∠+∠=︒+︒-︒=︒= 在DBC ∆中,由余弦定理得2222cos CD BD BC BD BC DBC =+-∙∙∠= 1300120029002+-⨯= CD ∴=30(海里),则需要的时间30130t ==(小时). 答:救援船到达D 点需要1小时. 59.【解析】(1)tan tan H H AD AD ββ=⇒=,同理:tan HAB α=,tan h BD β=. AD —AB =DB ,故得tan tan tan H H hβαβ-=, 解得tan 4 1.24124tan tan 1.24 1.20h H αβα⨯===--.因此,算出的电视塔的高度H 是124m . (2)由题设知d AB =,得tan ,tan H H h H hd AD DB dαβ-====,2tan tan tan()()1tan tan ()1H H h hd h d d H H h H H h d H H h d d d dαβαβαβ----====--+⋅+-+⋅+()H H h d d-+≥(当且仅当d =取等号)故当d =时,tan()αβ-最大. 因为02πβα<<<,则02παβ<-<,所以当d =时,α-β最大.故所求的d是.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

专题四 三角函数与解三角形第十二讲 解三角形一、选择题1.(2019年全国Ⅰ卷)ABC ∆的内角A ,B ,C 的对边分别为a ,b ,c ,已知sin sin 4sin a A b B c C -=,1cos 4A =-,则bc=A .6B .5C .4D .32.(2018全国卷Ⅱ)在△ABC 中,cos2=C 1=BC ,5=AC ,则=ABA .BCD .3.(2018全国卷Ⅲ)ABC △的内角A ,B ,C 的对边分别为a ,b ,c .若ABC ∆的面积为2224a b c +-,则C = A .2π B .3π C .4π D .6π 4.(2017新课标Ⅰ)ABC ∆的内角A 、B 、C 的对边分别为a 、b 、c .已知sin sin (sin cos )B A C C +- 0=,2a =,c =C =A .12π B .6π C .4π D .3π5.(2016全国I )△ABC 的内角A 、B 、C 的对边分别为a 、b 、c .已知a =,2c =,2cos 3A =,则b =A B C .2 D .3 6.(2016全国III )在ΔABC 中,4B π=,BC 边上的高等于13BC ,则sin A =A .310B .10C .5D .107.(2016山东)ABC △中,角A ,B ,C 的对边分别是a ,b ,c ,已知22,2(1sin )b c a b A ==-,则A =A .3π4B .π3C .π4D .π68.(2015广东)设ΑΒC ∆的内角,,A B C 的对边分别为a ,b ,c .若2a =,c =,cos A =,且b c <,则b =A .3 B. C .2 D9.(2014新课标2)钝角三角形ABC 的面积是12,1AB =,BC =AC =A .5 BC .2D .110.(2014重庆)已知ABC ∆的内角A ,B ,C 满足sin 2sin()A A B C +-+=sin()C A B --12+,面积S 满足12S ≤≤,记a ,b ,c 分别为A ,B ,C 所对的边,则下列不等式一定成立的是A .8)(>+c b bc B.()ab a b +> C .126≤≤abc D .1224abc ≤≤ 11.(2014江西)在ABC ∆中,a ,b ,c 分别为内角A ,B ,C 所对的边长,若2c =2()6a b -+,3C π=,则ABC ∆的面积是A .3B .239 C .233 D .33 12.(2014四川)如图,从气球A 上测得正前方的河流的两岸B ,C 的俯角分别为75o,30o,此时气球的高是60cm ,则河流的宽度BC 等于A .1)mB .1)mC .1)mD .1)m13.(2013新课标1)已知锐角ABC ∆的内角,,A B C 的对边分别为,,a b c ,223cos A +cos20A =,7a =,6c =,则b =A .10B .9C .8D .514.(2013辽宁)在ABC ∆,内角,,A B C 所对的边长分别为,,a b c .若sin cos a B C +1sin cos 2c B A b =,且a b >,则B ∠=A .6π B .3πC .23πD .56π15.(2013天津)在△ABC 中,,3,4AB BC ABC π∠==则sin BAC ∠=A B C D 16.(2013陕西)设△ABC 的内角A , B , C 所对的边分别为a ,b ,c ,若cos cos sin b C c B a A +=,则△ABC 的形状为A .锐角三角形B .直角三角形C .钝角三角形D .不确定17.(2012广东)在ABC ∆中,若60,45,A B BC ︒︒∠=∠==,则AC =A .B .CD 18.(2011辽宁)ABC ∆的三个内角A ,B ,C 所对的边分别为a ,b ,c ,2sin sin cos a A B b A +=,则=abA .B .C D19.(2011天津)如图,在△ABC 中,D 是边AC 上的点,且,2AB AD AB ==,2BC BD =,则sin C 的值为CA B C D20.(2010湖南)在ABC ∆中,角,,A B C 所对的边长分别为,,a b c .若120C ∠=o,c =,则A .a b >B .a b <C .a b =D .a 与b 的大小关系不能确定 二、填空题21.(2019年全国Ⅱ卷)ABC △的内角A ,B ,C 的对边分别为a ,b ,c .已知sin cos 0b A a B +=,则B =___.22.(2019年浙江卷)在ABC △中,90ABC ∠=︒,4AB =,3BC =,点D 在线段AC 上,若45BDC ∠=︒,则BD =____,cos ABD ∠=___________.23.(2018全国卷Ⅰ)△ABC 的内角A B C ,,的对边分别为a b c ,,,已知sin sin 4sin sin b C c B a B C +=,2228b c a +-=,则△ABC 的面积为__.24.(2018浙江)在ABC ∆中,角A ,B ,C 所对的边分别为a ,b ,c .若a =2b =,60A =o ,则sin B =___________,c =___________.25.(2018北京)若ABC △222)a c b +-,且C ∠为钝角,则B ∠= ;ca的取值范围是 .26.(2018江苏)在ABC △中,角,,A B C 所对的边分别为,,a b c ,120ABC ∠=︒,ABC ∠的平分线交AC 于点D ,且1BD =,则4a c +的最小值为 .27.(2017新课标Ⅱ)ABC ∆的内角A ,B ,C 的对边分别为a ,b ,c ,若2cos cos cos b B a C c A =+,则B =28.(2017新课标Ⅲ)ABC ∆的内角A ,B ,C 的对边分别为a ,b ,c .已知60C =o,b =3c =,则A =_______.29.(2017浙江)已知ABC ∆,4AB AC ==,2BC =. 点D 为AB 延长线上一点,2BD =,连结CD ,则BDC ∆的面积是_______,cos BDC ∠=_______.30.(2016全国Ⅱ)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,若4cos 5A =, 5cos 13C =,1a =,则b =_____.31.(2015北京)在△ABC 中,23,3a b A π==∠=,则B ∠= _________. 32.(2015重庆)设ABC ∆的内角,,A B C 的对边分别为,,a b c ,且2a =,1cos 4C =-,3sin 2sin A B =,则c =________.33.(2015安徽)在ABC ∆中,6=AB ,ο75=∠A ,ο45=∠B ,则=AC .34.(2015福建)若锐角ABC ∆的面积为5AB =,8AC =,则BC 等于 .35.(2015新课标1)在平面四边形ABCD 中,75A B C ∠=∠=∠=o,2BC =,则AB 的取值范围是_______.36.(2015天津)在ABC ∆中,内角,,A B C 所对的边分别为,,a b c ,已知ABC ∆的面积为2b c -=,1cos 4A =-,则a 的值为 .37.(2015湖北)如图,一辆汽车在一条水平的公路上向正西行驶,到A 处时测得公路北侧一山顶D 在西偏北30o的方向上,行驶600m 后到达B 处,测得此山顶在西偏北75o的方向上,仰角为30o,则此山的高度CD =m .38.(2014新课标1)如图,为测量山高MN ,选择A 和另一座山的山顶C 为测量观测点.从A 点测得M点的仰角60MAN ∠=︒,C 点的仰角45CAB ∠=︒以及75MAC ∠=︒;从C 点测得60MCA ∠=︒.已知山高100BC m =,则山高MN =________m .CNABM39.(2014广东)在ABC ∆中,角C B A ,,所对应的边分别为c b a ,,,已知cos b C +cos 2c B b =,则=ba. 40.(2013安徽)设ABC ∆的内角,,A B C 所对边的长分别为,,a b c .若2b c a +=,则3sin 5sin ,A B =则角C =_____.41.(2013福建)如图ABC ∆中,已知点D 在BC 边上,AD ⊥AC ,2sin 3BAC ∠=, 32AB =3AD =,则BD 的长为_______________.ABC42.(2012安徽)设ABC ∆的内角,,A B C 所对的边为,,a b c ;则下列命题正确的是 .①若2ab c >;则3C π<②若2a b c +>;则3C π<③若333a b c +=;则2C π<④若()2a b c ab +<;则2C π>⑤若22222()2a b c a b +<;则3C π>43.(2012北京)在ABC ∆中,若12,7,cos 4a b c B =+==-,则b = .44.(2011新课标)ABC ∆中,60,B AC =︒=,则AB +2BC 的最大值为____.45.(2011新课标)ABC ∆中,120,7,5B AC AB =︒==,则ABC ∆的面积为_ __. 46.(2010江苏)在锐角三角形ABC ,a ,b ,c 分别为内角A ,B ,C 所对的边长,6cos b a C a b +=,则tan tan tan tan C CA B+=_______.47.(2010山东)在ABC ∆中,角,,A B C 所对的边分别为,,a b c ,若2a b ==,sin cos B B +=A 的大小为 .三、解答题48.(2019年全国Ⅲ卷)ABC ∆的内角A 、B 、C 的对边分别为a 、b 、c .已知sin sin 2A Ca b A +=. (1)求B ;(2)若ABC ∆为锐角三角形,且1c =,求ABC ∆面积的取值范围.49.(2019年天津卷)在∆ABC 中,内角,,A B C 所对的边分别为,,a b c .已知2+=b c a ,3sin 4sin =c B a C .(Ⅰ)求cos B 的值; (Ⅱ)求sin(2)6π+B 的值. 50.(2019年江苏卷)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c .(1)若3=a c ,=b 2cos 3=B ,求c 的值; (2)若sin cos 2=A B a b ,求sin()2π+B 的值. 51.(2019年北京卷)在∆ABC 中,3=a ,–2=b c ,1cos 2=-B . (Ⅰ)求b ,c 的值; (Ⅱ)求sin()+BC 的值.52.(2018天津)在ABC △中,内角A ,B ,C 所对的边分别为a ,b ,c .已知sin cos()6b A a B π=-. (1)求角B 的大小;(2)设2a =,3c =,求b 和sin(2)A B -的值.53.(2017天津)在ABC △中,内角,,A B C 所对的边分别为,,a b c .已知sin 4sin a A b B =,222)ac a b c =--.(Ⅰ)求cos A 的值; (Ⅱ)求sin(2)B A -的值.54.(2017山东)在ABC ∆中,角A ,B ,C 的对边分别为a ,b ,c ,已知3b =,6AB AC ⋅=-u u u r u u u r,3ABC S ∆=,求A 和a .55.(2015新课标2)ABC ∆中,D 是BC 上的点,AD 平分∠BAC ,∆ABD 面积是∆ADC 面积的2倍.(Ⅰ)求sin sin BC;(Ⅱ) 若AD =1,DC ,求BD 和AC 的长. 56.(2015新课标1)已知,,a b c 分别是ABC ∆内角,,A B C 的对边,2sin 2sin sin B A C =.(Ⅰ)若a b =,求cos ;B(Ⅱ)若90B =o ,且a =ABC ∆的面积.57.(2014山东)ABC ∆中,a ,b ,c 分别为内角A ,B ,C 所对的边长.已知3a =,cos ,32A B A π==+. (I)求b 的值; (II )求ABC ∆的面积.58.(2014安徽)设ABC ∆的内角,,A B C 所对边的长分别是,,a b c ,且3b =,1c =,2A B =. (Ⅰ)求a 的值; (Ⅱ)求sin()4A π+的值.59.(2013新课标1)如图,在ABC ∆中,∠ABC =90°,AB ,BC =1,P 为△ABC 内一点,∠BPC =90°.(Ⅰ)若PB =12,求P A ; (Ⅱ)若∠APB =150°,求tan ∠PBA .60.(2013新课标2)ABC ∆在内角,,A B C 的对边分别为,,a b c ,已知cos sin a b C c B =+. (Ⅰ)求B ;(Ⅱ)若2b =,求△ABC 面积的最大值.61.(2012安徽)设ABC ∆的内角C B A ,,所对边的长分别为,,,c b a ,且有2sin cos B A =sin cos cos sin A C A C +.(Ⅰ)求角A 的大小;(Ⅱ) 若2b =,1c =,D 为BC 的中点,求AD 的长.62.(2012新课标)已知a 、b 、c 分别为ABC ∆三个内角A 、B 、C 的对边,cos a C +3sin 0a C b c --=.(Ⅰ)求A ;(Ⅱ)若2=a ,ABC ∆的面积为3,求b 、c .63.(2011山东)在ABC ∆中,a ,b ,c 分别为内角A ,B ,C 所对的边长.已知cos 2cos 2cos A C c aB b --=. (I )求sin sin CA的值;(II )若1cos 4B =,2b =,ABC ∆的面积S .64.(2011安徽)在ABC ∆中,a ,b ,c 分别为内角A ,B ,C 所对的边长,a 3,b 2,12cos()0B C ++=,求边BC 上的高.65.(2010陕西)如图,A ,B 是海面上位于东西方向相距(533海里的两个观测点,现位于A 点北偏东45°,B 点北偏西60°的D 点有一艘轮船发出求救信号,位于B 点南偏西60°且与B 点相距3海里的C 点的救援船立即前往营救,其航行速度为30海里/小时,该救援船到达D 点需要多长时间?66.(2010江苏)某兴趣小组测量电视塔AE 的高度H (单位:m ),如示意图,垂直放置的标杆BC 的高度h =4m ,仰角∠ABE =α,∠ADE =β.Hh dβαDB C(1)该小组已经测得一组α、β的值,tan α=1.24,tan β=1.20,请据此算出H 的值;(2)该小组分析若干测得的数据后,认为适当调整标杆到电视塔的距离d (单位:m ),使α与β之差较大,可以提高测量精确度。

相关文档
最新文档