巧用定积分求极限

巧用定积分求极限
巧用定积分求极限

定积分在求极限中的应用

1、知识准备

绪论

微积分学在大学的数学学习中占有相当重要的地位.然而,求极限又是微积分学中常常要面临的问题.因此,积累更多求极限的方法应是每位大学生必备的素养.

求极限的方法层出不穷,最常用的方法有极限的定义和性质,重要极限的结论,洛必达法则以及泰勒公式等.应用极限的定义时,往往是在极限的结果已经比较明显,只需要根据极限的定义把相关式子进行放缩便可得到相应的结果.但是,这种方法一方面叙述上比较麻烦,另一方面也只适用于看上去容易放缩的式子.重要极限的结论形式上要求

非常严格,也只能解决两种形式的极限问题.洛必达法则是用于解决“0

”型的极限和

“∞

”型极限的.泰勒公式适宜于解决求分式极限中分子或分母有加减运算的问题,通过泰勒展式后可以达到某些项抵消效果.但若仔细观察这些方法,其特点不是表达较繁琐就是仅仅应用到微分学知识.事实上,微分学和积分学的关系正如中小学时代学习过的加法与减法,乘法与除法,乘方与开方以及幂运算与取对数运算的关系一样,他们互为逆运算.倘若也能用到积分学知识来解决求极限的问题,那么求极限的方法才算完美.而利用定积分求极限正体现了这一理念. 定积分的概念

下面首先让我们回顾一下定积分以及极限的定义:

定积分:设函数()f x 在闭区间[],a b 上有定义,在闭区间[],a b 内任意插入n-1个分点将

[],a b 分成

n 个区间[,]x i i x x -,记(1,2,,i i i x x x i n ?=-=L ),1[,]i i x x ξ-?∈,作乘积

()i i f x ξ?(称为积分元),把这些乘积相加得到和式1

()n

i i i f x ξ=?∑(称为积分形式)设

{}max :1i x i n λ=?≤≤,若0

1

lim ()n

i i i f x λξ→=?∑极限存在唯一且该极限值与区是[],a b 的分法及分点i ξ的取法无关,则称这个唯一的极限值为函数()f x 在[],a b 上的定积分,记作

b a

()f x dx ?,即0

1

()lim ()n

b a

i i i f x dx f x λξ→=?=?∑.否则称()f x 在[],a b 上不可积.

注1:由牛顿莱布尼兹公式知,计算定积分与原函数有关,故这里借助了不定积分的符号.

注2:若()b a f x dx ?存在,区间[],a b 进行特殊分割,分点i ξ进行特殊的取法得到的和式极限存在且与定积分的值相等,但反之不成立,这种思想在考题中经常出现,请读者要真正理解.

注3:定积分是否存在或者值是多少只与被积函数式和积分区间有关与积分变量用

什么字母表示无关,即()()().b b b

a a a f x dx f t dt f u du ?=?=?

仔细观察定积分的定义,我们一定会发现定积分的极限有以下两个特征.第一,定积分是无穷项和式的极限,容易知道一般项在项数趋近于无穷大时极限值必然趋近于零,否则和式极限不存在.第二,定积分与某一连续函数有紧密的关系,它的一般项受到这一连续函数的约束,它是连续函数在某个区间上进行了无穷的分割,各小区间上任意的函数值与区间长度的乘积的累加.

对于极限,大学主要学习了数列的极限和函数的极限.数列的极限是用于解决离散的自然数的相关极限,而函数的极限则主要用于解决连续函数的相关极限.那么就让我们先一一来回忆它们吧! 极限的概念

数列的极限

设{}n a 为数列, a 为实数,若对任给的正数ε,总存在正整数N ,使得当n N >时有

||n a a ε-<, 则称数列{}n a 收敛于a ,实数a 称为数列{}n a 的极限,并记作lim n n a a →∞

=或

()n a a n →→∞.

(读作:当n 趋于无穷大时, n a 的极限等于a 或n a 趋于a ).由于n 限于取正整数,所以在数列极限的记号中把n →+∞写成n →∞,即lim n n a a →∞

=或()n a a n →→∞.

若数列{}n a 没有极限,则称{}n a 不收敛,或称{}n a 为发散数列.

注1:关于ε:①ε的任意性.定义1中的正数ε的作用在于衡量数列通项n a 与常数a 的接近程度,ε越小,表示接近得越好;而正数ε可以任意小,说明n a 与常数a 可以接近到任何程度;②ε的暂时固定性.尽管ε有其任意性,但一经给出,就暂时地被确定下来,以便依靠它来求出N;③ε的多值性.ε既是任意小的正数,那么2,3,2ε

εε等等,同样也是任

意小的正数,因此定义1中的不等式||n a a ε-<中的ε可用

2,3,2

ε

εε等来代替.从而

“||n a a ε-<”可用“||n a a ε-≤”代替;④正由于ε是任意小的正数,我们可以限定ε小于一个确定的正数.

注2:关于N :①相应性,一般地, N 随ε的变小而变大,因此常把N 定义作()N ε来强调, N 是依赖于ε的;ε一经给定,就可以找到一个N ;②N 多值性N 的相应性并不意味着N 是由ε唯一确定的,因为对给定的ε,若100N =时能使得当n N >时,有

||n a a ε-<,则101N =或更大的数时此不等式自然成立.所以N 不是唯一的.事实上,在

许多场合下,最重要的是N 的存在性,而不是它的值有多大.基于此,在实际使用中的N 也不必限于自然数,只要N 是正数即可;而且把“n N >”改为“n N >”也无妨.

函数的极限

设函数()f x 在点0x 的某一去心邻域内有定义.如果存在常数A ,对于任意给定的正数ε(不论它有多么小),总存在某正数δ,使得当x 满足不等式00x x δ<-<时,对应的函数值()f x 都满足不等式()f x A ε-<,那么常数A 就叫做函数()f x 当0x x →时的极限,记为0

0lim ()()()x x f x A f x A x x →=→→或当.

可以看出,数列极限与函数极限定义的思想是一致的,都是相应的某个表达上的值无限地接近某个常数值.不同的是数列是离散的,数列中的项在跳跃式地接近,而函数是连续的,函数值在逐渐地接近,但二者都能与相应的常数值以任意程度地接近.

2、定积分与极限

定积分在求极限中应用概述

不难看出,无论是数列的极限还是函数的极限,它们都与定积分的定义存在着千丝

万缕的关系,那么就让我们来揭晓它们之间玄机与奥秘吧.

事实上,定积分的定义中蕴含着一列数{()i i f x ξ?}的和,并且只要i x ?充分地小,和式1()n

i i i f x ξ=?∑就可以任意地接近确定的实数J=()b a f x dx ?,这正是极限思想的存在,即

1

lim ()J ()n

b i i a n i f x f x dx ξ→∞

=?==?∑.这就为我们求极限提供了一种独特而有力的方法——利

用定积分求极限.因为在积分学中有大量的积分公式,所以我们运用之解决众多类型的和式极限.

定积分求极限中应用思想的形成

先让我们看一个简单的例子:

例1.求极限111lim(

)122n J n n n

→∞

++=++…. 分析:此极限式的求解,不容易直接用极限的定义解决,因为该法往往是用来一边计算一边证明某个极限结果已经比较明显的问题,因此这里不适合;重要极限的结论显然也在这里没有用武之地,因为形式上根本不同;再考虑洛必达法则,它不是无穷比无穷型的极限也非零比零型的极限,也不可能用到此法;那么泰勒公式呢?泰勒公式往往是用来解决连续函数的极限问题,通过泰勒展式往往能把非多项式形式的表达式转化成多项式形式,以简化形式从而求解,看来这里也不适用.那是不是就没有什么合适的办法了呢?答案当然是否定的,事实上,它从形式上与定积分的定义还是有一些相像的,那么就让我们尝试用定积分的办法来解决这个问题吧!

解:把此极限式转化为某个积分形式,从而计算定积分.为此做如下变形:

1

11lim 1n

n i J i n n

→∞==+∑

.

不难看出,其中的和式是函数1

()1f x x

=

+在区间[]0,1上的一个积分和(这里取得是等量分割,11,[

,],1,2,i i i i i

x i n n n n n

ξ-?==∈=…).所以, J=11

001ln(1=ln21dx x x

=++?). 从该例题的解法中可以看出,本题的关键是将极限和转化为积分和,从而利用了定

积分将所求极限迎刃而解.于是,我们可以总结出定积分在求极限中应用的一般方法步骤:

Sept1将和式极限1

lim ()n n i g i →∞=∑经过变形,使其成为积分形式1

lim ()n

i i n i f x ξ→∞

=?∑.这里常取11,[,],1,2,i i i i i x i n n n n n

ξ-?==∈=…;

Sept2确定积分函数的上下限.

a=lim (i n i ξ→∞

取第一个值)lim (i n b i ξ→∞

=取最后一个值)

; Sept3用x 代换i ξ,写出定积分表达式()b

a

f x dx ?,并求出原极限的值.

通过以上的一般方法步骤,我们在面对无穷项和式的极限问题时就有方可依,有法可循了.现在让我们再来看一个例子,并从中仔细体会以上方法步骤.

例2.求极限222222

111

lim (

12n n n n n n →∞

+++++…+)

. 解:Sept1 化和式极限为积分形式.

原极限=22211111

lim lim 1(n

n n n i i i n i

n n

→∞→∞===++∑∑).

显然,这里1,(i i i x n n ξ=?=即是进行N 等分),被积函数可看成()2

1

f x ,1,2,.1+i n x

==… Sept2 确定积分函数上下限.

1a lim

0(,1),lim 0(,).i i n n i n i

i b i n n n n

ξξ→∞→∞======取取n Sept3 写出积分表达式并求出积分值. 原极限=1

10

2

01

arctan 14

dx x x π

==

+?

.

对于本题,我们是紧紧按照刚刚总结出的方法步骤进行的,并顺利地求出了原题的极限值.这是一个具体的例子,那么我们是否可以总结出更为一般性结论呢?答案自然是肯定的.

3、应用定积分求极限

一般性结论的综述及其应用

至此,我们可以得出如下结论:

结论1如果函数()f x 在区间[],a b 上连续,将区间[],a b 进行n 等分,

1[(()],i i i i b a

b a b a x n n n

ξ--∈--?=),,那么,1lim ()()n b i a n i b a f f x dx n ξ→∞=-=∑?. 事实上,连续函数一定可积,而将区间[],a b 进行n 等分也是分割T 的一种特殊情况.根据定积分的定义,上述结论成立.

当然,并不是所有的用到定积分求极限的问题中都要严格用到上面总结出的三个步骤,我们可视情况灵活处理,比如无需用到某一步骤或者还需用到其他求极限的思想等.下面我们再看一组求极限的习题,以充分感受结论1的用途.

习题组1

1) 1lim (sin +sin +sin );n n n n n

πππ→∞2n-1

2)

n →∞

3) sin

sin

sin

lim[

]11

12n n n n n n n n

π

ππ

→∞+++++2n …. 这组习题都是无穷项式子和的极限问题,都可以把定积分的思想应用到求极限中去.现在就让我们用结论1来解决这些求极限的问题,并从不同习题中寻找出异同,以加深对结论1的掌握和认识.

解: (1) 分析 原极限显然可以看成()sin f x x π=在[]0,1上的定积分.故

1

110

11lim (sin +sin +sin )lim sin 12sin cos ;n n n i i n n n n n n xdx x ππππππππ

→∞→∞====-=∑?2n-1…

(2)分析 先通过恒等变形,原极限式

=1

1lim n

n i n →∞=,被积函数(

)f x =

,积分区间是[]0,1,于是原极限值

=1

10

22

(13)33x =+=?

;

(3)分析 原和式极限的通项是

sin i n i n n

π

+不可以看成是关于i n 的某一个函数,但是注意到: 2sin

sin

sin

1212(sin sin sin )(sin sin sin ).11112n n n n n n n n n n n n n n n n n n

π

ππ

ππππππ+++<

+++<+++++++

……… 应用结论1,上面不等式左端可以取极限,即

111211lim (sin sin sin )lim sin [lim sin ][lim ]1+1

+1n

n n n n n i i n n i i n n n n n n n n n n n πππππ→∞→∞→∞→∞==+++=??=?+∑∑…=1

2

[sin ]1xdx ππ

?=

?,上面不等式右端可以取极限,即

1011212

lim (sin sin sin )lim sin sin n n n i n i xdx n n n n n

n ππππππ→∞→∞=+++=?==∑?….

于是,由极限的迫敛性可知原极限值=

2

π

. 这组题均典型地运用了定积分的计算,从而求出了各极限.我们发现,只要找到某个

连续函数()f x ,并能把这个和式极限1lim ()n

n i g i →∞=∑转化成积分形式1

limf ()n i n n →∞?,我们就只需

计算出f(x)在[0,1]上的积分值,从而确定出原极限值.这三个习题中,例题1的式子无需再进行恒等变形,因为其形式上已经是lim n →∞

f(

i n )1

n

?了;习题2与习题3形式上直观上不是lim n →∞

f(

i n )1

n ?的形式,因为式

子n →∞与式子sin

sin

sin

lim[

]1112n n n n n n n n

π

ππ

→∞+++++

2n …都不含i n 的项.为此,我们需要对习题2以及习题3极限的式子进行恒等变形,通过提取公因式等手段使其出现i

n

的因子.当然有的题可能不容易

找到对应的连续函数()f x ,例如习题3,我们可以用极限的一些性质,如极限的迫敛性,从而间接地求出原和式极限的极限值. 一般性结论的深化及推广

接下来,我们对结论1进行适当的推广,以得到更多形式的极限的求法.

推论1如果函数(),(),()()f x g x f x g x ?均在[],a b 上可积,

0111120

1

[,],[,]lim ,max{,,},lim ()()()().

n i i i i x n

b

i i i n i i i a

i a x x x b a b x x x x x x x f g x f x g x dx λξηλξη-→∞

-→==<<<=?=-=????=∑?…为区间的任意划分,小区间上任意两点,…则

证明:首先, (),(),()()f x g x f x g x ?均在[],a b 上可积.

又由于1,,i i i i n n ξη-??

∈????

,0(i x n ?→→∞当),所以,lim lim .i i n n ξη→∞→∞=

于是,0

1

lim ()()n i i i i f g x λξη→=?∑=0

1

lim ()()n

i i i i f g x λξξ→=?∑=()()b

a

f x

g x dx ?.

例3.求极限:

122lim [sin cos()sin cos()sin cos()]222n n n n n n n n n n n n n

πππππππππ

→∞-+-++-…. 解:由推论1可知,f(x)=

(1)sin ()cos [0,1],[,],0,1,2,(1).2i i i i x g x x i n n n n n n

πππππ

ππ-=-∈=-及皆在上可积,且…

lim

lim(),1,2,.2n n i i i n n n n

πππ

→∞→∞=-=… 于是,原极限式=12100

11

sin cos sin 0

2

x xdx x ππππ=

??=?. 推论2

设1

0ln ()ln ()0,1]lim

.f x dx n f x e →∞

?=在区间[上可积,则

1

0112lim [ln ()ln ()ln ()]ln (),lim

(n n f f f n n n n

n f x dx

e e →∞++→∞

=?=…事实上对数的性质)

(定积分的定义).

4.试求:1

12lim(

)n n n n n n n n n

→∞+++??…. 2解:直接应用推论

1

1

011ln(1)1[ln(1)ln(1)]12lim()lim (1)4.

n

x dx n n n n i x x x x n n n n i e n n n n e e

+→∞→∞=+++-+++???=+===∏…

推论3如果函数()f x 在区间[]0,1上可积,且

()1

()11121f x 0,lim[1+()][1+()][1+()]f x dx n n

f f f e n n n n n n

→∞?≥??=则…. 证明:记

A=11121lim[1+()][1+()][1+()]n n f f f n n n n n n →∞??…,则1

1ln lim ln[1+()]n n i i

A f n n →∞==∑

1

()()11()1011()1111lim ln[1+()]lim ln[1+()]11lim ln lim ()()A .

n i

f i n n n

f n n

n n i i i n

n f n n n i i f x dx i i

f f n n n n

n n i e f f x dx

n n

n e ?→∞→∞==→∞→∞======?=?=∑∑∑∑?于是,

例5.计算22212lim(1)(1)(1)333n n n n n

→∞

+

?++…. 解:本题也可以直接运用推论3,

101

1

3

6

2221

1211lim(1)(1)(1)lim (1).3333xdx

n

n n i n i

e e n n n n n →∞→∞=?+?++=+??==∏…

这三个推论是对结论1的必要补充与完善.形式上我们不仅有无穷项式子和的极限,还衍生出了无穷项式子乘积的极限.它们都是顺着结论1的思路继续进行探索,从形式上丰富了定积分在求极限中应用这一思想,但从本质上讲,它们与结论1是一致的.它们都紧紧抓住了定积分概念的实质,意识到定积分是无穷项和的极限,应用数学的一些基本性质,对各式子进行恒等变形,尽量把不同形式的极限向定积分定义中的和式上去靠拢.最终通过简单明了的定积分公式,求出定积分的值来,以确定出原极限的值.由这三个推论

来看,

11111

1111lim (),lim ()(),,[,],lim [()],lim [1+()]n n n

n

n

i i i i n n n n i i i i i i i i i f f g f f n n n n n n n n ξηξη→∞→∞→∞→∞====-?∈∑∑∏∏对于等形

式的极限,我们都有方可循,用定积分的方法容易求出其极限来.对于任何一种数学方法,只要我们仔细地观察与推究,都能将其结论或应用范围加以推广,就像结论 1.现在让我们来看一组习题,以体会以上诸推论.

现在,我们已经积累了多种求和式极限的方法,它们是今后应用定积分解决极限类问题的最佳模型与范例.那就再让我们来看一组习题,以熟悉与巩固

111

11()(),,[,],lim [()],lim [1+()]

n n

n i i i i n n i i i i i i

f g f f n n n n n ξηξη→∞→∞==-?∈∏∏

1111lim (),lim n

n

n n i i i f n

n n →∞→∞==∑∑ 等形式的极限吧.

下面这组习题综合用到了以上各结论与推论.

习题组2用定积分的方法计算下列各极限.

(1)222

111

lim [

](1)(2)()n n n n n n →∞

++++++…;

(2)11111212111

lim [()sin(+()sin(++()sin(]232323

n n n n n n n n n n n n n n n n →∞------))…);

(3)lim

n →∞

(4)111lim(1)(1)(1)12n n n n n

→∞

+

+++++…. 解:分析 以上例题都容易恒等变形,使其满足结论1或者推论1至推论3的条件.于是,

(1)12222201

1111111

lim []();(1)(2)()(1)21n n i n dx i n n n n n x n

→∞=+++===+++++∑?… (2)11111212111

lim [()sin(+()sin(++()sin(]232323

n n n n n n n n n n n n n n n n →∞------))…)

=11

sin n

i i i n

ξη=?∑,1,[,],1,2,1i i i i i n n n ξη-∈=-…

=1

0sin sin1cos1;x xdx =-?

(3)1

011ln(1)21

lim

lim[(1)]2n x dx n n n i i e

n ππ-+→∞

→∞=?=+?=∏ 22

(1)ln(1)1ππ

=++- ;

(4)1

0111

11111lim(1)(1)(1)(1)2121n dx x n i e i n n n n n n

+→∞=?+++=+?==++++∏….

定积分在求极限中应用思想的转移

至此,我们已经深深的体会到了各种形式的定积分在极限中应用的作用.仅仅于此,我们尚不能满足,我们可以把定积分在求极限中的应用思想借鉴到其他方面.例如,利用

这种思想方法来证明一些不等式,或者用之解决一些复杂一点的求极限问题.下面将举例说明.

例 6.证明:若函数

()f x 在[],a b 上连续,且对于[],x a b ?∈,有()0f x >,则

21

()()()

b

b

a

a

f x dx dx b a f x ≥-?

?

. 证明:已知()f x 与()g x 在[],a b 上都可积.将[],a b 进行N 等分,分点是

01n a x x x b =<<=…<.在第K 个区间上取1,k k k k b a

x x x n

ξ--=-=

.由算数平均不小于几何平均,有

121

11

1

(()1(()()n

n

k n

n

k k k k k k k f x f x b a b a f x b a n f x n n n

====--???=-??≥∑∑∑∑))

22

(()b a b a -=-)

21

()()()

b

b

a

a

n f x dx dx b a f x →∞≥-??

当时,有. 体会:本例恰巧反过来,将积分和转化为极限和的形式,并运用了算术平均数不小于几何平均数这一结论,将问题化繁为简.较好地认识与掌握定积分与极限之间的关系是解决本问题的关键.该例题说明,我们应该充分认识到定积分在极限中的作用,并能做到灵活变通,适当情形下,二者可以相互转化,将问题化难为易,从而达到解决问题的目的.

例7.试求极限(21)!!

lim[

](2)!!

n m m →∞

-.

分析:该问题似乎不能直接运用结论1或推论1至推论3来求极限.因为极限的表达式不容易化成以上结论或者推论的情形.但是,该问题的解决就真用不到定积分了吗?答案是否定的.在解决该问题之前,还是先让我们看一下沃利斯公式的由来吧! 沃利斯公式:2(2)!!1lim[

](21)!!212

m m m m π

→∞

?=-+.

证明:令20

sin ,1,2,n n J xdx n π

==?…,则当2n ≥时用分部积分法容易求得

1

222220

22220

sin sin

cos (1)sin cos (1)sin sin (1)(1.

n

n n n

n n n n n J xdx x x

n x xdx n xdx xdx n J n ππ

π

ππ----==-+-=--=---????)J

移项并整理后可得递推公式:21

, 2.n n n J J n n

--=

≥由于 22010

,sin 1,2

J dx J xdx π

π

π

==

==??重复应用上面的递推公式可得

2212123122222()2222

121213m m m m J m m m m J m m π+--?

=

?????

-**?-?

=????+-?……,

又由于

21

22-12

220

sin

sin

sin m m

m xdx xdx xdx π

π

π

+<

??,再将

**()式代入,便可以得到 22(2)!!1(2)!!1

[

][](21)!!212(21)!!2m m m m A B m m m m

π=<<=-+-,因为

2(2)!!110[

]0()(21)!!2(21)22

m m m B A m m m m m π

<-=

lim()0m m m B A →∞

-=.而02

m m m A B A π

<

-<-,故得沃利斯公式

2(2)!!1lim[

](21)!!212m m m m π

→∞

?=

-+.

现在让我们来仔细看看沃利斯公式究竟与定积分有什么关系吧!事实上,在计算定积分

20

sin ,1,2,n n J xdx n π

==?…时,我们巧妙地运用了定积分的递推表达式,这样我们才正

真地寻找到了解决极限问题的金钥匙,看来定积分的运算还是在其中发挥了不可低估的作用.那么就让我们直接运用该公式来探究例8问题吧!

根据沃利斯公式2(2)!!1lim[](21)!!212

m m m m π→∞?=-+,可知1

(21)!!

21lim lim 0(2)!!2

m m m m m π→∞→∞-+==.

从某种程度上讲,我们利用了定积分方法解决了例8中极限的问题.倘若我们采用其

方法来求这个极限,恐怕会走一些弯路. 定积分在求极限中应用思想的完善

我们知道反常积分也是定积分在极限下定义出来的.以上的所有求极限问题都是将极限的表达式整体转化成积分形式,从而应用了定积分巧妙地求出了原极限的结果,那么能不能把定积分在求极限中局部应用呢?现在我们再来看一个有趣的问题,以便说明此问题.

8.证明:1112lim 1ln n n n

→∞++=…+. 分析:这个例题不同于前面所有的例题,前面的例题,我们都能迅速地将所求极限的

表达式转化成1

lim ()n

i i n i f x ξ→∞

=?∑,而本例不行,但它形式上与我们讨论的定积分在求极限中

应用的例子非常相像,因为式子中有无穷多项和11

n

i i

=∑,所以我们就尝试用定积分的方法

来求它吧!

把这个极限式子的分子进行适当变形11111

n

n i i i i

n n

===∑∑.如果根据前面的经验,我们知

道101

11

1lim n n i dx i n x n →∞==∑?的.可是现在我们对两个问题有所质疑.第一,我们并没有把原极限

式直接转化成积分形式;第二,即使局部用到了定积分1

01

dx x ?,但我们知道101dx x

=∞?的.

事实上,原式经变形后,我们会发现分子与分母中的无穷大量是等价的.即

11

00011

11111lim(ln )lim(ln )ln 2lim lim lim 1ln ln lim ln lim ln lim ln ln n i x x n n x x x x i n dx x x n n x x n n x x x x

++=→→→∞→∞→+∞→+∞

→+∞

→+∞

++-======∑?…+(这里我们统一了分子分母中的变量,统一用变量x,这里已经表示变量x 是逐步趋近,由数学分析中归结原理”,这个手段是不影响极限结果的).

最后我们求得其结果,

11

1

2

lim1

ln

n

n

n

→∞

++

=

…+

.

由此可以看到,在求极限的问题中,定积分的思想不仅可以对表达式整体使用,也可以对其进行局部使用.总之,只要我们善于思考书本上的一些概念以及分析它们之间联系,我们就往往能够游刃有余地把一种数学思想用于解决其他数学问题上.

最后,让我们再来总结一下,定积分在求极限中应用时所应该注意的几个问题.

第一,极限必须是无穷项和的极限,并且这些和的极限经过适当的恒等变形之后能转化为定积分的形式.

第二,应用定积分求极限时,往往还需要用到其他的一些求极限的方法和手段,例如极限的迫敛性,重要极限的结论,取对数手段等.

第三,求极限一类问题往往需要使用各种手段,这样才能做到事半功倍.

4、论文总结

再认识数学

通过以上探讨,我们重新认识了数学.我们在进行推理与应用时,是有深切体会的.数学本身是一门严谨的自然科学,因为它是一种思维的工具,是一种思想方法,它还是一种理性的艺术.

数学是一种思维的工具.第一,数学具抽象性.数学概念是以极度抽象的形式出现的.本文中讨论的定积分以及极限更是如此.与此同时,数学的研究方法也是抽象的,这就是说数学命题的真理性不能建立在经验之上,而必须依靠于严格的证明.当数学应用于实际问题的研究时,其关键在于能建立一个较好的数学模型.我们在运用定积分求极限时,就已经拥有了较好的数学模型——函数模型.在一个较好的数学模型上展开数学的推导和计算,以形成对问题的认识,判断和预测.这就是运用抽象思维去解决现实问题的体现.第二,数学赋予科学知识以逻辑的严密性和结论的可靠性,是使认识从感性阶段发展到理性阶段,并使理性认识进一步深化的重要手段.在数学中,每一个公式,定理都要严格地从逻辑上加以证明以后才能够确立.当我们发现了“结论1”之后,相继经过严密的推理与论证后才拓展到了“推论1”至“推论3”.第三,数学是一种辅助工具和表现方式.我们在解决数学问题本身时,还必须依赖于数学中的其他相关方法思路.另外数学反映

的是一种复杂而抽象事物内部关系,但是我们仍然有简明的数学符号与形象鲜明的图形等来表示它.无论是定积分还是极限,其中都用到了丰富的数学符号,离开这些数学符号,我们的表达似乎显得寸步难行.

数学是一种思想方法.数学是研究量的科学.它研究客观对象量的变化,关系等,并在提炼量的规律性的基础上形成各种有关量的推导和演算的方法.数学的思想方法体现着它作为一般方法论的特征和性质,是物质世界质与量的统一,内容与形式的统一的最有效的表现方式.无论是定积分还是极限都离不开计算,这就意味着它们中都蕴含着量的变化.

数学还是一种理性的艺术.一般我们觉得,艺术与数学是两种风格与本质都有着明显不同的事物.它们一个处于高度理性化的峰顶,另一个则位于精神世界的枢纽地带;一个是自然科学的代表,另一个则是美学的杰作.但是,在种种表面上无关甚至完全不同的现象身后却隐藏着艺术与数学相当一致的一般意义.我们进行学术研究纯粹是我们进取以及求知欲的驱使.

艺术与数学都是公认的地球语言.艺术与数学在描绘万事万物的过程中,还同时完善了自身的表现形式,这种表现形式最基本的载体便是艺术与数学各自独特的语言特征.其共同特点有(1)超文化性.艺术与数学所表达的是一种带有普遍意义的人类共同的心声,因而它们可以超越时间和地域界限,实现不同文化群体之间的广泛传播和交流.(2)整体性.艺术的整体性来自于其艺术表现的普遍性和广泛性;数学的整体性来自于数学统一的符号体系,各个分支之间的有力联系,共同的逻辑法则和既约的表达方式.(3)简明性.它首先表现为很高的抽象程度,其次是凝冻与浓缩.(4)代表性.艺术与数学语言各自代表性可以诱发某种强烈的情感体验,唤起某种美的享受,而意义则在于把注意力转向思维,上升为理念,成为表现人类内心意图的方式.(5)形式性.在艺术与数学各自进行的符号与信息的含义交换中,其共同的特征就是达到了实体与形式的分离.我们研究的定积分在求极限中的应用,那种思想以及符号呈现方式可被世界人悦纳.

艺术与数学具有共同的精神价值.其共同的特点有:(1)自律性.数学价值的自律性是与数学价值的客观性相关联的;艺术的价值也是不能以人的意志而转移.艺术与数学的价值基本上是在自身框架内被鉴别,鉴赏和评价的.(2)超越性.它们可以超越时空,彰

显永恒.在艺术与数学的价值超越过程中,现实得以扩张,延伸.艺术与数学的超越性还表现为超前的价值.(3)非功利性.艺术与数学的非功利性是其价值判断异于其他种类文化与科学的显著特征之一.(4)多样化,物质化与广泛化.在现代技术与商业化的推动下,艺术与数学的价值也开始发生升华,出现了各自价值在许多领域内的散射,渗透,应用,交叉等情况.定积分在求极限中的应用,不仅仅贡献于数学本身,它将逐渐在其他领域也发挥一定的作用.

结束语

我们已经见到了定积分在求极限问题中应用的各种形式.事实上,只要我们对学过的某些概念用心的体会,并加以深刻的思考,我们就可能将其精髓运用到数学的其他领域.正如我们这里把定积分与极限结合起来,并进行了适当推广,得到了较为满意的结论和推论.

本文主要给大家介绍了定积分在求极限中应用.一开始我们就回忆了定积分以及极限等大学数学学习中的重要概念.然后剖析它们之间的内在联系,进而寻找到了一种独特的求极限的办法——借助定积分求极限.当然,这种思想也并非空穴来风,它是源于教材中某些例题中具有创新性思想方法或者一些独特的步骤.因为不是所有的数学概念之间经过思考推理,相互之间就能建立起联系来.因此,在平时的数学学习中,我们务必对教材中的基本概念加深体会,尤其是要把相互之间或多或少存在着某种关系的概念加以比较与分析.然后对其进行大胆的假设,并进行一定的逻辑证明.如果我们的假设成立,那就是我们发现的新事物,这对于我们发散思维与创新思维都是大有裨益的;假设不成立,我们也可更好地掌握不同概念之间区别,这对于我们理解知识都是有好处的.所以,在我们平时的学习过程中,我们要积极去思考,并大胆地进行某些适当的假设,以提升我们创新思维能力.

求极限的方法可能还有更多,值得大家去思考与挖掘.希望本文能起到抛砖引玉的目的,能激发更多的数学爱好者携起手来探索出更多实用与巧妙的求极限的方法来.欢迎大家对本文进行批评与指正.

参考文献

[1]华东师范大学数学系.数学分析[M].高等教育出版社,2001.

[2]刘玉琏,刘伟等.数学分析讲义习题选解.北京,高等教育出版社,2002.

[3]同济大学数学教研室.高等数学[M]北京, 高等教育出版社,1997.

[4]王业.关于积分在求极限中的初探[R].全国专科院校数学会,1992.

[5]刘树利.计算机数学基础.北京.高等教育出版社,2001.

[6]刘利茹,孙永华.高等学校经济数学系列教材.北京,高等教育出版社,2004.

[7]陈吉象,戴英等.文科数学基础.北京高等教育出版社,2003.

[8]天津大学数学竞赛(人文学科及医学等类),2005.

英文摘要

Abstract:In solving limit problem, we often think of the ways including the definition of limit, important limits, L’Hospital’s rule an d Taylor’s formula etc. These methods have some limitations, however the definite integral is also limit form in essentially, it is also simple in calculation. This paper will focus on the applications of definite integral in solving the limit problems.

Keywords:Definite integral, Limit, Applications.

微积分-求极限的方法

求极限方法一:直接代入法 例一:()=24 例二:()= 类似这种你直接把x趋近的值代入到函数里面,就可以直接得到函数的极限了。 知识点1:当x趋近值代入后,分子为0,分母不为0时,函数极限等于0 知识点2:当x趋近值代入后,分子不为0,分母为0时,函数极限等于 方法二:因式分解法(一般是平方差,完全平方,十字相乘) 普通的就是分子分母约去相同的项,因为x是趋近值,所以上下是可以约去的,不用考虑0的问题。类似=() 下面讲个例 知识点3:=(x-y)() 例三:== 方法三:分母有理化(用于分母有根式,分子无根式) 例四:= 方法四:分子有理化(用于分子有根式,分母无根式) 例五:==1 方法五:分子分母同时有理化(用于分子有根式,分母有根式) 例六:

知识点4:(使用这个知识点时,必须注意只能在x趋近于无穷时使用,且使用时只用看各项的最高次数,不用管其他) 例七:()=(分子的最高次是两次,大于分母最高次一次,所以直接得出极限为无穷大) 例八:=0 (分子的最高次是一次,小于分母最高次两次,所以直接得出极限为零) ) 例九:(分子的最高次是一次,等于分母最高次一次,所以直接得出极限为分子最高次数项系数 分母最高次数项系数 方法六:通分法(若函数为两个分数相加减时,通常先同分再做处理,一般情况下同分后都要进行因式分解,然后分子分母约去相同的多项式) 例十:- 知识点5:当一个无穷小的函数乘以一个有界函数时,新函数的极限仍为无穷小。(有限个无穷小仍为无穷小=常量与无穷小量的乘积仍是无穷小量) 例十一:()=0 函数左边用知识点4得出是无穷小,右边3+cosx是有界函数,所以新函数极限为无穷小,即0 所有求极限的题中,代入x趋近值后,若出现或,都可以使用洛必达法则求解极限。

基本积分公式

§5.3基本积分公式 重点与难点提示 基本积分公式均直接由基本导数公式表得到,因此,导数运算的基础好坏直接影响积分的能力,应熟记一些常用的积分公式. 因为求不定积分是求导数的逆运算,所以由基本导数公式对应可以得到基本积分公式. (1) ( 5.6 ) (2) ( 5.7 ) (3) ( 5.8 ) (4) ( 5.9 ) (5) ( 5.10 ) (6) ( 5.11 ) (7) ( 5.12 ) (8) ( 5.13 ) (9) ( 5.14 )

(10) ( 5.15 ) (11) ( 5.16 ) 对这些公式应正确熟记.可根据它们的特点分类来记. 公式(1)为常量函数0的积分,等于积分常数. 公式(2)、(3)为幂函数的积分,应分为与. 当时,, 积分后的函数仍是幂函数,而且幂次升高一次. 特别当时,有. 当时, 公式(4)、(5)为指数函数的积分,积分后仍是指数函数,因为 ,故(,)式右边的是在分母,不在分子,应记清. 当时,有.

是一个较特殊的函数,其导数与积分均不变. 应注意区分幂函数与指数函数的形式,幂函数是底为变量,幂为常数;指数函数是底为常数,幂为变量.要加以区别,不要混淆.它们的不定积分所采用的公式不同. 公式(6)、(7)、(8)、(9)为关于三角函数的积分,通过后面的学习还会增加其他三角函数公式. 公式(10)是一个关于无理函数的积分 公式(11)是一个关于有理函数的积分 下面结合恒等变化及不定积分线性运算性质,举例说明如何利用基本积分公式求不定积分. 例1 求不定积分. 分析:该不定积分应利用幂函数的积分公式. 解: (为任意常数)

定积分的性质与计算方法

定积分的性质与计算方法 摘要: 定积分是微积分学中的一个重要组成部分,其计算方法和技巧非常 丰富。本文主要给出定积分的定义及讨论定积分的性质和计算方法,并通过一些很有代表性的例题说明了其计算方法在简化定积分计算中的强大功能。 关键词:定积分 性质 计算方法 定积分的定义 设函数f(x) 在区间[a,b]上连续,将区间[a,b]分成n 个子区间[x 0,x 1], (x 1,x 2], (x 2,x 3], …, (x n-1,x n ],其中x 0=a ,x n =b 。可知各区间的长度依次是:△x 1=x 1-x 0, △x 2=x 2-x 1, …, △x n =x n -x n-1。在每个子区间(x i-1,x i ]中任取一点i ξ(1,2,...,n ),作和式1()n i i f x ι=ξ?∑。设λ=max{△x 1, △x 2, …, △x n }(即λ是 最大的区间长度),则当λ→0时,该和式无限接近于某个常数,这个常数叫做函数f(x) 在区间[a,b]的定积分,记为: ()b a f x dx ?。 其中:a 叫做积分下限,b 叫做积分上限,区间[a, b]叫做积分区间,函数f(x)叫做被积函数,x 叫做积分变量,f(x)dx 叫做被积表达式,∫ 叫做积分号。 对于定积分,有这样一个重要问题:函数()f x 在[a,b]上满足怎样的条件, ()f x 在[a,b]上一定可积?下面给出两个充分条件: 定理1: 设()f x 在区间[a,b]上连续,则()f x 在[a,b]上可积。 定理2: 设()f x 在区间[a,b]上有界,且只有有限个间断点,则 ()f x 在[a,b]上可积。 例:利用定义计算定积分1 20x dx ?. 解:因为被积函数2()f x x =在积分区间[0,1]上连续,而连续函数是可积的,所以积分与区间[0,1]的分法及点i ξ的取法无关。因此,为了 便于计算,不妨把区间[0,1]分成n 等份,分点为i i x n = ,1,2,,1i n =?-;这样,

专题利用定积分定义求极限

专题1——利用定积分定义求极限 对于满足如下条件的极限,可以考虑采用利用定积分定义求极限的方法: ① 是n →∞时的极限 ② 极限运算中含有连加符号1n i =∑ 在定积分的定义中,我们把区间[,]a b 平均分成n 个小区间(定积分的定义中是任意分割区间[,]a b , 我们当然可以平均分割),那么每个小区间的长度为 b a n -(即定义中的i x ?),这n 个小区间分别为[,]b a a a n -+,[,2]b a b a a a n n --++,[2,3]b a b a a a n n --++,……,[(2),(1)]b a b a a n a n n n --+-+-,[(1),]b a a n b n -+-,在定义中每个小区间上任意取的i ξ我们一致取为每个小区间的右端点i b a a i n ξ-=+(也可以取左端点(1)i b a a i n ξ-=+-),那么定义中的1()n i i i f x ξ=?∑就变为1()n i b a b a f a i n n =--+∑,那么1 lim ()()n b a n i b a b a f a i f x dx n n →∞=--+=∑?。(取左端点时1lim ((1))()n b a n i b a b a f a i f x dx n n →∞=--+-=∑?) 注意:定积分的定义中0λ→表示的意思是把区间分割为无线个小区间(n →∞也表示把区间分割成无数个小区间,但是在任意分割的前提下,不能用n →∞来表示把区间分割成无数个小区间,这里的原因我是理解的,但是不好表述,你清楚结论就行了),当分割方式为均等分割时,n →∞就表示把区间分割成无数个小区间,所以这里是1 lim ()()n b a n i b a b a f a i f x dx n n →∞=--+=∑?,而不是01 lim ()()n b a i b a b a f a i f x dx n n λ→=--+=∑?。 如()f x 在区间[0,1]上的积分可以表示为1 01 1()lim ()n n i i f x dx f n n →∞==∑?——i ξ取每个小区间的右端点,或者1 01 11()lim ()n n i i f x dx f n n →∞=-=∑?——i ξ取每个小区间的左端点。 举例:求3 41lim n n i i n →∞=∑

巧用定积分求极限(数学分析)

定积分在求极限中的应用 1、知识准备 1.1绪论 微积分学在大学的数学学习中占有相当重要的地位.然而,求极限又是微积分学中常常要面临的问题.因此,积累更多求极限的方法应是每位大学生必备的素养. 求极限的方法层出不穷,最常用的方法有极限的定义和性质,重要极限的结论,洛必达法则以及泰勒公式等.应用极限的定义时,往往是在极限的结果已经比较明显,只需要根据极限的定义把相关式子进行放缩便可得到相应的结果.但是,这种方法一方面叙述上比较麻烦,另一方面也只适用于看上去容易放缩的式子.重要极限的结论形式上要求非常严格, 也只能解决两种形式的极限问题.洛必达法则是用于解决“00”型的极限和“∞ ∞ ”型极限的. 泰勒公式适宜于解决求分式极限中分子或分母有加减运算的问题,通过泰勒展式后可以达到某些项抵消效果.但若仔细观察这些方法,其特点不是表达较繁琐就是仅仅应用到微分学知识.事实上,微分学和积分学的关系正如中小学时代学习过的加法与减法,乘法与除法,乘方与开方以及幂运算与取对数运算的关系一样,他们互为逆运算.倘若也能用到积分学知识来解决求极限的问题,那么求极限的方法才算完美.而利用定积分求极限正体现了这一理念. 1.2定积分的概念 下面首先让我们回顾一下定积分以及极限的定义: 定积分:设函数()f x 在闭区间[],a b 上有定义,在闭区间[],a b 内任意插入 n-1个分点将 [],a b 分成 n 个区间[,]x i i x x -,记(1,2,,i i i x x x i n ?=-=),1[,]i i x x ξ-?∈,作乘积()i i f x ξ?(称 为积分元),把这些乘积相加得到和式 1 ()n i i i f x ξ=?∑(称为积分形式)设 {}max :1i x i n λ=?≤≤,若0 1 lim ()n i i i f x λξ→=?∑极限存在唯一且该极限值与区是[],a b 的分法 及分点i ξ的取法无关,则称这个唯一的极限值为函数()f x 在[],a b 上的定积分,记作 b a ()f x dx ?,即0 1 ()lim ()n b a i i i f x dx f x λξ→=?=?∑.否则称()f x 在[],a b 上不可积. 注1:由牛顿莱布尼兹公式知,计算定积分与原函数有关,故这里借助了不定积分的符号. 注2:若()b a f x dx ?存在,区间[],a b 进行特殊分割,分点i ξ进行特殊的取法得到的和式极限存在且与定积分的值相等,但反之不成立,这种思想在考题中经常出现,请读者要真正理

定积分计算公式和性质

第二节 定积分计算公式和性质 一、变上限函数 设函数在区间上连续,并且设x 为上的任一点, 于是, 在区间 上的定积分为 这里x 既是积分上限,又是积分变量,由于定积分与积分变量无关,故可将此改为 如果上限x 在区 间上任意变动,则对 于每一个取定的x 值,定积分有一个确定值与之对应,所以定积分在 上定义了一个以x 为自变量的函数,我们把 称为函数 在区间 上 变上限函数 记为 从几何上看,也很显然。因为X 是上一个动点, 从而以线段 为底的曲边梯形的面积,必然随着底数 端点的变化而变化,所以阴影部分的面积是端点x 的函数(见图5-10) 图 5-10

定积分计算公式 利用定义计算定积分的值是十分麻烦的,有时甚至无法计算。因此,必须寻求计算定积分的简便方法。 我们知道:如果物体以速度作直线运动,那么在时间区间上所经过的路程s 为 另一方面,如果物体经过的路程s 是时间t 的函数,那么物体 从t=a 到t=b 所经过的路程应该是(见图5-11) 即 由导数的物理意义可知:即 是 一个原函数,因此,为了求出定积分,应先求出被积函数 的原函数 , 再求 在区间 上的增量 即可。 如果抛开上面物理意义,便可得出计算定积分的一般 方法: 设函数在闭区间上连续, 是 的一个原函数, 即 ,则 图 5-11

这个公式叫做牛顿-莱布尼兹公式。 为了使用方便,将公式写成 牛顿-莱布尼兹公式通常也叫做微积分基本公式。它表示一个函数定积分等于这个函数的原函数在积分上、下限处函数值之差。它揭示了定积分和不定积分的内在联系,提供了计算定积分有效而简便的方法,从而使定积分得到了广泛的应用。 例1 计算 因为是的一个原函数所以 例 2 求曲线 和直线x=0、x= 及y=0所围成图形面积A(5-12) 解 这个图形的面积为 二、定积分的性质 设 、 在相应区间上连续,利用前面学过的知识,可以 得到定积分以下几个简单性质: 图 5-12

求极限的方法及例题总结

1.定义: 说明:(1)一些最简单的数列或函数的极限(极限值可以观察得到)都可以用上面的极限严格定义证明,例如:;5 )13(lim 2 =-→x x (2)在后面求极限时,(1)中提到的简单极限作为已知结果直接运用,而不需再用极限严格定义证明。 利用导数的定义求极限 这种方法要求熟练的掌握导数的定义。 2.极限运算法则 定理1 已知)(lim x f ,)(lim x g 都存在,极限值分别为A ,B ,则下面极限都存在,且有(1)B A x g x f ±=±)]()(lim[ (2)B A x g x f ?=?)()(lim (3) )0(,)()(lim 成立此时需≠=B B A x g x f 说明:极限号下面的极限过程是一致的;同时注意法则成立的条件,当条件不满足时,不能用。

. 利用极限的四则运算法求极限 这种方法主要应用于求一些简单函数的和、乘、积、商的极限。通常情况下,要使用这些法则,往往需要根据具体情况先对函数做某些恒等变形或化简。 8.用初等方法变形后,再利用极限运算法则求极限 例1 1213lim 1 --+→x x x 解:原式=4 3)213)(1(33lim )213)(1(2)13(lim 1221=++--=++--+→→x x x x x x x x 。 注:本题也可以用洛比达法则。 例2 ) 12(lim --+∞ →n n n n 解:原式= 2 3 11213lim 1 2)]1()2[(lim = -++ = -++--+∞ →∞ →n n n n n n n n n n 分子分母同除以 。 例3 n n n n n 323)1(lim ++-∞→

定积分的基本公式

第三讲 定积分的基本公式 【教学内容】 1.变上限积分函数 2.牛顿-莱布尼兹公式 【教学目标】 1.掌握变上限积分函数 2.掌握牛顿-莱布尼兹公式 【教学重点与难点】 牛顿-莱布尼兹公式 【教学过程】 一、引例 一物体作变速直线运动时,其速度)(t v v =,则它从时刻a t =到时刻b t =所经过的路程S : dt t v S b a ? = )( 另一方面,如果物体运动时的路程函数)(t S S =,则它从时刻a t =到时刻b t =所经过的路程 S 等于函数)(t S S =在],[b a 上的增量 )()(a S b S - 同一物理量(路程)的两种不同数学表达式应该是相等的, ∴ dt t v S b a ? = )()()(a S b S -= ∵ )()(/ t v t S = ∴ ? ? = = b a b a dt t S dt t v S )()(/)()(a S b S -= 二、变上限积分函数 1.定义:如果函数)(x f 在区间],[b a 上连续,那么对于区间],[b a 上的任一点x 来说,)(x f 在区间],[x a 上仍连续,所以函数)(x f 在],[x a 上的定积分 ? x a dx x f )( 存在。也就是说,对于每一个确定的x 值,这个积分将有一个确定的值与之对应,因此它是积分上限x 的函数,此函数定义在区间],[b a 上,把它叫做变上限积分函数,记为)(x Φ。即 )()()()(b x a dt t f dx x f x x a x a ≤≤==Φ?? 2.定理1 如果函数)(x f y =在区间],[b a 上连续,则变上限积分函数 )()()(b x a dt t f x x a ≤≤=Φ? 是函数)(x f y =的原函数,即

专题1——利用定积分定义求极限(1)

专题1 ---- 利用定积分定义求极限 对于满足如下条件的极限,可以考虑采用利用定积分定义求极限的方法: ①是n 时的极限 n ②极限运算中含有连加符号 i 1 在定积分的定义中,我们把区间[a,b]平均分成n个小区间 b a 我们当然可以平均分割),那么每个小区间的长度为—a 成无数个小区间,但是在任意分割的前提下,不能用n 来表示把区间分割成无数个小区间,这里的原因我是理解的,但是不好表述,你清楚结论就行了) n lim0 f(a .b a、b a i )- n n 表示把区间分割成无数个小区间,所以这里是 n lim f (a n i 1 baba i )- n n b f (x) dx , a 而不是 (定积分的定义中是任意分割区间[a,b], (即定义中的x),这n个小区间分别为 r b a、「b a b a n r [a, a ] , [a ,a 2 ] , [a n n n b a b a _ [a (n 2) ,a (n 1) ], n n [a (n n _ b a 2 ,a n b a 3山],…, n 1),b],在定义中每个小区间上任意取的i我们n 致取为每个小区间的右端点i a(也可以取左端点i a (i 1)),那么定义中 左端点时i) x i就变为 f (a i- a) b a n n ,那么lim n n f(a i 1 b a f (X)dX。 n lim f (a n i 1 (i baba b 忖匚a?) 注意:定积分的定义中0表示的意思是把区间分割为无线个小区间(n也表示把区间分割 ,当分割方式为均等分割时,n 就 f (x)dx。

定积分基本公式

定积分基本公式 定积分是高等数学中一个重要的基本概念,在几何、物理、经济学等各个领域中都有广泛的应用.本章将由典型实例引入定积分概念,讨论定积分性质和计算方法,举例说明定积分在实际问题中的具体运用等. 第二节 微积分基本公式 一、变上限的定积分 设函数()f x 在[[,]a b ] 上连续,x ∈[,]a b ,于是积分()d x a f x x ?是一个定数, 这种写法有一个不方便之处,就是 x 既表示积分上限,又表示积分变量.为避免 t ,于是这个积分就写成了 ()d x a f t t ? . x 值,积分()d x a f t t ?就有一个确定的的一个函数,记作 ()Φx =()d x a f t t ? ( a ≤x ≤ b )通常称函数 ()Φx 为变上限积分函数或变上限积分,其几何意义如图所示. 定理1 如果函数()f x 在区间[,]a b 上连续,则变上限积分 ()Φx =()d x a f t t ?在[,]a b 上可导,且其导数是 d ()()d ()d x a Φx f t t f x x '= =?( a ≤x ≤ b ). 推论 连续函数的原函数一定存在. 且函数()Φx =()d x a f t t ?即为其原函数.

例1 计算()Φx =2 0sin d x t t ?在x =0 ,处的导数. 解 因为2 d sin d d x t t x ?=2sin x ,故 2 (0)sin 00Φ'==; πsin 242Φ'==. 例2 求下列函数的导数: (1) e ln ()d (0)x a t Φx t a t =>? ; 解 这里()Φx 是x 的复合函数,其中中间变量e x u =,所以按复合函数求导 法则,有 d d ln d(e )ln e (d )e d d d e x x u x x a Φt t x x u t x ===?. (2) 2 1()(0) x Φx x θ=>? . 解 21d d d d x Φx x θ=-?2 2()x x ='=2sin 2sin 2x x x x x =- ?=-. 二、牛顿-莱布尼茨(Newton-Leibniz )公式 定理2 设函数()f x 在闭区间[,]a b 上连续,又 ()F x 是()f x 的任一个原函数,则有()d ()() b a f x x F b F a =-? . 证 由定理1知,变上限积分 ()()d x a Φx f t t =?也是()f x 的一个原函数,于 是知0()()Φx F x C -=, 0C 为一常数, 即 0 ()d ()x a f t t F x C =+?.

定积分在极限运算中的应用

定积分在极限运算中的应用 胡 涛 (武汉军械士官学校基础部数学教研室/助教) 摘要:极限和定积分是高等数学中最重要的内容之一,本文利用定积分的定义式来解决一些复杂的和式极限的问题,并希望藉此逆向应用,使学生加深对定积分概念的理解。 关键词:定积分 极限运算 和式极限 一 引言 极限和定积分是高等数学中最重要的内容之一,二者关系十分密切,其中定积分的概念由极限的思想引出,数学上具体表述如下:若函数()f x 在区间[,]a b 上连续,则()f x 在 [,]a b 上可积,从而()f x 在[,]a b 上的任意积分和均以()b a f x dx ?为极限,数学表达式为 1 ()lim ()n b i i a i f x dx f x λξ→==?∑ ? ,其中1[,](1,2,,)i i i x x x i n -?== ,1max i i n x λ≤≤=?,i ξ为 区间1[,]i i x x -上的任意一点。本文将利用定积分的定义式,通过一些巧妙的构造,去解决一些复杂的和式的极限问题,并希望藉此逆向应用,使学生加深对定积分概念的理解,增强学生的解题反思能力。 二 算例分析 下面我们通过两个例子来引入本文的观点: 例1、求极限1 1 lim p n p n i i n +→+∞ =∑ ,其中0p >为常数 解:首先将和式进行变形 1 1 1 1() p n n p p i i i i n n n +=== ∑∑ 对于上述和式中的变量 (1,2,,)i i n n = ,当n →+∞时,其取值范围为区间 [0,1]。令i x n = ,则上述和式可以看成是函数()p f x x =在区间[0,1]上的一个 积分和,即 1 1 1 1 ()p n n p i i i i f n n n +=== ∑ ∑ 。 又因为()p f x x =在区间[0,1]上可积,于是:

巧用定积分求极限(数学分析)

定积分在求极限中的应用 欧阳学文 1、知识准备 1.1绪论 微积分学在大学的数学学习中占有相当重要的地位.然而,求极限又是微积分学中常常要面临的问题.因此,积累更多求极限的方法应是每位大学生必备的素养. 求极限的方法层出不穷,最常用的方法有极限的定义和性质,重要极限的结论,洛必达法则以及泰勒公式等.应用极限的定义时,往往是在极限的结果已经比较明显,只需要根据极限的定义把相关式子进行放缩便可得到相应的结果.但是,这种方法一方面叙述上比较麻烦,另一方面也只适用于看上去容易放缩的式子.重要极限的结论形式上要求非常严格,也只能解决两种形式的极限问题.洛必达法则是用于解决“”型的极限和“”型极限的.泰勒公式适宜于解决求分式极限中分子或分母有加减运算的问题,通过泰勒展式后可以达到某些项抵消效果.但若仔细观察这些方法,其特点不是表达较繁琐就是仅仅应用到微分学知识.事实上,微分学和积分学的

关系正如中小学时代学习过的加法与减法,乘法与除法,乘方与开方以及幂运算与取对数运算的关系一样,他们互为逆运算.倘若也能用到积分学知识来解决求极限的问题,那么求极限的方法才算完美.而利用定积分求极限正体现了这一理念. 1.2定积分的概念 下面首先让我们回顾一下定积分以及极限的定义: 定积分:设函数在闭区间上有定义,在闭区间内任意插入n1个分点将分成n个区间,记 ,,作乘积(称为积分元),把这些乘积相加得到和式(称为积分形式)设 ,若极限存在唯一且该极限值与区是的分法及分点的取法无关,则称这个唯一的极限值为函数在上的定积分,记作,即 .否则称在上不可积. 注1:由牛顿莱布尼兹公式知,计算定积分与原函数有关,故这里借助了不定积分的符号. 注2:若存在,区间进行特殊分割,分点进行特

定积分常用公式

定积分常用公式 二、基本积分表(188页1—15,205页16—24) (1) (k是常数) kdxkxC,,, ,,1x,(2) xdxC,,,(1)u,,,,,1 1(3) dxxC,,ln||,x dx(4) ,,arlxCtan2,1,x dx(5) ,,arcsinxC,21,x (6)cossinxdxxC,, , (7)sincosxdxxC,,, , 1(8) dxxC,,tan2,cosx 1(9) dxxC,,,cot2,sinx sectansecxxdxxC,,(10) , csccotcscxxdxxC,,,(11) , xxedxeC,,(12) , xax(13), (0,1)aa,,且adxC,,,lna shxdxchxC,,(14) , chxdxshxC,,(15) , 11x(16) dxarcC,,tan22,axaa, 1 11xa,(17) dxC,,ln||22,xaaxa,,2 1x(18) dxarcC,,sin,22aax, 122(19) dxxaxC,,,,ln(),22ax, dx22(20) ,,,,ln||xxaC,22xa,

(21)tanln|cos|xdxxC,,, , (22)cotln|sin|xdxxC,, , )secln|sectan|xdxxxC,,, (23, cscln|csccot|xdxxxC,,,(24) , 注:1、从导数基本公式可得前15个积分公式,(16)-(24)式后几节证。 2、以上公式把换成仍成立,是以为自变量的函数。 xuux 3、复习三角函数公式: 1cos2,x22222, sincos1,tan1sec,sin22sincos,xxxxxxx,,,,,cosx,2 1cos2,x2。 sinx,2 fxxdxfxdx[()]'()[()](),,,,,注:由,此步为凑微分过程,所以第一,, 类换元法也叫凑微分法。此方法是非常重要的一种积分法,要运用自如,务必熟记基本积分表,并掌握常见的凑微分形式及“凑”的技巧。 2 小结: 1常用凑微分公式 积分类型换元公式11.f(ax,b)dx,f(ax,b)d(ax,b)(a,0)u,ax,b,,a u,x11,2.f(x)xdx,f(x)d(x)(,0),,,,,,,,,1u,lnx3.f(lnx),dx,f(lnx)d(lnx), ,x 4..f(e),edx,f(e)dexxxxu,ex,,第 1一5.f(a),adx,f(a)daxxxx,,lnau,ax换 6.f(sinx),cosxdx,f(sinx)dsinxu,sinx元,, u,cosx积7.f(cosx),sinxdx,,f(cosx)dcosx,,分 28.f(tanx)secxdx,f(tanx)dtanxu,tanx,,法 u,cotx29.f(cotx)cscxdx,,f(cotx)dcotx,,

(完整版)关于利用定积分定义去解决数列极限问题总结

关于利用定积分定义去解决数列极限问题总结 ()()()()()()b 1 1 b n 0 首先研究一下定积分的定义函数f 如果对a,上一切分割及相应的一切积分和,只要分割的细度趋于0,就有一确定的极限,则称该极限为f 在a,上定积分,记为lim 在求部分数列极限问题中,经常会利用定积分的定义去解决,下面我跟大家讲解的再详细具体实用点,在求解过程中方法1:lim 这种做法是从左端n i i a T i n i i a k :x b x b f x dx f x f x dx f x ξξ→=-→∞ =??????=???=?∑?∑?()()()()()()()()()b n 1 11b n n 00b 点开始取函数值方法2:lim 这种做法是从右端点收尾取函数值一般在数列极限问题中我们通常是从右边往左边推,但是我发现在考研真题中上面两个等式 还是不实用,因为考试中通常是对区间取等分间隔=,也就是比如 n 方法1:lim =lim 方法2:n i i a k i n n i i a k k a f x dx f x b a x k b a b a f x dx f x f a n n f x ξξ→∞ =--→∞→∞===?-???--=?+ ? ??? ∑?∑∑?()()()()()()()n n 111b n 0lim =lim 易错点:我可以保证基本每个人都错过,就是在解决具体的真题时候,经常忘了乘错误示范:=lim ?具体求数列极限问题中一般是写成右边这个形式,然后去推测相应的f ,和a,具体数值也就是说要推测三个n n i i k k n a k k b a b a dx f x f a n n b a n k b a f x dx f a n x b ξ→∞→∞==-→∞=??--=?+ ? ?????- ? ? ???- ?+ ? ? ?????∑∑?∑?()()()()1 1 100n n 0量,我感觉有点难,所以我想把这个问题变得再详细具体实用点,我发现在具体应用中不管怎么出,我都可以把a=0,b=1去研究 我是有理由的,大家可以思考下为什么我可以敢这样说,这样做题有一个好处就是只需要推测f 这一个量就可以了, 此时把上面两种方法再修改一下:令a=0,b=1 1 方法1:=lim ,方法2:=lim n k k x k k f x dx f f x dx f n n n -→∞→∞==???? ? ??? ??∑??11 现在问题又来了,在考试的时候涉及到关于数列极限的问题时,怎么才能想到是利用 定积分的定义去求呢? 带着这个疑问,我们再研究一下上面两种方法划横线部分的形式n n ∑

定积分公式

二、基本积分表(188页1—15,205页16—24) (1)kdx kx C =+? (k 是常数) (2)1 ,1 x x dx C μμ μ+=++? (1)u ≠- (3)1ln ||dx x C x =+? (4)2 tan 1dx arl x C x =++? (5) arcsin x C =+? (6)cos sin xdx x C =+? (7)sin cos xdx x C =-+? (8)2 1 tan cos dx x C x =+? (9)2 1 cot sin dx x C x =-+? (10)sec tan sec x xdx x C =+? (11)csc cot csc x xdx x C =-+? (12)x x e dx e C =+? (13)ln x x a a dx C a = +?,(0,1)a a >≠且 (14)shxdx chx C =+? (15)chxdx shx C =+? (16)2 2 11tan x dx arc C a x a a = ++?

(17)2 2 11ln | |2x a dx C x a a x a -= +-+? (18) sin x arc C a =+? (19) ln(x C =++? (20) ln |x C =++? (21)tan ln |cos |xdx x C =-+? (22)cot ln |sin |xdx x C =+? (23)sec ln |sec tan |xdx x x C =++? (24)csc ln |csc cot |xdx x x C =-+? 注:1、从导数基本公式可得前15个积分公式,(16)-(24)式后几节证。 2、以上公式把x 换成u 仍成立,u 是以x 为自变量的函数。 3、复习三角函数公式: 2 2 2 2 sin cos 1,tan 1sec ,sin 22sin cos ,x x x x x x x +=+==2 1cos 2cos 2 x x += , 2 1cos 2sin 2 x x -= 。 注:由[()]'()[()]() f x x dx f x d x ????= ?? ,此步为凑微分过程,所以第一 类换元法也叫凑微分法。此方法是非常重要的一种积分法,要运用自如,务必熟记基本积分表,并掌握常见的凑微分形式及“凑”的技巧。

专题1——利用定积分定义求极限 (1)

专题1——利用定积分定义求极限 对于满足如下条件的极限,可以考虑采用利用定积分定义求极限的方法: ① 是n →∞时的极限 ② 极限运算中含有连加符号1n i =∑ 在定积分的定义中,我们把区间[,]a b 平均分成n 个小区间(定积分的定义中是任意分割区间[,]a b , 我们当然可以平均分割),那么每个小区间的长度为 b a n -(即定义中的i x ?),这n 个小区间分别为[,]b a a a n -+,[,2]b a b a a a n n --++,[2,3]b a b a a a n n --++,……,[(2),(1)]b a b a a n a n n n --+-+-,[(1),]b a a n b n -+-,在定义中每个小区间上任意取的i ξ我们一致取为每个小区间的右端点i b a a i n ξ-=+(也可以取左端点(1)i b a a i n ξ-=+-),那么定义中的1()n i i i f x ξ=?∑就变为1()n i b a b a f a i n n =--+∑,那么1 lim ()()n b a n i b a b a f a i f x dx n n →∞=--+=∑?。(取左端点时1 lim ((1))()n b a n i b a b a f a i f x dx n n →∞=--+-=∑?) 注意:定积分的定义中0λ→表示的意思是把区间分割为无线个小区间(n →∞也表示把区间分割成无数个小区间,但是在任意分割的前提下,不能用n →∞来表示把区间分割成无数个小区间,这里的原因我是理解的,但是不好表述,你清楚结论就行了),当分割方式为均等分割时,n →∞就表示把区间分割成无数个小区间,所以这里是1lim ()()n b a n i b a b a f a i f x dx n n →∞ =--+=∑?,而不是01 lim ()()n b a i b a b a f a i f x dx n n λ→=--+=∑?。

定积分计算的总结论文

定积分计算的总结 闫佳丽 摘 要:本文主要考虑定积分的计算,对一些常用的方法和技巧进行了归纳和总结.在定积分的计算中,常用的计算方法有四种:(1)定义法、(2)牛顿—莱布尼茨公式、(3)定积分的分部积分法、(4)定积分的换元积分法. 关键词:定义、牛顿—莱布尼茨公式、分部积分、换元. 1前言 17世纪后期,出现了一个崭新的数学分支—数学分析.它在数学领域中占据着主导地位.这种新数学思想的特点是非常成功地运用了无限过程的运算即极限运算.而其中的微分和积分这两个过程,则构成系统微积分的核心.并奠定了全部分析学的基础.而定积分是微积分学中的一个重要组成部分. 2正文 那么,究竟什么是定积分呢?我们给定积分下一个定义:设函数()f x 在[],a b 有定义,任给[],a b 一个分法T 和一组{}k ξξ=,有积分和 1 (,)()n k k k T f x σξξ==?∑,若当()0l T →时,积分和(,)T σξ存在有限极限,设 ()0 ()0 1 lim (,)lim ()n k k l T l T k T f x I σξξ→→==?=∑,且数I 与分法T 无关,也与k ξ在[] 1,k k x x -的取法无关,即{}0,0,:(),k T l T εδδξξ?>?>?

微积分求极限的方法(完整版)

专题一 求极限的方法 【考点】求极限 1、 近几年来的考试必然会涉及求极限的大题目,一般为2-3题12-18分左右,而用极限的 概念求极限的题目已不会出现。一般来说涉及到的方法主要涉及等价量代换、洛必达法则和利用定积分的概念求极限,使用这些方法时要注意条件,如等价量代换是在几块式子乘积时才可使用,洛必达法则是在0比0,无穷比无穷的情况下才可使用,运用极限的四则运算时要各部分极限存在时才可使用等。 2、 极限收敛的几个准则:归结准则(联系数列和函数)、夹逼准则(常用于数列的连加)、 单调有界准则、子数列收敛定理(可用于讨论某数列极限不存在) 3、 要注意除等价量代换和洛必达法则之外其他辅助方法的运用,比如因式分解,分子有理 化,变量代换等等。 4、 两个重要极限0sin lim 1x x x →= 1 01lim(1)lim(1)x x x x x e x →∞→+=+=,注意变形,如将第二个式 子1 lim(1)x x x e →+=中的x 变成某趋向于0的函数()f x 以构造“1∞ ”的形式的典型求极 限题目。 5、 一些有助于解题的结论或注意事项需要注意总结,如: (1) 利用归结原则将数列极限转化为函数极限 (2) 函数在某点极限存在的充要条件是左右极限存在且相等。有时可以利用这点进行解 题,如 11 1 lim x x e -→因左右极限不相等而在这点极限不存在。(当式子中出现绝对值和e 的无穷次方的结构时可以考虑从这个角度出发) (3) 遇到无限项和式求极限时想三种方法: ①看是否能直接求出这个和式(如等比数列求和)再求极限 ②夹逼定理 ③用定积分的概念求解。 (4)如果f(x)/g(x)当x →x0时的极限存在,而当x →x0时g(x)→0,则当x →x0时f(x)也 →0 (5)一个重要的不等式:sin x x ≤(0x >) *其中方法②③考到的可能性较大。 6、 有关求极限时能不能直接代入数据的问题。 7、 闭区间上连续函数的性质(最值定理、根的存在性定理、介值定理) 8、 此部分题目属于基本题型的题目,需要尽量拿到大部分的分数。 【例题精解·求极限的方法】 方法一:直接通过化简,运用极限的四则运算进行运算。 【例1】求极限 11 lim 1 m n x x x →--

专题1——利用定积分定义求极限.doc

专题 1——利用定积分定义求极限 对于满足如下条件的极限,可以考虑采用利用定积分定义求极限的方法: ① 是 n 时的极限 n ② 极限运算中含有连加符号 i 1 在定积分的定义中, 我们把区间 [ a, b] 平均分成 n 个小区间 (定积分的定义中是任意分割区间 [ a, b] , 我们当然可以平均分割) ,那么每个小区间的长度为 b a (即定义中的 x i ),这 n 个小区间分别为 n [ a, a b a ] , [ a b a , a 2 b a ] , [ a 2 b a , a 3 b a ] , , n n n n n [ a (n 2) b a , a (n 1) b a ] ,[ a ( n 1) b a , b] ,在定义中每个小区间上任意取的 i 我们 n n n 一致取为每个小区间的右端点 i a i b a (也可以取左端点 i a (i 1) b a ),那么定义中 n n n f ( i ) x i n f (a i b a ) b a ,那么 lim n i b a ) b a f (x)dx 。( 取 b i 1 i 1 n n n i 1 n n a n 1) b a ) b a b 左端点时 lim f (a (i f ( x)dx ) n 1 n n a i 注意:定积分的定义中 0 表示的意思是把区间分割为无线个小区间 ( n 也表示把区间分割 成无数个小区间,但是在任意分割的前提下,不能用 n 来表示把区间分割成无数个小区间,这 里的原因我是理解的,但是不好表述,你清楚结论就行了) ,当分割方式为均等分割时, n 就 n b a b a b 表示把区间分割成无数个小区间,所以这里是 limf (a i ) f ( x) dx ,而不是 n n n a i 1 lim n i b a ) b a f ( x)dx 。 b 0 i 1 n n a 1 f ( x) dx lim 1 如 f ( x) 在区间 [0,1] 上的积分可以表示为 n n n i 1

不定积分的基本公式和运算法则直接积分法

?复习1 原函数的定义。2 不定积分的定义。3 不定积分的性质。4 不定积分的几何意义。 ?引入在不定积分的定义、性质以及基本公式的基础上,我们进一步来讨论不定积分的计算 问题,不定积分的计算方法主要有三种:直接积分法、换元积分法和分部积分法。 ?讲授新课 第二节不定积分的基本公式和运算直接积分法 一基本积分公式 由于求不定积分的运算是求导运算的逆运算,所以有导数的基本公式相应地可以得到积分的基本公式如下:

以函 数的的形式。 求函数的不定积分的方法叫积分法。 例1?求下列不定积分.(1) AdX ( 2) XdX _ 1 丄+ 彳 解:(1 ) . 2 dx = x'dx C=-1C X -2 1 X 3 2 5 (2 ).XXdX = χ2 dx = 2 X 2 C J 5 此例表明,对某些分式或根式函数求不定积分时,可先把它们化为 数的积分公式求积分。 不定积分的基本运算法则 X 〉的形式,然后应用幕函

法则1 两个函数代数和的积分,等于各函数积分的代数和,即 [f (X) — g (x)]dx = f (x)dx — g (x)dx 法则1对于有限多个函数的和也成立的. 法则2 被积函数中不为零的常数因子可提到积分号外,即 kf (x)dx = k f (x)dx ( k = O ) 3 X 例 2 求(2x 1 -e )dx 解 (2x 3 1-e" )d )=2 x 3dx + dx - e x dx 1 4 X =X X —e C 。 2 注 其中每一项的不定积分虽然都应当有一个积分常数, 但是这里并不需要在每一项后面加上 一个积分常数,因为任意常数之和还是任意常数,所以这里只把它的和 C 写在末尾,以后仿此。 注 检验解放的结果是否正确,只把结果求导,看它的导数是否等于被积函数就行了。如上例 由于(-X 4 ^e X C) = 2X 3 ^e X ,所以结果是正确的。 2 三直接积分法 在求积分的问题中,可以直接按基本积分公式和两个基本性质求出结果(如上例)但有时,被 积函数常需要经过适当的恒等变形(包括代数和三角的恒等变形)再利用积分的性质和公式求出结 果,这样的积分方法叫直接积分法。 例3 求下列不定积分 解: (1)首先把被积函数^x - I 1 化为和式,然后再逐项积分得 VX 1 √X (1)J (V Σ+1)( X -^^=)dx (2)J x 2 dx )dx

相关文档
最新文档