发酵工程 第九章 发酵过程控制

合集下载

发酵工程发酵过程控制

发酵工程发酵过程控制

发酵工程发酵过程控制1. 引言发酵工程是利用微生物的生理代谢过程来生产有机化合物的一种工程技术。

而发酵过程控制则是在发酵工程中对发酵过程进行调控和监控,以确保发酵过程能够稳定进行,并获得高产率和良好的产品质量。

发酵过程控制通过对微生物与培养基、发酵设备和操作条件等方面进行控制,研究微生物的生长规律和代谢产物的生成规律,实现对发酵过程的调控,以实现最佳的发酵效果。

本文将介绍发酵工程发酵过程控制的主要内容和方法。

2. 发酵过程控制的目标发酵过程控制的主要目标是实现以下几个方面的调控:1.生物量的控制:调控微生物的生长速率和生物量,使其在适宜的培养基和环境条件下获得最佳生长,提高产酶或产物的产量;2.代谢产物的控制:调控微生物代谢过程中的关键反应步骤,实现选择性产物的生成,并提高产量;3.溶氧的控制:调控发酵过程中的溶氧浓度,提高氧传递效率,防止氧的限制性产物的堆积;4.pH的控制:调控发酵过程中的pH值,维持合适的酸碱环境,促进微生物的生长和代谢;5.温度的控制:调控发酵过程中的温度,提供适宜的环境条件,促进微生物的生长和代谢。

3. 发酵过程控制的方法发酵过程控制主要采用以下几种方法:3.1 反馈控制反馈控制是一种基于对发酵过程变量的测量和反馈,通过调节控制器输出量,实现对发酵过程的调控。

常见的反馈控制方法包括:•温度控制:通过测量发酵容器内的温度,控制加热或降温设备的输出,以维持适宜的温度;•pH控制:通过测量发酵液的pH值,控制酸碱调节器的输出,以维持适宜的酸碱环境;•溶氧控制:通过测量发酵液中的溶氧浓度,控制气体供应设备的输出,以维持适宜的溶氧浓度。

3.2 前馈控制前馈控制是一种基于对发酵过程中外部输入变量的预测,通过调节控制器输出量,实现对发酵过程的调控。

常见的前馈控制方法包括:•溶氧前馈控制:根据发酵微生物对溶氧需求的特性,通过对气体供应设备输出的调节,提前调整溶氧浓度,以满足微生物的需求;•pH前馈控制:根据发酵产物对酸碱环境的敏感性,通过对酸碱调节器输出的调节,提前调整pH值,以维持合适的酸碱环境。

发酵工程-第九章-抗生素

发酵工程-第九章-抗生素

PG
Pka 2.7
RCONH
6
4
5S
CH3
HH
7
O
N1
3 CH3
2
COOH
H
2S,5R,6R
临床用其钠盐、钾盐或普鲁卡因盐,增强水溶性。 粉针剂,有效期2年 临床用粉针剂,现用现配
不稳定性
β –内酰胺环是青霉素中最 不稳定的部分,原因是
1、四元环和五元环稠合, 环的张力大
2、两个环不在同一平面, 青霉素结构中β-内酰胺环 中羰基和氮原子的孤对电 子不能共轭, 易受到亲核 性或亲电性试剂的进攻, 使β-内酰胺环破裂。
(二)一般生产流程
抗生素发酵阶段一般主要包括:孢子制备、种子 制备和发酵,这是进行微生物逐步扩大培养过 程。
1、孢子制备 目的是将沙土管保存的菌种进行 培养,以制备大量孢子供下一步种子制备之用, 一般于试管、扁瓶或摇瓶内进行。
2、种子制备 目的是使有限数量的孢子发芽繁 殖,获得足够菌丝体以供发酵之用。在种子罐 内进行。通过种子制备,可以缩短发酵罐内菌 丝体繁殖生长的时间,增加抗生素合成的时间。 一般通过种子罐1-3次,再移种到发酵罐中-内酰胺类抗生素 (二)四环类抗生素
(三)氨基糖苷类抗生素 (四)大环内酯类抗生素 (五)多烯大环类抗生素 (六)多肽类抗生素 (七)蒽环类抗生素 (八)其他类
四、根据作用机制
(一)抑制细胞壁合成 (二)影响细胞膜功能 (三)抑制和干扰蛋白质合成 (四)抑制核酸合成 (五)抑制细菌生物能作用
OH
H+ or HgCl2
-CO2
NH O
Penilloaldehyde
CHO
O
NH S H

发酵工程与设备第九章、第一讲-发酵放大与设计

发酵工程与设备第九章、第一讲-发酵放大与设计
缺点
气体吸入量与液体循环量之比较低,对于耗氧 量较大的微生物发酵不适宜。
机械搅拌通风发酵罐
(二) 罐体的尺寸比例
H----柱体高 (m) HL---液位高度(m) D----罐内径 (m) d----搅拌器直径 s----两搅拌器的间距 B----最下一组搅拌器距罐 底的距离 W----挡板宽度
H / D = 1.7 ~ 4 d / D = 1/2 ~ 1/3 W / D = 1/8 ~ 1/12 B / d = 0.8 ~1.0 (s/d)2 = 1.5 ~2.5 (s/d)3 = 1 ~2
用水量大
6、轴封、联轴器和轴承






1)轴封
作用: 使罐顶(或底)与搅拌轴间的缝隙密封; 防止泄漏和染菌
类型: 填料函 端面轴封
1 转轴 3 压紧螺栓 5 铜环
2 填料压盖 4 填料箱体 6 填料(石棉等)
填料函
构成 优点:结构简单、价格低
缺点: 易渗漏,寿命短 对轴磨损较重 摩擦功率消耗大
雷诺(Reynolds),英国,流型判别的依据 雷诺实验(1883年)表明,流动的几何尺寸(管内径d)、 流动的平均流速u及流体性质(密度ρ和粘度μ)对流型的变化 有很大影响。可以将这些影响因素综合成一个无因次的数群 作为流型的判据。
Re=d·u·ρ/μ
d—管内径; u—流动的平均流速 ρ—流体密度; μ—流体粘度
VL —— 发酵罐内发酵液量(m3) Qc —— 发酵液循环量(m3/s) d —— 环流管二内径(m)
—— 发酵液在环流管内流速(m/s)
2)压比、压差、环流量间的关系
发酵液的环流量与通风量之比称为气液比。
A = Qc / Q

发酵工程教案(打印)

发酵工程教案(打印)

发酵工程教案(打印)第一章:发酵工程的概述1.1 发酵工程的定义发酵工程的概念发酵工程的组成1.2 发酵工程的应用领域食品工业制药工业生物化工1.3 发酵工程的发展历程传统发酵技术现代发酵工程技术第二章:发酵过程的微生物学基础2.1 发酵微生物的分类与特性细菌真菌放线菌2.2 发酵微生物的培养与筛选培养基的选择与制备微生物的分离与纯化2.3 发酵微生物的代谢调控微生物的生长曲线微生物的代谢途径第三章:发酵设备的类型与选择3.1 发酵设备的类型大型发酵罐生物反应器膜分离设备3.2 发酵设备的选择原则生产规模产品特性经济效益3.3 发酵设备的运行与维护设备的启动与停止设备的清洗与消毒设备的故障处理第四章:发酵过程的控制与管理4.1 发酵过程的控制参数温度pH值溶氧量营养物质4.2 发酵过程的控制技术自动控制系统反馈控制系统计算机控制系统4.3 发酵过程的管理与优化生产计划的制定发酵条件的优化生产过程的质量控制第五章:发酵工程的案例分析5.1 乳酸菌发酵工程案例酸奶的生产泡菜的制作5.2 酵母菌发酵工程案例啤酒的生产葡萄酒的制作5.3 放线菌发酵工程案例抗生素的生产维生素的生产第六章:发酵工程的安全与环保6.1 发酵工程的安全问题微生物的危害生物安全措施发酵罐的安全操作6.2 发酵过程中的污染控制污染的来源污染的检测与控制清洁生产技术6.3 发酵工程的环保问题废水处理废气处理固体废弃物处理第七章:发酵工程的产业化应用7.1 发酵工程在食品工业的应用面包酵母的生产乳酸菌的产业化7.2 发酵工程在制药工业的应用抗生素的产业化维生素的产业化7.3 发酵工程在其他领域的应用生物燃料的生产生物材料的产业化第八章:发酵工程的研发与创新8.1 发酵工程的新技术发展重组DNA技术基因工程技术合成生物学技术8.2 发酵工程的新设备开发高通量筛选设备生物反应器的设计自动化控制系统8.3 发酵工程的产业化挑战与机遇产业化过程中的问题产业化发展的趋势产业化政策的分析第九章:发酵工程的实例分析与评价9.1 发酵工程案例分析某乳酸菌产品的生产某抗生素的生产9.2 发酵工程项目的评价技术与经济评价环境与社会影响评价风险评价9.3 发酵工程的发展前景与建议行业发展趋势技术创新方向政策与支持措施第十章:发酵工程的实验操作10.1 发酵实验的基本操作菌种的制备与保藏发酵液的制备发酵过程的监控10.2 发酵实验的设计与优化实验设计方法发酵条件的优化实验结果的分析10.3 发酵实验的操作技能培养实验操作的安全规范实验设备的操作与维护实验数据的准确记录与处理重点和难点解析重点环节一:发酵微生物的分类与特性重点掌握不同类型发酵微生物的分类、特点及应用领域。

发酵工程细节控制方案

发酵工程细节控制方案

发酵工程细节控制方案一、微生物菌种的选取和培养条件控制1.1 菌种的选取在发酵工程中,菌种的选取是非常重要的一环。

不同的微生物对于不同的环境条件有着不同的适应性,因此在选取菌种时需要考虑到实际需要产物的特性和生产过程中的操作条件。

一般来说,菌种应具有较高的生长速度和产物生成能力,能够适应生产过程中的温度、pH 值和氧气条件等。

1.2 培养条件控制在菌种的培养过程中,需控制以下方面的条件:温度、pH值、氧气供应和营养成分。

温度和pH值是影响微生物生长和产物生成的重要因素,通常情况下应在微生物的最适生长温度和pH值下进行培养。

同时,氧气供应和营养成分的添加也是培养过程中需要细节控制的地方,这直接影响了微生物的生长速度和产物的产量。

二、发酵过程的环境条件控制2.1 温度控制发酵过程中的温度控制是非常重要的,不同的微生物对于温度的适应性不同,同时温度也直接影响着微生物的生长速度和产物生成速率。

在发酵过程中,通常需要根据微生物的生长特性和产物的需求来控制温度。

一般来说,应在微生物的最适生长温度范围内进行发酵。

2.2 pH值控制pH值是影响微生物生长和产物生成的另一个重要因素,不同的微生物对于pH值的适应性有所不同。

在发酵过程中,需要根据微生物的需要和产物的特性来控制pH值。

通常情况下,应在微生物最适的pH值范围内进行发酵。

2.3 氧气供应控制在发酵过程中,氧气是微生物能够进行呼吸和产生目标产物所必需的。

因此,需要根据微生物菌种的需氧性来控制氧气的供应。

一般来说,在发酵过程中,需要通过改变通气速率来控制氧气的供应量,以满足微生物的需氧需求。

2.4 营养成分的添加控制营养成分的添加是发酵工程中的另一个重要环节,微生物需要通过吸收外源的营养成分来满足其生长和产物生成的需求。

在发酵过程中,通常需要根据微生物的需要和酶产物的特性来控制营养成分的添加量和添加时间,以保证微生物的正常生长和产物的高产量。

三、发酵过程的微生物状态和发酵产物监控3.1 微生物状态监控在发酵过程中,需要通过监控微生物的生长状态来及时发现微生物的异常情况或者满足微生物的需求。

发酵过程优化与控制(原理部分)

发酵过程优化与控制(原理部分)

16
大型发酵罐 搅拌装置
17
现代发酵工程的主要研究内容
1.发酵过程的优化控制技术 2.生化过程的模型化 3.高密度培养技术 4.代谢工程和代谢网络控制 5.新型生化反应器的研究和开发 6.新型发酵和产品分离技术
18
第一章
绪论
一. 发酵过程优化在生化工程中的地位 二. 发酵过程优化的目标和研究内容 三. 发酵过程优化的研究进展 四. 流加发酵过程的优化控制
19
一. 发酵过程优化在生化工程中的地位
现代生物技术不仅能在生产新型食品、饲料添加剂、 药物的过程中发挥重要的作用,还能经济、清洁地 生产传统生物技术或一般化学方法很难生产的特殊 化学品,在解决人类面临的人口、粮食、健康、环 境等重大问题的过程中必将发挥积极的作用 如何才能更好地发挥现代生物技术的作用? 以工业微生物为例,选育或构建一株优良菌株仅仅是 一个开始,要使优良菌株的潜力充分发挥出来,还必 须优化其发酵过程,以获得较高的产物浓度(便于下 游处理)、较高的底物转化率(降低原料成本)和较高 的生产强度(缩短发酵周期) 20
养或半连续发酵,是指在分批发酵过程
中间歇或连续地补加新鲜培养基的发酵
方法
36
流加发酵的研究进展
在20世纪70年代以前流加发酵的理论研究 几乎是个空白,流加过程控制仅仅以经验为 主,流加方式也仅仅局限于间歇或恒速流加
1973年日本学者Yoshida等人首次提出了 “Fed-Batch Fermentation”这个术语,并从理 论上建立了第一个数学模型,流加发酵的研究 才开始进入理论研究阶段
11
基于碳氢化合物的经济转变为基于 碳水化合物的经济
将工业革命世纪转变到生物技术世纪 只有工业微生物才能将来源于太阳能的可再

发酵工程教案(打印

发酵工程教案(打印

发酵工程教案(打印)第一章:发酵工程的概述1.1 发酵的定义和意义1.2 发酵工程的起源和发展1.3 发酵工程的研究内容和应用领域第二章:发酵过程的基本原理2.1 微生物的生长与代谢2.2 发酵条件的控制2.3 发酵过程中的物质变化第三章:发酵设备及其设计3.1 发酵罐的设计与选择3.2 发酵过程的自动化控制3.3 发酵设备的清洗与消毒第四章:发酵条件的优化与控制4.1 发酵条件的优化方法4.2 发酵过程的监控与控制4.3 发酵过程中的问题与解决方法第五章:发酵工程的应用实例5.1 微生物肥料的生产与应用5.2 生物农药的发酵生产5.3 食品工业中的发酵应用第六章:发酵工程在药品生产中的应用6.1 抗生素的发酵生产6.2 维生素的发酵生产6.3 重组蛋白的发酵生产第七章:生物化工领域的发酵工程7.1 氨基酸的发酵生产7.2 有机酸的发酵生产7.3 生物酶的发酵生产第八章:发酵工程在环保领域的应用8.1 生物滤池技术8.2 生物脱硫技术8.3 生物降解技术第九章:发酵工程的产业化与发展9.1 发酵工程的产业化流程9.2 发酵工程的技术创新与挑战9.3 我国发酵工程产业的发展现状与趋势第十章:发酵工程的可持续发展10.1 发酵工程与资源利用10.2 发酵工程与环境保护10.3 发酵工程的循环经济模式第十一章:发酵工程在生物制药中的应用11.1 重组蛋白药物的发酵生产11.2 疫苗的发酵生产11.3 基因治疗的发酵工程应用第十二章:发酵工程技术在农业中的应用12.1 微生物肥料的发酵生产12.2 生物农药的发酵生产12.3 动物疫苗和生物兽药的发酵生产第十三章:发酵工程在生物能源中的应用13.1 燃料酒精的发酵生产13.2 生物柴油的发酵生产13.3 生物气体的发酵生产第十四章:发酵工程在生物材料中的应用14.1 发酵生产生物塑料14.2 发酵生产生物纤维14.3 发酵生产生物复合材料第十五章:发酵工程的案例分析与实践操作15.1 发酵工程案例分析15.2 发酵工程的实践操作技巧15.3 发酵工程的实验设计与数据分析重点和难点解析本文教案涵盖了发酵工程的概述、基本原理、设备设计、条件优化与控制、应用实例、药品生产、生物化工、环保领域应用、产业化发展、技术创新、可持续发展以及案例分析和实践操作等多个方面。

发酵工程第九章 空气除菌

发酵工程第九章  空气除菌

第二节 过滤介质除菌
常用过滤介质 (1)棉花
直径16~21um左右,填充密度150~ 200kg/m3;填充要均匀
(2)玻璃纤维 直径8~19um,填充系数6%~10%
(3)活性炭Βιβλιοθήκη 过滤效率较低(4)超细玻璃纤维纸 直径1~2um,网格孔隙0.5~5um
(5)烧结材料过滤介质 (6)新型过滤介质
发酵对无菌空气的要求是 :无菌,无灰尘,无 杂质,无水,无油,正压等几项指标;
发酵对无菌空气的无菌程度要求是:只要在发酵 过程中不因无菌空气染菌,而造成损失即可。
在工程设计中一般要求1000次使用周期中只允许 有一个菌通过,即经过滤后空气的无菌程度为 N=10-3
二、空气除菌的方法
(一)热杀菌 (二)静电除菌 (三)过滤除菌 (四)辐射杀菌
(一)、空气除菌
工业发酵对空气处理的要求随发酵产品和菌种不同 而异。
半固体制曲和酵母生产中无菌要求不十分严格,一 般无需复杂的空所净化处理;
密闭的深层通气发酵需严格的纯净培养,进入发酵 罐前空气必须进行冷却、脱水、脱油和过滤除菌等 处理。
(二)发酵对空气无菌程度 的要求
好气性发酵过程中需要大量的无菌空气,空气要 作到 绝对无菌在目前是不可能的,也是不经济 的。
无菌室常用的紫外灯功率为30W,安装在操作台 上方一米左右高处,每次照射15-30min既可。
紫外线有很强的杀菌力,但穿透力很弱,一张薄 纸即可完全挡住紫外线,因此待灭菌物品必须置 于紫外光直接照射下,而且在一定范围内作用强 度与距离平方成反比。
此外,紫外线对人体组织有一定刺激作用,眼睛、 皮肤受照射后会产生某些症状,所以工作人员在 无菌室操作时应关闭紫外灯
空气除菌
空气的灭菌是好氧培养过程中的一个重要环节。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。


一、pH值对发酵过程的影响 二、发酵过程中pH的变化及影响因素 三、发酵过程中pH的控制


发酵液中pH变化的基本原理

微生物代谢对 pH影响主要在两种情况下发生:①酸性或碱性代谢产 物的生成或释放;②菌体对培养基中生理酸性或碱性物质的利用。

引起发酵液中pH下降的因素 (1)C/N过高,或中间补糖过多,溶氧不足,致使有机酸积累,pH下
4. pH控制系统
执行单元 补料
4~20mA
pH变选器 mA pH电极
调节器
给定值
第三节
泡沫对发酵的影响及控制
一、泡沫的性质 二、泡沫的形成及变化 三、泡沫对发酵的影响和消除
1、根据发酵液的性质不同,泡沫有两种类型: ①发酵液液面上的泡沫,气相比例特别大,与液体之间有明显界线;
②菌体发酵液中的泡沫,均匀稳定,与液体之间没有明显界线,气相

4. 最适温度的选择与控制

定义:最适温度是指在该温度下最适于菌的生 长或产物的生成,它是一种相对概念,是在一 定条件下测得的结果。
二阶段发酵 e.g.青霉素发酵:菌体生长期,30 ℃ 青霉素合成分泌期, 20 ℃

4. 最适温度的选择与控制

最适温度的选择还要参考其它发酵条件灵活掌握

通气条件较差情况下,最适发酵温度可能比正
(3)引起pH上升的因素:
凡是导致碱性物质生成或释放及酸性物质消耗,都会引起发酵液pH
上升。 ①培养基中碳、氮比例不当,氮源过多,氨基氮释放,使pH上升; ②生理碱性物质存在; ③中间补料中氨水或尿素等碱性物质的加入过多使pH上升。
①添加碳酸钙法; ②氨水流加法;
③尿素流加法。


配制合适的培养基,有很好的缓冲能力;
条件发生较大变化时,pH将会不断波动。
如:利福平霉素的产生菌,采用初始pH为6.8和7.5时,最终发酵pH 都达到7.5左右,发酵单位达到正常水平,但当初始pH为6.0时,发酵单
位为零。
(2)引起pH下降的因素: 凡是导致酸性物质生成或释放及碱性物质消耗都会引起发酵液 pH下 降。 ①培养基中碳氮比例不当,碳源过多,特别是葡萄糖过量,或者中间 补糖过多加之溶解氧不足,致使有机酸大量积累而pH下降; ②消泡剂加量过多; ③生理酸性物质的存在,氨被利用。
浊度分析等

新技术:以电容法为测量原理的在线
活细胞浓度测量传感器
原位活细胞在线检测仪
第一节 温度对发酵的影响及其控制
1. 影响发酵温度的因素 2. 温度对微生物生长的影响 3. 温度对产物合成的影响 4. 最适温度的选择与控制
(1)发酵热

发酵过程中所产生的热量,叫做发酵热。 Q发酵=Q生物+Q搅拌-Q蒸发-Q辐射
e.g. 四环素发酵中金色链霉菌:T<30℃,产生金霉素; T达35 ℃,产生四环素; 谷氨酸发酵中扩展短杆菌: 30℃培养后37 ℃发酵, 积累过量乳酸。

温度对菌的调节机制关系密切 。
3. 温度对产物合成的影响

影响酶系组成及酶的特性。 米曲霉制曲:温度控制在低限,有利于蛋白酶 合成 凝结芽孢杆菌的 α-淀粉酶热稳定性: 55℃培养 → 90℃保 持 60min ,剩 留 活性 为 88%~99% ; 35℃培养 → 经相同条件处理,剩余活性仅有 6%~10%。
2. 发酵过程控制的一般步骤
确定能反映过程变化的各种理化参数及其检测方法 研究这些参数的变化对发酵生产水平的影响及其机制, 获取最适水平或最佳范围 建立数学模型定量描述各参数之间随时间变化的关系 通过计算机实施在线自动检测和控制,验证各种控制 模型的可行性及其适用范围,实现发酵过程最优控制
3. 参数检测


优点:及时、省力,可从繁琐操作中解脱出来,便 于计算机控制。 困难:传感器要求较高。

3. 参数检测
对传感器的要求

能经受高压蒸汽灭菌; 传感器及其二次仪表具有长期稳定性;



最好能在过程中随时校正,灵敏度好; 探头材料不易老化,使用寿命长; 安装使用和维修方便; 解决探头敏感部位被物料(反应液)粘住、堵塞 问题; 价格合理,便于推广。
(2)生物热


来源 :微生物对营养物质的分解所释放的能量 影响因素: 菌株 培养基成分 发酵时期 生物热与其它参数的关系 ①呼吸强度QO2 当产生的生物热达到高峰时,菌的呼 吸强度最大,糖的利用速率也最大, ②糖利用速率 可用耗氧量、糖耗来衡量生物热。
2. 温度对微生物生长的影响

代谢参数按性质可分为三类: 物理参数:温度、搅拌转速、罐压、空气流量、溶解 氧、表观粘度、排气氧(二氧化碳)浓度等


化学参数:基质浓度(包括糖、氮、磷)、 pH、产物 浓度等 生物参数:菌丝形态、菌体浓度、菌体比生长速率、 呼吸强度、摄氧率、关键酶活力等
3. 参数检测

参数按获取方式可分为两类:
1. 过程控制的重要性
生物因素: 菌株特性(营养要求、生长速率、 决定发酵 呼吸强度、产物合成速率) 单位(水平) 设备性能:传递性能 的因素 理化因素 物理:n、T、Ws 工艺条件 化学:pH、DO、浓度 过程控制的意义:最佳工艺条件的优选(即最佳工艺参数 的确定)以及在发酵过程中通过过程调节达到最适水平的 控制。
3. 温度对产物合成的影响

影响发酵过程中各种反应速率,从而影响微生物的生 长代谢与产物生成。 e.g. 青霉菌发酵生产青霉素 青霉菌生长活化能E1=34kJ/mol
青霉素合成活化能E2=112kJ/mol
∴青霉素合成速率对温度较敏感
3. 温度对产物合成的影响

改变发酵液的物理性质,间接影响菌的生物合成 。 影响生物合成方向。
压差法:H= (△P2/△P1)· △H
直接重量测量法:直接称重
体积计量法:计算进出料液 流量计量法:计算流量和时间 液位探针
3. 参数检测
参数检测方法

发酵液粘度测定 毛细管粘度计 回转式粘度计 涡轮旋转粘度计
3. 参数检测
参数检测方法

pH测量 复合pH电极 pH测量仪器
3. 参数检测
常良好通气条件下低一些。

培养基成分和浓度的影响
4. 最适温度的选择与控制

变温培养:在抗生素发酵过程中采用变温培养比用恒
温培养所获得的产物有较大幅度的提高。
e.g. 四环素发酵:0~30h稍高温度→30~150h稍低温度 →150h后升温发酵 青霉素发酵:30℃, 5h→25 ℃, 35h →20 ℃, 85h → 25 ℃, 40h;产量提高14.7%
3. 参数检测
参数检测方法

温度测量
感温元件:热电偶(温度信号→ 电信号) 二次仪表:将热电偶输出的电信号转换成 被测介质的温度
3. 参数检测
参数检测方法

搅拌转速和搅拌功率的测量 测速电机;
搅拌转速:磁感应式,光感应式, 搅拌功率:功率表,测定力矩求功率法。
3. 参数检测
参数检测方法
配制不同初始pH的 培养基,摇瓶考察 发酵情况
pH对产海藻酸裂解酶的影响
1. 发酵过程中pH的变化 (1)生长阶段:pH有上升或下降趋势 如:利福霉素 B 发酵起始pH 为中性,但生长初期由于菌体产生的蛋白 酶水解蛋白胨而生成铵离子,使pH上升至碱性;接着,随着铵离子的利 用及葡萄糖利用过程中产生的有机酸使pH下降到酸性范围。
降;
(2)消泡剂加得过多:脂肪酸增加; (3)生理酸性盐的利用; (4)酸性产物形成:如有机酸发酵。
发酵液中pH变化的基本原理

引起发酵液中pH上升的因素
(1)C/N过低(N源过多),氨基氮(NH4+)释放; (2)中间补料中氨水或尿素等碱性物质加入过多;
Hale Waihona Puke (3)生理碱性盐的利用;(4)碱性产物形成。
空气流量测定 体积流量型:

会引起流体能量损失,受温度和压力变化的影响; ①同心孔板压差式流量计; ②转子流量计。 质量流量型: 根据流体固有性质(质量、导电性、热传导性能) 设计的流量计。
3. 参数检测
参数检测方法

罐压测量
压力表
压力传感器
3. 参数检测
参数检测方法

料液计量与液位控制
改变细胞膜的渗透性,影响微生物对营养物质的吸收及代谢产物的排
泄,影响代谢的正常进行。
1. pH对发酵的影响
③影响培养基某些组分的解离,进而影响微生物对这些物质的利用。 ④pH不同,往往引起菌体代谢过程的不同,使代谢产物的质量和比例 发生改变。
最适pH的选择

选择pH准则:获得最大比生产速率和合适的菌体量, 以获得最高产量。
参数检测方法

溶解氧的测量 化学法 极谱法 复膜氧电极法
复膜氧电极示意图 (a)极谱型 (b)原电池型
3. 参数检测
参数检测方法

溶解二氧化碳测量 复膜式电极法 渗透膜—碳酸氢钠法 发酵尾气的在线分析

CO2分析
O2分析
3. 参数检测
参数检测方法

细胞浓度的测量 化学法:如DNA、RNA分析等 物理法:如重量分析、分光光度分析、
发酵过程中加入非营养基质的酸碱调节剂 (NaOH、HCl、CaCO3);

发酵过程中加入生理酸性或碱性基质,通过代谢调节pH; 酸性基质:铵盐、糖、油脂、玉米浆(脱NH4+) 碱性基质:NO3-盐、有机酸盐、有机氮、氨水、尿素 原则: ①残糖高时,不用糖调pH ②残N高时,不用生理盐调pH

pH控制与代谢调节结合起来,通过补料来控制pH
嗜冷、嗜中温、嗜热菌的典型生长与温度关系
相关文档
最新文档