行程问题中的一些常见类型

合集下载

小学奥数行程问题类型归纳及解题技巧总结

小学奥数行程问题类型归纳及解题技巧总结

小学奥数行程问题类型归纳及解题技巧总结在小学生数学竞赛中,行程问题是一个常见的考点。

而在行程问题中,又分为多种类型,比如速度问题、时间问题、距离问题等等。

本文将对小学奥数行程问题的类型进行归纳总结,并提供解题技巧供同学们参考。

一、速度问题速度问题是行程问题中最经典的类型之一。

通常情况下,速度问题会给出一个人或物体的速度以及时间,然后要求计算距离。

解决速度问题的关键在于掌握单位之间的转换关系。

常见的单位包括:米/秒、千米/时、厘米/分等等。

在解题过程中,我们可以利用等速运动的基本公式:速度=距离/时间。

通过根据已知条件列出方程,求解未知量即可得到结果。

例如,某辆汽车以60千米/时的速度行驶了3小时,求汽车行驶的距离。

解法:根据已知条件,我们可以列出方程:60 = 距离/3。

通过解方程可得距离=60×3=180千米。

因此,汽车行驶的距离为180千米。

二、时间问题时间问题是行程问题中常见的类型之一。

解决时间问题的关键在于掌握时间的单位换算。

在解题过程中,我们需要灵活运用时间=距离/速度的公式,根据已知条件列方程,最后求解未知量。

例如,小明骑自行车以20千米/时的速度骑行了2小时,求小明骑行的距离。

解法:根据已知条件,我们可以列出方程:2 = 距离/20。

通过解方程可得距离=2×20=40千米。

因此,小明骑行的距离为40千米。

三、距离问题距离问题是行程问题中常见的类型之一。

在距离问题中,我们通常需要根据已知的速度和时间,求解行程的距离。

同样,解决距离问题也需要掌握单位的换算关系。

例如,一辆火车以每小时50千米的速度行驶了4小时,求火车行驶的距离。

解法:根据已知条件,我们可以列出方程:50 = 距离/4。

通过解方程可得距离=50×4=200千米。

因此,火车行驶的距离为200千米。

四、奥数行程问题解题技巧总结1. 学会单位之间的转换:在解决行程问题时,单位之间的转换是非常重要的。

小学数学10种经典行程问题解法总结

小学数学10种经典行程问题解法总结

小学数学10种经典行程问题解法总结行程问题是小学数学应用题中的基本问题,它包含了简单的相遇及追及问题、多人相遇追及问题、多次相遇追及问题、流水行船问题、环形跑道问题、钟面行程问题、火车过桥问题、猎狗追兔问题等,但万变不离其宗。

行程问题是物体匀速运动的应用题。

不论是同向运动还是相向运动,最后反映出来的基本关系式都可以归纳为:路程=速度×时间。

要想解答行程问题,首先要弄清物体的具体运动情况,可以在纸上画出相应的运动轨迹,更方便观察思考。

以下是总结的10种经典行程问题的相关解法。

一、简单相遇及追及问题相遇问题:总路程=(甲速+乙速)×相遇时间相遇时间=总路程÷(甲速+乙速)甲速或乙速=总路程÷相遇时间-乙速或甲速追及问题:距离差=速度差×追及时间追及时间=距离差÷速度差速度差=距离差÷追及时间速度差=快速-慢速相离问题:两地距离=速度和×相离时间相离时间=两地距离÷速度和速度和=两地距离÷相离时间二、流水行船问题(1)船速+水速=顺水速度(2)船速-水速=逆水速度(3) (顺水速度+逆水速度)÷2=船速(4) (顺水速度-逆水速度)÷2=水速两船在水流中的相遇问题与在静水中及两车在陆地上的相遇问题一样,与水速没有关系因为:甲船顺水速度+乙船逆水速度=(甲船速+水速) + (乙船速-水速)=甲船速+乙船速如果两只船在水流中同向运动,一只船追上另一只船的时间,也与水速无关因为:甲船顺水/逆水速度-乙船顺水/逆水速度=(甲船速+/-水速)-(乙船速+/-水速)=甲船速-乙船速三、环形跑道问题从同一地点出发(1)如果是相向而行,则每走一图相遇一次(2)如果是同向而行,则每追上一图相過一次四、多人相遇追及问题基本公式:路程和=速度和×相遇时间路程差=速度差×追及时间例题:有甲、乙、丙三人,甲每分钟走80米,乙每分钟走60米,丙每分钟走40米,现在甲从东端,乙、丙两人从西端同时出发相向而行,在途中甲与乙相遇6分钟后,甲又与丙相遇。

行程问题

行程问题

行程问题常见题型分析一、行程问题中有三个基本量:速度、时间、路程。

路程=时间×速度速度=路程/时间时间=路程/速度二、行程问题常见类型1、普通相遇问题。

2、追及(急)问题。

3顺(逆)水航行问题。

4、跑道上的相遇(追急)问题三、行程问题中的等量关系顺水速度=静水速度+水流速度逆水速度=静水速度+水流速度相遇路程/速度和=相遇时间追急路程/速度差=追击时间四、分类举例例1 :小明每天早上要在7:50之前赶到距离家1000米的学校去上学。

小明以80米/分的速度出发,5分钟后小明的爸爸发现他忘了带语文书。

于是,爸爸立即以180米/分的速度去追小明,并且在途中追上了他。

爸爸追小明用了多长时间?例2:甲乙两人在环形跑道上练习跑步。

已知环形跑道一圈长400米,乙每秒跑6米,甲的速度是乙的4/3倍。

⑴若甲、乙两人在跑道上相距8米处同时相向出发,经过几秒两人相遇?⑵若甲在乙前8米处同时同向出发,那么经过多长时间两人首次相遇例3:一货轮航行于A、B两个码头之间,水流速度为3km/小时,顺水需2.5小时,逆水需3小时,求两码头之间的距离。

例4:一列火车匀速前进,从开进入300米长的隧道到完全驶出隧道共用了20秒,隧道顶部一盏固定的聚关灯照射火车10秒,这列火车的长度是多少?练习:1:某行军纵队以9千米/时的速度进行,队尾的通讯员以15千米/时的速度赶到队伍前送一封信,送到后又立即返回队尾,共用20分钟,求这支队伍的长度?2:一船航行于A、B两码头之间,顺水航行需3小时,逆水航行需5小时,水流速度是4千米/时,求两码头之间距离。

方法一:利用轮船速度不变列方程方法二:利用码头之间距离不变量列方程3:一部稿件,甲打字员单独打20天可以完成,甲、乙打字员合作打12天完成。

现由两人合打7天后,余下部分由乙打,则乙还要多少天完成?4:甲、乙两人骑自行车分别在一与铁路平行的公路上背向而行,每小时都行15千米,现有一火车开来,火车从甲身边开过用30秒,从乙身边开过用20秒,求火车速度?5:一轮船从重庆到武汉要5昼夜,从武汉到重庆要7昼夜,试问一木排从重庆漂流到武汉要多长时间?6:甲、乙两人在圆形跑道上跑步,甲用40秒跑一圈;乙反向跑,每15秒与甲相遇一次,求乙跑一圈要多长时间?方法一:设乙跑一圈要x秒,速度要v米/秒。

行程问题类型大全公式类行程问题

行程问题类型大全公式类行程问题

行程问题类型大全公式类行程问题基本行程问题行程问题的三个基本量是距离、速度和时间。

其互逆关系可用乘、除法计算,方法简单,但应注意行驶方向的变化,按所行方向的不同可分为三种:(1)相遇问题;(2)相离问题;(3)追及问题。

行程问题的主要数量关系是:距离=速度×时间。

它大致分为以下三种情况:(1)相向而行:相遇时间=距离÷速度和(2)相背而行:相背距离=速度和×时间。

(3)同向而行:速度慢的在前,快的在后。

追及时间=追及距离÷速度差在环形跑道上,速度快的在前,慢的在后。

追及距离=速度差×时间。

解决行程问题时,要注意充分利用图示把题中的情节形象地表示出来,有助于分析数量关系,有助于迅速地找到解题思路。

相遇问题行程问题是研究相向运动中的速度、时间和路程三者之间关系的问题,(涉及两个或两个以上物体运动的问题)指两个运动的物体同时由两地出发相向而行,在途中相遇,这类应用题叫做相遇问题。

数量关系:路程÷ 速度和=相遇时间路程÷ 相遇时间=速度和速度和× 相遇时间=路程温馨提示:(1)在处理相遇问题时,一定要注意公式的使用时二者发生关系那一时刻所处的状态;(2)在行程问题里所用的时间都是时间段,而不是时间点(非常重要);(3)无论是在哪类行程问题里,只要是相遇,就与速度和有关。

解题秘诀:(1)必须弄清物体运动的具体情况,运动方向(相向),出发地点(两地),出发时间(同时、先后),运动路径(封闭、不封闭),运动结果(相遇)等。

(2)要充分运用图示、列表等方法,正确反映出数量之间的关系,帮助我们理解题意,迅速的找到解题思路。

追及问题追及问题也是行程问题中的一种情况。

这类应用题的特点是:①两个物体同时同一方向运动;②出发的地点不同(或从同一地点不同时出发,向同一方向运动);追及路程=路程差=两个物体之间相距的路程追及速度=速度差=快的速度-慢的速度慢的物体追上快的物体的所用的时间为追及时间③慢者在前,快者在后,因而快者离慢者越来越近,最后终于可以追上。

六年级下册行程问题知识点

六年级下册行程问题知识点

六年级下册行程问题知识点行程问题是数学中的一个重要概念,也是解决实际生活中旅行、路线规划等问题的基础。

在六年级下册,我们将学习行程问题的相关知识,并掌握解决这类问题的方法和技巧。

本文将介绍六年级下册行程问题的主要知识点,帮助大家更好地理解和运用。

1. 行程问题的基本定义行程问题是指在特定的条件限制下,从一个地点到另一个地点的过程中,经过的路径、时间或其他变量的问题。

通常,行程问题涉及到距离、速度、时间等概念,需要通过计算和推理来确定最佳的行程方案。

2. 行程问题的常见类型在六年级下册,我们将学习以下几种常见的行程问题类型:2.1 单程问题单程问题是指从一个地点出发,到达目的地后不返回的行程问题。

在解决单程问题时,需要考虑两地之间的距离、时间等因素,以确定最佳的行进路线。

2.2 往返问题往返问题是指从一个地点出发,到达目的地后再返回原出发地的行程问题。

这种问题通常需要考虑往返的路径、时间以及可能的不同出发和返回方式。

2.3 多点往返问题多点往返问题是指在多个地点之间进行往返的行程问题。

这种问题需要考虑多个地点之间的距离、时间以及最佳路径的选择,以满足给定的条件限制。

3. 解决行程问题的方法和技巧为了解决行程问题,我们可以运用以下方法和技巧:3.1 制表法制表法是指在表格中记录不同地点之间的距离、时间等信息,并通过计算和比较来确定最佳的行程方案。

通过制表法,可以清楚地了解不同路径的优劣,并进行有理有据的选择。

3.2 图解法图解法是指通过绘制地图或图表的方式,将不同地点之间的关系可视化。

通过观察和分析图表,可以找到最短路径、最快速度等最佳解决方案。

3.3 逻辑推理法逻辑推理法是指利用逻辑思维和推理方法,通过分析问题的条件和要求,找到最佳的解决方案。

这种方法常常涉及到判断和推理的技巧,需要灵活运用数学和逻辑知识。

4. 实例分析:小明的郊游计划为了更好地理解行程问题的解决过程,我们来分析一个具体的例子。

小明和他的家人计划进行一次郊游,参观了A、B、C三个景点,家庭住址是出发和返回地点。

行程问题6大经典题型归纳总结拓展

行程问题6大经典题型归纳总结拓展

行程问题简单地将行程问题分类:1 直线上的相遇、追及问题(含多次往返类型的相遇、追及)2 火车过人、过桥和错车问题3 多个对象间的行程问题4 环形问题与时钟问题5 流水、行船问题6 变速问题一些习惯性的解题方法:1利用设数法、设份数处理2 利用速度变化情况进行分段处理3 利用和差倍分以及比例关系,将形程过程进行对比分拆4 利用方程法求解1 直线上的相遇与追及直线上的相遇、追及是行程问题中最基本的两类问题,这两类问题的解决可以说是绝大多数行程问题解决的基础~例题1. 甲、乙两辆汽车同时从东西两地相向开出,甲每小时行56千米,乙每小时行48千米,两车在离两地中点32千米处相遇。

问:东西两地间的距离是多少千米?例题2.两名游泳运动员在长为30米的游泳池里来回游泳,甲的速度是每秒游1米,乙的速度是每秒游0.6米,他们同时分别从游泳池的两端出发,来回共游了5分钟。

如果不计转向的时间,那么在这段时间内两人共相遇多少次?2. 火车过人、过桥与错车问题在火车问题中,速度和时间并没有什么需要特殊处理的地方,特殊的地方是路程。

因为此时的路程不仅与火车前进的距离有关,还与火车长、隧道长、桥长这些物体长度相关~下面教你一招~~以静制动法解决火车过桥问题~呵呵~~~这种类型的题目,看起来复杂,眼花缭乱,其实我们可以以静制动,只看火车头或火车尾在整个行程中的路程。

而当有多个变量(火车过人、两辆火车齐头并进,齐尾并进等)时可以把其中一个变量看做静止,只需要研究另一个变量的行程以及二者的速度和或速度差,就可以轻松求解~屡试不爽~~例题3. 一列客车通过250米长的隧道用25秒,通过210米长的隧道用23秒。

已知在客车的前方有一列行驶方向与它相同的货车,车身长为320米,速度每秒17米。

求列车与货车从相遇到离开所用的时间。

例题4. 某解放军队伍长450米,以每秒1.5米的速度行进。

一战士以每秒3米的速度从排尾到排头并立即返回排尾,那么这需要多少时间?(这道题超级经典~)例题5有2列火车同时同方向齐头行进,12秒钟后快车超过慢车,已知快车每秒行驶18米,慢车每秒行10米,求快车车身长度多少米?如果这两列火车车尾相齐,同时同方向行进,则9秒钟后快车超过慢车,那么慢车车身长度是多少米。

中学奥数“行程问题”类型归纳及解题技巧总结

中学奥数“行程问题”类型归纳及解题技巧总结

中学奥数“行程问题”类型归纳及解题技巧总结本文将对中学奥数中常见的“行程问题”类型进行归纳并总结解题技巧。

1. 单程问题单程问题是指求解一个人或一个物体从出发地到目的地的最短路径或最快时间的问题。

解决单程问题需要根据给定的条件,运用数学知识进行计算和推理。

解题技巧:- 确定出发地和目的地;- 根据给定的条件,使用数学公式或方法计算最短路径或最快时间;- 注意考虑各种限制条件,如速度、距离等。

2. 往返问题往返问题是指一个人或一个物体在两个地点之间来回行程的问题。

解决往返问题需要考虑来回行程的距离、时间及其他相关条件。

解题技巧:- 确定往返的两个地点;- 分别计算去程和回程的距离或时间;- 综合考虑两次行程的条件,计算总距离或总时间。

3. 多次行程问题多次行程问题是指一个人或一个物体从多个地点之间进行多次行程的问题。

解决多次行程问题需要考虑多个地点之间的顺序、距离以及其他相关条件。

解题技巧:- 确定多次行程的起点和终点;- 根据给定的条件,以最优的方式确定行程的顺序;- 分别计算每次行程的距离或时间,然后求和得出总距离或总时间。

4. 排列组合问题排列组合问题是指在给定的一组元素中,通过排列或组合的方式选择其中的一部分元素的问题。

解决排列组合问题需要根据给定条件,运用组合数学的知识进行计算。

解题技巧:- 确定元素的个数和要选择的个数;- 根据给定的条件,使用组合数公式计算排列或组合的种类数;- 注意考虑元素的顺序或是否允许重复选择。

5. 时间约束问题时间约束问题是指在行程中,需要考虑到时间限制的问题。

解决时间约束问题需要根据给定的行程和时间限制,综合考虑时间与距离之间的关系。

解题技巧:- 确定行程的起点和终点;- 根据给定的时间限制,计算在限定时间内可到达的最远距离;- 注意考虑行程的速度和其他约束条件。

以上是中学奥数中常见的“行程问题”类型及解题技巧的总结。

通过熟练掌握这些技巧,可以更好地解决各类行程问题。

高中奥数“行程问题”类型归纳及解题技巧总结

高中奥数“行程问题”类型归纳及解题技巧总结

高中奥数“行程问题”类型归纳及解题技巧总结引言高中奥数中的“行程问题”是指涉及到路径规划的数学问题。

这类问题在奥数竞赛中经常出现,对于学生们来说,掌握解题技巧非常重要。

本文将对高中奥数中的“行程问题”进行类型归纳并总结解题技巧。

类型归纳在高中奥数中,常见的“行程问题” 类型包括但不限于以下几种:1. 最短路径问题:给定一个地图或者网络,要求在起点和终点之间找到最短路径。

常见的方法有迪杰斯特拉算法和弗洛伊德算法。

2. 最短路径优化问题:在最短路径问题的基础上,附加一些限制条件,如最短路径上的节点数量、经过特定节点等。

解决这类问题可以使用动态规划等方法。

3. 遍历问题:要求遍历某个地图或者网络中的所有节点,使得路径最短或者满足特定的条件。

解决这类问题可以使用深度优先搜索、广度优先搜索等方法。

4. 迭代问题:给定一个初始位置和一系列移动指令,要求找到最终位置。

常用的方法有模拟运动过程或者使用方程等。

解题技巧在解决高中奥数中的“行程问题”时,可以尝试以下技巧:1. 图形表示法:将问题转化为图形形式,以便更好地理解和分析问题。

2. 抽象建模:将具体问题抽象为数学模型,确定问题的目标函数和约束条件。

3. 利用对称性:如果问题中存在对称性,可以利用对称性简化问题和减少计算量。

4. 分析特殊情况:通过分析特殊情况来寻找规律和解决问题。

5. 搜索优化:采用合适的搜索策略,如剪枝、回溯等,来提高解题效率。

6. 实践积累:通过大量的练和实践,熟悉各种类型的“行程问题”,掌握解题技巧。

结论高中奥数中的“行程问题”类型繁多,但通过归纳总结和掌握解题技巧,我们可以更好地应对这类问题。

希望本文的内容能够对高中奥数学生们的研究和竞赛有所帮助。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

行程问题集合(一共61题)注:解答仅供参考,可以用小学的方法去解决,欢迎互相探讨解法。

常用知识点:1、行程问题:行程问题可以大概分为简单问题、相遇问题、时钟问题等。

2、常用公式:1)速度×时间=路程;路程÷速度=时间;路程÷时间=速度;2)速度和×时间=路程和;3)速度差×时间=路程差。

3、常用比例关系:1)速度相同,时间比等于路程比;2)时间相同,速度比等于路程比;3)路程相同,速度比等于时间的反比。

4、行程问题中的公式:1)顺水速度=静水速度+水流速度;2)逆水速度=静水速度-水流速度。

5、常画画线段图,利用数形结合的方式解决问题。

例1:一辆汽车往返于甲乙两地,去时用了4个小时,回来时速度提高了1/7,问:回来用了多少时间?分析与解答:在行程问题中,路程一定,时间与速度成反比,也就是说速度越快,时间越短。

设汽车去时的速度为v千米/时,全程为s千米,则:去时,有s÷v=s/v=4,则回来时的时间为:,即回来时用了3.5小时。

评注:利用路程、时间、速度的关系解题,其中任一项固定,另外两项都有一定的比例关系(正比或反比)。

例2:A、B两城相距240千米,一辆汽车计划用6小时从A城开到B城,汽车行驶了一半路程,因故障在中途停留了30分钟,如果按原计划到达B城,汽车在后半段路程时速度应加快多少?分析:对于求速度的题,首先一定是考虑用相应的路程和时间相除得到。

解答:后半段路程长:240÷2=120(千米),后半段用时为:6÷2-0.5=2.5(小时),后半段行驶速度应为:120÷2.5=48(千米/时),原计划速度为:240÷6=40(千米/时),汽车在后半段加快了:48-40=8(千米/时)。

答:汽车在后半段路程时速度加快8千米/时。

例3:两码头相距231千米,轮船顺水行驶这段路程需要11小时,逆水每小时少行10千米,问行驶这段路程逆水比顺水需要多用几小时?分析:求时间的问题,先找相应的路程和速度。

解答:轮船顺水速度为231÷11=21(千米/时),轮船逆水速度为21-10=11(千米/时),逆水比顺水多需要的时间为:21-11=10(小时)答:行驶这段路程逆水比顺水需要多用10小时。

例4:汽车以每小时72千米的速度从甲地到乙地,到达后立即以每小时48千米的速度返回到甲地,求该车的平均速度。

分析:求平均速度,首先就要考虑总路程除以总时间的方法是否可行。

解答:设从甲地到乙地距离为s千米,则汽车往返用的时间为:s÷48+s÷72=s/48+s/72=5s/144,平均速度为:2s÷5s/144=144/5×2=57.6(千米/时)评注:平均速度并不是简单求几个速度的平均值,因为用各速度行驶的时间不一样。

例5:一辆汽车从甲地出发到300千米外的乙地去,在一开始的120千米内平均速度为每小时40千米,要想使这辆车从甲地到乙地的平均速度为每小时50千米,剩下的路程应以什么速度行驶?分析:求速度,首先找相应的路程和时间,平均速度说明了总路程和总时间的关系。

解答:剩下的路程为300-120=180(千米),计划总时间为:300÷50=6(小时),剩下的路程计划用时为:6-120÷40=3(小时),剩下的路程速度应为:180÷3=60(千米/小时),即剩下的路程应以60千米/时行驶。

评注:在简单行程问题中,从所求结果逆推是常用而且有效的方法。

例6:骑自行车从甲地到乙地,以每小时10千米的速度行驶,下午1时到;以每小时15千米的速度行进,上午11时到;如果希望中午12时到,应以怎样的速度行进?分析:求速度,先找相应的路程和时间,本题中给了以两种方法骑行的结果,这是求路程和时间的关键。

解答:考虑若以10千米/时的速度骑行,在上午11时,距离乙地应该还有10×2=20(千米),也就是说从出发到11时这段时间内,以15千米/时骑行比以10千米/时骑行快20千米,由此可知这段骑行用时为:20÷(15-10)=4(小时),总路程为15×4=60(千米),若中午12时到达需总用时为5小时,因此骑行速度为60÷5=12(千米/时),即若想12时到达,应以12千米/时速度骑行。

例7:一架飞机所带的燃料最多可以用6小时,飞机去时顺风,时速1500千米,回来时逆风,时速为1200千米,这架飞机最多飞出多远就需往回飞?分析:求路程,需要速度和时间,题目中来回速度及总时间已知,我们可以选择两种方法:一是求往、返各用多少时间,再与速度相乘,二是求平均速度与总时间相乘,下面给出求往返时间的方法。

解答:设飞机去时顺风飞行时间为t小时,则有:1500×t=1200×(6-t),2700×t=7200,t=8/3(小时),飞机飞行距离为1500×8/3=4000(千米)评注:本题利用比例可以更直接求得往、返的时速,往返速度比5:4,因此时间比为4:5,又由总时间6小时即可求得往、返分别用时,在往返的问题中一定要充分利用往返路程相同这个条件。

例8:有一座桥,过桥需要先上坡,再走一段平路,最后下坡,并且上坡,平路及下坡的路程相等,某人骑车过桥时,上坡平路,下坡的速度分别为每秒4米、6米、8米,求他过桥的平均速度。

分析:上坡、平路及下坡的路程相等很重要,平均速度还是要由总路程除以总时间求得。

解答:设这座桥上坡、平路、下坡各长为S米,某人骑车过桥总时间为:s÷4+s ÷6+s÷8=s/4+s/6+s/8=13/24s,平均速度为:3s÷13/24s=24/13×3=72/13=5又7/13(秒),即骑车过桥平均速度为5又7/13秒。

评注:求平均速度并不需要具体的路程时间,只要知道各段速度不同的路程或时间之间的关系即可,另外,三段或更多路的问题与两段路没有本质上的差别,不要被这个条件迷惑。

例9:某人要到60千米外的农场去,开始他以每小时5千米的速度步行,后来一辆18千米/时的拖拉机把他送到农场,总共用了5.5小时,问:他步行了多远?解答:如果5.5小时全部乘拖拉机,可以行进:18×5.5=99(千米),其中99-60=39(千米),这39千米的距离是在某段时间内这个人在行走而没有乘拖拉机因此少走的距离,这样我们就可以求行走的时间为39÷(18-5)=3(小时),即这个走了3个小时,距离为5×3=15(千米),即这个人步行了15千米。

评注:在以两种速度行进的题目中,假设是以一种速度行进,通过行程并和速度差求时间非常重要的方法。

例10:已知某铁路桥长1000米,一列火车从桥上通过,测得火车从开始上桥到完全下桥共用120秒,整列火车完全在桥上的时间为80秒,求火车的速度和长度。

分析:本题关键在求得火车行驶120秒和80秒所对应的距离。

解答:设火车长为L米,则火车从开始上桥到完全下桥行驶的距离为(1000+L)米,火车完全在桥上的行驶距离为(1000-L)米,设火车行进速度为u米/秒,则:由此知200×u=2000,从而u=10,L=200,即火车长为200米,速度为10米/秒。

评注:行程问题中的路程、速度、时间一定要对应才能计算,另外,注意速度、时间、路程的单位也要对应。

例11:甲、乙各走了一段路,甲走的路程比乙少1/5,乙用的时间比甲多了1/8,问甲、乙两人的速度之比是多少?分析:速度比可以通过路程比和时间比直接求得。

解答:设甲走了S米,用时T秒,则乙走了S÷(1-1/5)=5/4 S(米),用时为:T×(1+1/8)=9/8 T(秒),甲速度为:S/T,乙速度为:5/4 S÷ 9/8 T=10S/9T,甲乙速度比为S/T :10S/9T=9:10评注:甲、乙路程比4/5,时间比8/9,速度比可直接用:4/5 ÷ 8/9=9/10,即9:10。

例12:一艘轮船在河流的两个码头间航行,顺流需要6小时,逆流要8小时,水流速度为每小时2.5千米,求船在静水中的速度。

分析:顺流船速是静水船速与水流速度之和,而逆流船速是两者之差,由此可见,顺流与逆流船速之差是水流速的2倍,这就是关键。

解答:设船在静水中速度为U千米/时,则:(U+2.5)×6=(U-2.5)×8,解得U=17.5,即船在静水中速度为17.5千米/时。

评注:行船问题是行程问题中常见的一种,解这些题时注意船速、水流之间的关系。

例13:甲、乙两班进行越野行军比赛,甲班以每小时4.5千米的速度走了路程的一半,又以每小时5.5千米的速度走完了另一半,乙班用一半时间以每小时4.5千米的速度行进,另一半时间以每小时5.5千米的速度行进,问:甲、乙两班谁将获胜?分析:表面上看两班行军都是两种速度各一半,但时间的一半与路程的一半是不同的。

解答:设总路程为S千米,则:甲班用时:T1=S/2 ÷4.5+S/2÷5.5=S/9+S/11=20/99S(小时),乙班用时:T2=S ÷(4.5+5.5)×2=1/5 S(小时),比较可得:T1>T2,即乙班用时较短,会获胜。

评注:以上解法具体分析了两种方法的用时,其实我们只从性质分析,已用一半时间快走,一半时间慢走,所以快走的路程比慢走的距离长,也就是说乙用快速走的路程超过了总路程的一半,因此自然比甲班快。

这道题也代表了一类的问题。

例14:甲、乙两人在400米环形跑道上跑步,两人朝相反的方向跑,两个第一次相遇与第二次相遇间隔40秒,已知甲每秒跑6米,问乙每秒跑多少米?分析:环形跑道上相反而行,形成了相遇问题,也就是路程、时间及速度和关系的问题。

解答:第一次相遇到第二次相遇,两个人一共跑400米,因此速度和为400÷40=10(米/秒),乙速度为10-6=4(米/秒),即乙每秒跑4米。

评注:环形跑道上的相遇问题要注意一定时间内两人行进路程的总和是多少。

例15:一辆公共汽车和一辆小轿车同时从相距299千米的两地相向而行,公共汽车每小时行40千米,小轿车每小时行52千米,问:几小时后两车第一次相距69千米?再过多少时间两车再次相距69千米?分析:相遇问题中求时间,就需要速度和及总路程,确定相应总路程是本题重点。

解答:第一次相距69千米时,两车共行驶了:299-69=230(千米),所用时间为230÷(40+52)=2.5(小时),再次相距69千米时,两车从第一次相距69千米起又行驶了:69×2=138(千米),所用时间为:138÷(40+52)=1.5(小时),即2.5小时后两车第一次相距69千米,1.5小时后两车再次相距69千米。

相关文档
最新文档