高等数学第八章多元函数微分法及其应用教案

高等数学第八章多元函数微分法及其应用教案
高等数学第八章多元函数微分法及其应用教案

第八章 多元函数微分法及其应用

第一节 多元函数的基本概念

1、()y x,f z =,定义域为平面上某一个平面域

几何上()y x,f z =为空间一张曲面。

2、二元函数极限

P186 例1、讨论函数

()()()0,00

y x 0y x 0x y y 4x y x,f 222222

44

2在=+≠+?????+=极限是否存在。 解:()()()01K x x 4K lim x x K x K 4x lim x y y 4x lim 24222022444

42022442y x 0

2=+=+?=+→→=→x x x

而 ()4y y y 4y lim 244442y x 0

x =+?=→ ∴ ()

y x f 在(0,0)极限不存在. 3、连续

P187

第二节 偏导数

定义:()()00y ,x y x,f z 在点=处对x 的偏导数, 记作:()0010y y 0x x x 0y y 0x x 0y y 0x x y ,x f ,z ,x f ,

x z

''????======

即: ()()()x y ,x f y x,x f lim y ,x f 00000x 00x

?-?+='→? 同理:()()()y

y ,x f y y ,x f lim y ,x f 00000y 00y ?-?+='→? ()00y x

y ,x f ,f 在''存在,称()()00y ,x y x,f z 在=可导。 例1、y

z ,x z ,x z y ????=求 解:lnx x y z ,yx x

z y 1y =??=??- 例2、P188,例5,6

设 ()()()2,1z ,x y x,sin x 11y z x 32'++-=求

解:()()()

123x dx x,1dz 2,1z ,x x,1z 2x 2

2x x 3==='===

2、高阶偏导数

()2x xx xx 22f z y x,f x z x x z ''=''=''=??

? ??????=?? xy xy 2z f x z y y x z ''=''=??? ??????=??? yx yx 2z f y z x x y z ''=''=???

? ??????=??? ???

? ??????=??y z y y z 22 ,f ,f yx xy

''''连续,则yx xy f f ''=''

第三节 全微分

如 ()()()ρo y B x A y x,f y y x,x f z +?+?=-?+?+=?

()()22y x ρ?+?=

()()y x,y x,f z 在=可微

全微分 dy y

f dx x f dz ??+??= 偏导数 y

f ,x f ????连续→可微 例3、设 ()1ylnx xlny y x,u -+= 则 dy lnx y x dx x y lny du ???? ??++??? ??+

=

例4、由方程 2z y x xyz 222=+++

确定()y x,z z =在点()1,0,1-全微分dy 2dx dz -=

第四节 多元复合函数的求导法则

定理:P25

↗可导 ↘连续

z = f (u . v) u = u ( x . y.) v = v ( x . y ) z = f ( u , v ) = F ( x . y )

x v v f x u u f x z ?????+?????=?? , x

v v f y u u f y z ?????+?????=??

例5、设 z = ( 1 + x 2 + y 2 )xy

求 y z x z ???? 解:)2y 2x xyln(1e z ++=

??

????+++++++=??22222xy 22y x 1y 2x )y x yln(1)y x (1x z ?????

?+++++++=??22222xy 22y x 12xy )y x xln(1)y x (1y z

例5.15 解 ()

xy ,y x f z 22+=,()x x y ?+= ()()()()()()x F v ,u f x x x ,x x x 2x 2f z 222==?+?+?+=

[][](x)x (x)2x v

f (x)(x)2(x)2x (x)24x u f x z ??????'++??+'+'++??=?? [][](x)x (x)2x v

f (x)(x)(x)x (x)2x u f 2?'+?+??+?'?+?'+?+??=

例7、()222y

x f y z -+= ,其中()u f 可微,则 ()()y 2u f y 2u f 2x y y z x z y

+'-'=??+??

例8、 )y

x (x z 2?=,(u)?可微,则 2z y z y x z 2=??+?? 例9、设 )

y -f(x y z 22=,求证 2y z y z y 1x z x 1=??+?? 证:令 u y x 22=- 则 f(u)

y z =

(u )

f (u )f 2xy x z 2'-=?? (u )f (u )f 2y f(u)1y z 22'+=?? (u )f (u )f 2y yf(u)1(u)

f (u)f 2y y z y 1x z x 122'++'-=??+?? 2y z yf(u)1==

例10、设()()xy ,x g y x 2f z +-=,其中()t f 二阶可导,()v ,u g 具有二阶连续偏导数。

求 y

x z 2??? 解: y g g 2(t)f x

z v u ?'+'+?'=?? []x g 0g y g x g 0g 1)((t)f 2y

x z vv vu v uv u 2?''+?''+'+?''+?''+-?''=??? vv v uv g xy g g x (t)f 2''+'+''+''-=

例11、设x y v y,u ==,试将方程 0y x z x

z x 222=???+??变换成以u , v 为自变量的方程,其中函数z 具有二阶连续偏导数。

解: )x

y (v z x v v z x u u z x z 2-??=?????+?????=?? 224232222322v

z x y v z x 2y x u u v z x v v z x y v z x 2y x z ??+??=???????????+????-??=?? ??

?????????+?????-??-=???y u u v z y v v z x y v z x 1y x z 222222 ??

??????+???-??-=22222v z x 1v u z x y v z x 1 ∴ 223222222232222

2v z x y u v z x y v z x y v z x y v z x 2y y x z y x z x ??-???-??-??+??=???+?? 0u

v z x y v z x y 2222=???-??=

于是方程变为:02=???-??v

u z u v z

第五节 隐函数的求导公式

()0z .y .x F = 确定了 ()y .x z z = 求y

z ,x z ???? (1)方程两边同时对x 求导,注意()y .x z z =,可求得

x z ?? 方程两边同时对y 求导,注意()y .x z z =,可求得 y

z ?? (2)利用公式 y x F F x z ''-=?? z y F F y z '

'-=?? (3)两边微分

用(2),(3)需具体方程给出,容易

例12、设()y .x z z = 由方程0e z 2e z xy =+--,求x

z ?? 解法一、在方程两边对x 求导,注意()y .x z z =

z xy z xy e 2ye x z 0x

z e x z 2ye --=??=??+??---- 解法二、设()z xy e z 2e z .y .x F +-==-

z xy z x e

2-ye F F x z +-=''-=??- 解法三、在方程两边微分 ()0e z 2e d z xy =+--

()()()0e d z 2d e d z xy =+-- ()0dz e dz 2xy d z xy =+--e

[]0dz e 2dz ydx xdy e z xy =+-+--

即 dy e

-2xe dx e -2ye dz z xy

z xy ---+-= ∴ z

xy

e -2ye x z --=?? z

xy e -2xe y z --=??

例13、设 ()y .x z z = 由方程??

? ??=++x y xf z y x 222确定,其中f 可微 则

2z

2y f y z -'=??

例14、已知方程y z ln z x = 定义了()y .x z z =,求22x

z ?? 解: y ln z z ln z x -=

z

x z z x

11lny lnz 11F F x z z x +=+=-+--=-=?? (或方程两边对x 求导,注意()y .x z z =)

在方程 ()z z x x z =+?? 两边对x 求导,()y .x z z =

()x z x z 1x z z x x

z 22??=??? ????+??++?? ()

322

222z x z z x z x z z x x z x z +=+??? ??+=+??? ????=??

在(1) 式两边对x 求导 法二: ()()2

22z x x z 1z z x x z x z +??? ????+-+??=?? ()()()

3222

z x z y x y x z z z +=+++-= ∴ ()

3222

22x z z -xz x x z x z x z 1x z ++-=+??? ????-??-=??

例15、习题7

设()z .y .x f u =,()0z .e .x y 2=Φ,x sin y =,其中f ,Φ都具有一阶连续偏导数,且0z ≠???,求 dx

dz 解:0x

z z f cosx y f x f dx du =?????+???+??= 在()0z ,e ,x x sin 2==Φ,两边对x 求导,设2x u = x e v sin =

0x

z z x v v x u u =??????+??????+?????? 0x z z c o s x e v 2x u sinx =??????+????+???? z

/c o s x e v 2x u x z sinx ????????????+????=??

c o s x e v 2x u /z z f cosx y f x f dx du sin x ???+??????????+???+??=

例16、P200,例:5.20

第六节 多元函数微分学的几何应用

1、空间曲线的切线与法平面

曲线L :(Ⅰ)??

???===z(t)z y(t)y x(t)x

(Ⅱ)???==0z)y,(x,F 0z)y,(x,F 2

1 曲线L 在M 0点处切线方程为: )(t z z z )(t y y y )(t x x x 000000'-='-='- 或0

t t 00t t 00t t 0dz z z dy y y dx x x ===-=-=-

例17、P204,例5.24,例5.25

例5.25 法二

在???+==++22222y

x z 6z y x 两边微分???=-+=++0dz 2ydy 2xdx 0zdz ydy xdx 在点()?

??=-+=++0dz 2dy 2dx 02dz dy dx 1,1,2M 0 0:5:52211:2112:1221dz :dy :dx -=--=

取{}1,01,τ-= ∴切线方程0

2z 11y 11x -=--=- 例19、求曲线()???+==1,2,7y

3x z 2x y 22在点处切线方程 解:法一 ()???=-+=+-1,2,70

dz 2ydy 6xdx 0

0dz dy 2dx 点代入 得?????==-+=+-14:2:1dz :dy :dx 0

dz 4dy 6dx 00dz dy 2dx ∴切线方程:14

7z 22y 11x -=-=- 2、空间曲面的切平面与法线

曲面方程:()()0000z ,y ,x P 0z y,x,F 点=

则曲面在0P 点处切平面方程:

()()()0z z z

F y y y F x x x F

00t 00P 00P =-??+-??+-?? 如曲面方程()y x,f z = 则切平面方程:()()()0z z y y f x x f 000P y 00P x

=---'+-' 法线方程:

0P z 0y 0x 0F z z F y y F x x -=-=-

例20、曲面22

y 2

x z +=在(2,1,3)处的法线方程

1

3z 21y 22x --=-=-

例21、P203,例5.22

例22、曲线???==+0z 122y 3x 22 绕y 轴旋转一周得到的旋转面在点()

2,30,处的指向外侧单位法向量是

{}

3,20,51 例23、证明:曲面3a xyz =的切平面与坐标轴所围成的四面体体积为常数

证:设切点为()()3000a xyz z y,x,F ,z ,y ,x M -=

,z y x F

00M =?? ,z x y F

00M =?? 00M y x z F

=??

曲面在M(x 0,y 0,z 0)处切平面:

()()()0z z y x y y z x x x z y 000000000=-+-+-

即000000000z y 3x z y x y z x x z y =++ 即13z z 3y y 3x x 0

00=++ 四面体体积3000a 2

9,3z ,3y 3x 61V ==

第七节 方向导数与梯度 方向导数:()z y,x,f u =,可微 {}p n,m,l =

?

?????βα=γcos ,cos ,cos l 0 ()0000z ,y ,x M 222l n m m

cos ++=α, 222p n m n cos ++=β,

222p n m p

cos ++=γ 方向导数:γ??+β??+α??=??cos z

f cos y f cos x f l f 或:

cos γz u cos βy u cos αx u l u ??+??+??=?? 如 (){}

βcos ,αcos l y x,f z 0== 则 β??+α??=??cos y

x cos x z l z 分析:{}γβα?????

????????=??+α??=??cos ,cos ,cos z u ,y u ,x u γcos y u cos x u l u

设:?

???????????=z u ,y u ,x u G 则0l G l u ?=?? 设:k z

u j y u i x u ??+??+?? 为函数 ()z .y .x f u =在()z .y .x 处梯度 记为:gradu

即 k z

u j y u i x u gradu ??+??+??=

P20 例5.26、例5.29

例P220,习题19 解:228y 6x z 6x x u +-=?? 228y

6x z 8y y u +=?? 222z 8y 6x z u +-=?? gradu (M 0)=??????-=??+??+??14,148,146k z u j y u i x u 0

M 0M 0M {}{}4x,6y,2z F ,F ,F n z y x

='= 取M 0处法向量为{}2,3,1n = {}2,3,114

1n 0= 7111422114241412n gradu n u 0==-+=?=??

高等数学习题详解-第7章 多元函数微分学

1. 指出下列各点所在的坐标轴、坐标面或卦限: A (2,1,-6), B (0,2,0), C (-3,0,5), D (1,-1,-7). 解:A 在V 卦限,B 在y 轴上,C 在xOz 平面上,D 在VIII 卦限。 2. 已知点M (-1,2,3),求点M 关于坐标原点、各坐标轴及各坐标面的对称点的坐标. 解:设所求对称点的坐标为(x ,y ,z ),则 (1) 由x -1=0,y +2=0,z +3=0,得到点M 关于坐标原点的对称点的坐标为:(1,-2,-3). (2) 由x =-1,y +2=0,z +3=0,得到点M 关于x 轴的对称点的坐标为:(-1,-2,-3). 同理可得:点M 关于y 轴的对称点的坐标为:(1, 2,-3);关于z 轴的对称点的坐标为:(1,-2,3). (3)由x =-1,y =2,z +3=0,得到点M 关于xOy 面的对称点的坐标为:(-1, 2,-3). 同理,M 关于yOz 面的对称点的坐标为:(1, 2,3);M 关于zOx 面的对称点的坐标为:(-1,-2,3). 3. 在z 轴上求与两点A (-4,1,7)和B (3,5,-2)等距离的点. 解: 设所求的点为M (0,0,z ),依题意有|MA |2=|MB |2,即 (-4-0)2+(1-0)2+(7-z)2=(3-0)2+(5-0)2+(-2-z)2. 解之得z =11,故所求的点为M (0,0, 149 ). 4. 证明以M 1(4,3,1),M 2(7,1,2),M 3(5,2,3)三点为顶点的三角形是一个等腰三角形. 解:由两点距离公式可得2 12 14M M =,2 2 13236,6M M M M == 所以以M 1(4,3,1),M 2(7,1,2),M 3(5,2,3)三点为顶点的三角形是一个等腰三角形. 5. 设平面在坐标轴上的截距分别为a =2,b =-3,c =5,求这个平面的方程. 解:所求平面方程为1y x z ++=。 6. 求通过x 轴和点(4,-3,-1)的平面方程. 解:因所求平面经过x 轴,故可设其方程为 Ay +Bz =0. 又点(4,-3,-1)在平面上,所以-3A -B =0.即B=-3 A 代入并化简可得 y -3z =0. 7. 求平行于y 轴且过M 1(1,0,0),M 2(0,0,1)两点的平面方程. 解:因所求平面平行于y 轴,故可设其方程为 Ax +Cz +D =0. 又点M 1和M 2都在平面上,于是 0A D C D +=?? +=? 可得关系式:A =C =-D ,代入方程得:-Dx -Dz +D =0. 显然D ≠0,消去D 并整理可得所求的平面方程为x +z -1=0. 8. 方程x 2+y 2+z 2-2x +4y =0表示怎样的曲面? 解:表示以点(1,-2,0 9. 指出下列方程在平面解析几何与空间解析几何中分别表示什么几何图形? (1) x -2y =1; (2) x 2+y 2=1; (3) 2x 2+3y 2=1; (4) y =x 2. 解:(1)表示直线、平面。(2)表示圆、圆柱面。(3)表示椭圆、椭圆柱面。 (4)表示抛物线、抛物柱面。

(完整版)高等数学微分方程试题

第十二章 微分方程 §12-1 微分方程的基本概念 一、判断题 1.y=ce x 2(c 的任意常数)是y '=2x 的特解。 ( ) 2.y=(y '')3是二阶微分方程。 ( ) 3.微分方程的通解包含了所有特解。 ( ) 4.若微分方程的解中含有任意常数,则这个解称为通解。 ( ) 5.微分方程的通解中任意常数的个数等于微分方程的阶数。 ( ) 二、填空题 1. 微分方程.(7x-6y)dx+dy=0的阶数是 。 2. 函数y=3sinx-4cosx 微分方程的解。 3. 积分曲线y=(c 1+c 2x)e x 2中满足y x=0=0, y ' x=0=1的曲线是 。 三、选择题 1.下列方程中 是常微分方程 (A )、x 2+y 2=a 2 (B)、 y+0)(arctan =x e dx d (C)、22x a ??+22y a ??=0 (D ) 、y ''=x 2+y 2 2.下列方程中 是二阶微分方程 (A )(y '')+x 2y '+x 2=0 (B) (y ') 2+3x 2y=x 3 (C) y '''+3y ''+y=0 (D)y '-y 2=sinx 3.微分方程2 2dx y d +w 2 y=0的通解是 其中c.c 1.c 2均为任意常数 (A )y=ccoswx (B)y=c sinwx (C)y=c 1coswx+c 2sinwx (D)y=c coswx+c sinwx 4. C 是任意常数,则微分方程y '=3 23y 的一个特解是 (A )y-=(x+2)3 (B)y=x 3+1 (C) y=(x+c)3 (D)y=c(x+1)3 四、试求以下述函数为通解的微分方程。 1.2 2 C Cx y +=(其中C 为任意常数) 2.x x e C e C y 3221+=(其中21,C C 为任意常数) 五、质量为m 的物体自液面上方高为h 处由静止开始自由落下,已知物体在液体中受的阻力与运动的速度成正比。用微分方程表示物体,在液体中运动速度与时间的关系并写出初始条件。

第八章多元函数微分法及其应用

第八章多元函数微分法及其应用 第一节多元函数的基本概念 教学目的:学习并掌握关于多元函数的区域、极限以及多元函数概念,掌握多元函数的连续性定理,能够判断多元函数的连续性,能够求出连续函数在连续点的极限。教学重点:多元函数概念和极限,多元函数的连续性定理。 教学难点:计算多元函数的极限。 教学内容: 一、区域 1.邻域 设P o(x°,y。)是xoy平面上的一个点,是某一正数。与点P o(X o,y°)距离小于:的 点p(x,y)的全体,称为点p的「?邻域,记为U(P0,、),即 U(P°,、)= {P PPo < }, 也就是 U (P o,、)= {(X, y)丨..(X -X。)2(y - y o)2、}。 在几何上,U(P o「J就是xoy平面上以点p o(x o,y。)为中心、:-0为半径的圆内部 的点P(x,y)的全体。 2.区域 设E是平面上的一个点集,P是平面上的一个点。如果存在点P的某一邻域U(P) E, 则称P为E的内点。显然,E的内点属于E。 如果E的点都是内点,则称E为开集。例如,集合E, ={(x, y)1 vx2+ y2£4}中每个点都是E,的内点,因此E,为开集。 如果点P的任一邻域内既有属于E的点,也有不属于E的点(点P本身可以属于E,也可以不属于E ),则称P为E的边界点。E的边界点的全体称为E的边界。例如上例中,E ,的边界是圆周x2 y2 = 1和x2 y2=4o

设D是点集。如果对于D内任何两点,都可用折线连结起来,且该折线上的点都属于 D,则称点集D是连通的。 连通的开集称为区域或开区域。例如,{(x, y) x + y a 0}及{( x, y)d 0}及{(x, y) | 1< x y <4} 都是闭区域。 对于平面点集E ,如果存在某一正数r,使得 E U(0,r), 其中0是原点坐标,则称E为有界点集,否则称为无界点集。例如,{(x,y) | K x2 y2< 4}是有界闭区域,{(x, y) | x y>0}是无界开区域。 二、多元函数概念 在很多自然现象以及实际问题中,经常遇到多个变量之间的依赖关系,举例如下: 例1圆柱体的体积V和它的底半径r、高h之间具有关系 V =二r2h 。 这里,当r、h在集合{(r,h) r 0,h 0}内取定一对值(r,h)时,V的对应值就随之确定。 例2 一定量的理想气体的压强p、体积V和绝对温度T之间具有关系 RT P =— V 其中R为常数。这里,当V、T在集合{(V,T) V >0,T >T0}内取定一对值(V,T)时,p的 对应值就随之确定。 定义1设D是平面上的一个点集。称映射 f : D》R为定义在D上的二元函数,通 常记为 z 二f(x, y) , (x, y) D (或z 二f(P) , P D )。 其中点集D称为该函数的定义域,x、y称为自变量,z称为因变量。数集

(完整版)多元函数微分法及其应用期末复习题高等数学下册(上海电机学院)

第八章 偏导数与全微分 一、选择题 1.若u=u(x, y)是可微函数,且,1),(2==x y y x u ,2x x u x y =??=则=??=2x y y u [A ] A. 2 1 - B. 21 C. -1 D. 1 2.函数62622++-+=y x y x z [ D ] A. 在点(-1, 3)处取极大值 B. 在点(-1, 3)处取极小值 C. 在点(3, -1)处取极大值 D. 在点(3, -1)处取极小值 3.二元函数(),f x y 在点()00,x y 处的两个偏导数()()0000,,,x y f x y f x y 存在是函数f 在该点可微的 [ B ] A. 充分而非必要条件 B.必要而非充分条件 C.充分必要条件 D.既非充分也非必要条件 4. 设u=2 x +22y +32 z +xy+3x-2y-6z 在点O(0, 0, 0)指向点A(1, 1, 1)方向的导数 =??l u [ D ] A. 635 B.635- C.335 D. 3 3 5- 5. 函数xy y x z 333-+= [ B ] A. 在点(0, 0)处取极大值 B. 在点(1, 1)处取极小值 C. 在点(0, 0), (1, 1)处都取极大值 D . 在点(0, 0), (1, 1)处都取极小值 6.二元函数(),f x y 在点()00,x y 处可微是(),f x y 在该点连续的[ A ] A. 充分而非必要条件 B.必要而非充分条件 C.充分必要条件 D.既非充分也非必要条件 7. 已知)10(0sin <<=--εεx y y , 则dx dy = [ B ] A. y cos 1ε+ B. y cos 11ε- C. y cos 1ε- D. y cos 11 ε+ 8. 函数y x xy z 2050++ = (x>0,y>0)[ D ] A. 在点(2, 5)处取极大值 B. 在点(2, 5)处取极小值 C.在点(5, 2)处取极大值 D. 在点(5, 2)处取极小值 9.二元函数(),f x y 在点()00,x y 处连续的是(),f x y 在点()00,x y 处可微的 [A ] A. 必要而非充分条件 B. 充分而非必要条件

多元函数微分习题

多元函数微分学 1.二元函数??? ??=≠+=)0,0(),(, 0)0,0(),(,),(22y x y x y x xy y x f 在点)0,0(处 ( ) (A) 连续,偏导数存在 (B) 连续,偏导数不存在 (C) 不连续,偏导数存在 (D) 不连续,偏导数不存在 答:C 2.设),(y x f 是一二元函数,),(00y x 是其定义域内的一点,则下列命题中一定正确的是( ) (A) 若),(y x f 在点),(00y x 连续,则),(y x f 在点),(00y x 可导。 (B) 若),(y x f 在点),(00y x 的两个偏导数都存在,则),(y x f 在点),(00y x 连 续。 (C) 若),(y x f 在点),(00y x 的两个偏导数都存在,则),(y x f 在点),(00y x 可微。 (D) 若),(y x f 在点),(00y x 可微,则),(y x f 在点),(00y x 连续。 答:D 3.函数2223),,(z y x z y x f +++=在点)2,1,1(-处的梯度是( ) (A) )32,31,31(- (B) )32,31,31(2- (C) )92,91,91(- (D) )9 2,91,91(2- 答:A 4.函数z f x y =(.)在点(,)x y 00处具有两个偏导数f x y f x y x y (,),(,)0000 是函数存在全 微分的( )。 (A).充分条件 (B).充要条件 (C).必要条件 (D). 既不充分也不必要 答C 5.对于二元函数z f x y =(,),下列有关偏导数与全微分关系中正确的命题是 ( )。 (A).偏导数不连续,则全微分必不存在 (B).偏导数连续,则全微分必存在 (C).全微分存在,则偏导数必连续 (D).全微分存在,而偏导数不一定存在 答B 6.二元函数z f x y =(,)在(,)x y 00处满足关系( )。 (A).可微(指全微分存在)? 可导(指偏导数存在)?连续 (B).可微?可导?连续 (C).可微?可导或可微?连续,但可导不一定连续 (D).可导?连续,但可导不一定可微 答C

第八章多元函数微分学自测题答案

《高等数学》单元自测题答案 第八章 多元函数微分学 一. 填空题 1.3ln 3xy y ; 2.503-; 3.y x z y ++-; 4.x x e e cos ; 5.dy dx 3 131 +; 二. 选择题 2.D ; 4.D ; 三.解答题 1.解 2 2 222222222211 )221(1y x y x y x x y x x y x x y x x x z +=+++++=++++=??, 22222222221y x x y x y y x y y x x y z +++= +++=??. 2. 解 22222)(11y x y x y x y x z +-=-+=??, 2 22 2111y x x x x y y z +=+=??, 22222222)(2)(2y x xy y x x y x z +=+?--=??, 22222222)(2)(2y x xy y x y x y z +-=+?-=??, 2 22 2 22222222) ()(2)(y x x y y x y y y x x y z y x z +-=+?++-=???=???. 3. 解 设z z y x z y x F 4),,(222-++=,有 2422''-- =--=-=??z x z x F F x z z x . 5. 解 '22'1f x y yf x z -=??, )1(1)1(''22' '212'22''12''11'12f x xf x y f x f x xf y f y x z +--++=???

=''223 ' '11'22'11f x y xyf f x f -+- . 6. 解 令?????=+-==-+=,063, 09632 '2 'y y f x x f y x 得驻点 (1,0), (1,2), (-3,0), (-3,2) 又 66' '+=x f xx , 0''=xy f , 66''+-=y f yy , 在点(1,0)处,0722>=-B AC ,012>=A ,所以5)0,1(-=f 为极小值; 在点(1,2)处,0722<-=-B AC , ,所以)2,1(f 不是极值; 在点(-3,0)处,0722<-=-B AC , 所以)0,3(-f 不是极值; 在点(-3,2)处,0722>=-B AC ,012<-=A ,所以31)2,3(=-f 为极大值. 8. 解 设长,宽,高为 z y x ,,,由题设 xy V z = ,水箱的表面积 )11(2)(2),(y x V xy z y x xy y x S S ++=++==, 问题成为求 ),(y x S 在区域 0,0:>>y x D 的最小值问题.令 ??? ????=-==-=,02,022' 2' y V x S x V y S y x 得D 内唯一驻点3002V y x ==,由问题实际意义知 ),(y x S 在D 内的最小值一定存在,因此可断定),(00y x S 就是最小值,此时 3 33 04 22V V V V z =?=.

多元函数微分法及其应用

第八章多元函数微分法及其应用 (讲授法18学时) 上册研究了一元函数微分法,利用这些知识,我们可以求直线上质点运动的速度和加速度,也可以求曲线的切线的斜率,可以判断函数的单调性和极值、最值等,但这远远不够,因为一元函数只是研究了由一个因素确定的事物。一般地说,研究自然现象总离不开时间和空间,确定空间的点需要三个坐标,所以一般的物理量常常依赖于四个变量,在有些问题中还需要考虑更多的变量,这样就有必要研究多元函数的微分学。 多元函数微分学是一元函数的微分学的推广,所以多元函数微分学与一元函数微分学有许多相似的地方,但也有许多不同的地方,学生在学习这部分内容时,应特别注意它们的不同之处。 一、教学目标与基本要求 1、理解多元函数的概念,理解二元函数的几何意义。 2、了解二元函数的极限与连续性的概念,以及有界闭区域上连续函数的性质。 3、理解多元函数偏导数和全微分的概念,会求全微分,了解全微分存在的必要条件和充分条件,了解全微分形式的不变性,了解全微分在近似计算中的应用。 4、理解方向导数与梯度的概念并掌握其计算方法。 5、掌握多元复合函数偏导数的求法。 6、会求隐函数(包括由方程组确定的隐函数)的偏导数。 7、了解曲线的切线和法平面及曲面的切平面和法线的概念,会求它们的方程。 8、了解二元函数的二阶泰勒公式。 9、理解多元函数极值和条件极值的概念,掌握多元函数极值存在的必要条件,了解二元函数极值存在的充分条件,会求二元函数的极值,会用拉格朗日乘数法求条件极值,会求简单多元函数的最大值和最小值,并会解决一些简单的应用问题。 二、教学内容及学时分配: 第一节多元函数的基本概念2课时 第二节偏导数2学时 第三节全微分2学时 第四节多元复合函数的求导法则2学时 第五节隐函数的求导公式2学时 第六节多元函数微分学的几何应用2学时 第七节方向导数与梯度2学时 第八节多元函数的极值及其求法2学时 三、教学内容的重点及难点: 重点: 1.多元函数的极限与连续; 2.偏导数的定义;全微分的定义 3.多元复合函数的求导法则;隐函数的求导法则 4.方向导数与梯度的定义 5.多元函数的极值与最值的求法 难点: 1.多元函数微分学的几个概念,即多元函数极限的存在性、多元函数的连续性、偏导数的存在性、全微分的存在性、偏导数的连续性之间的关系; 2.多元复合函数的求导法则中,抽象函数的高阶导数; 3.由方程组确定的隐函数的求导法则; 4.梯度的模及方向的意义; 5.条件极值的求法

多元函数微分学及其应用归纳总结

第八章 多元函数微分法及其应用 一、多元函数的基本概念 1、平面点集,平面点集的内点、外点、边界点、聚点,多元函数的定义等概念 2、多元函数的极限 ? 00(,)(,) lim (,)x y x y f x y A →=(或0 lim (,)P P f x y A →=)的εδ-定义 ? 掌握判定多元函数极限不存在的方法: (1)令(,)P x y 沿y kx =趋向00(,)P x y ,若极限值与k 有关,则可断言 函数极限不存在; (2)找两种不同趋近方式,若 00(,)(,) lim (,)x y x y f x y →存在,但两者不相等, 此时也可断言极限不存在。 ? 多元函数的极限的运算法则(包括和差积商,连续函数的和差积商, 等价无穷小替换,夹逼法则等)与一元类似: 例1.用εδ-定义证明 2222 (,)(0,0) 1 lim ()sin 0x y x y x y →+=+ 例2(03年期末考试 三、1,5分)当0,0→→x y 时,函数22 2 222 ()+++-x y x y x y 的极限是否存在?证明你的结论。 例3 设22 2222,0 (,)0,0xy x y x y f x y x y ?+≠?+=??+=? ,讨论(,)(0,0) lim (,)x y f x y →是否存在? 例4(07年期末考试 一、2,3分)设222 24 22,0(,)0,0?+≠?+=??+=? xy x y x y f x y x y ,讨论 (,)(0,0) lim (,)→x y f x y 是否存在?

例5.求222 (,)(0,0)sin() lim x y x y x y →+ 3、多元函数的连续性0000(,)(,) lim (,)(,)x y x y f x y f x y →? = ? 一切多元初等函数在其定义区域内都是连续的,定义区域是指包含 在定义域内的区域或闭区域。 ? 在定义区域内的连续点求极限可用“代入法” 例1. 讨论函数3322 22 22,0(,)0,0x y x y x y f x y x y ?++≠?+=??+=? 在(0,0)处的连续性。 例2. (06年期末考试 十一,4分)试证222 24 22,0(,)0,0?+≠?+=??+=? xy x y x y f x y x y 在 点(0,0)不连续,但存在一阶偏导数。 例3.求 (,)(1,2)lim x y x y xy →+ 例4 .(,)(0,0)lim x y → 4、了解闭区域上商连续函数的性质:有界性,最值定理,介值定理 二、多元函数的偏导数 1、 二元函数(,)z f x y =关于,x y 的一阶偏导数的定义(二元以上类似定义) 如果极限00000 (,)(,) lim x f x x y f x y x ?→+?-?存在,则有 00 000 0000000 (,)(,) (,)lim x x x x x y y x x x x y y y y f x x y f x y z f z f x y x x x =?→=====+?-??= ===??? (相当于把y 看成常数!所以求偏导数本质是求一元函数的导数。)

高等数学题库第08章(多元函数微分学)

第八章 多元函数微积分 习题一 一、填空题 1. 设2 23),(y x y x y x f +-= ,则.________ )2,1(_______,)1,2(=-=-f f 2. 已知12),(22++=y x y x f ,则._________________ )2,(=x x f 二、求下列函数的定义域并作出定义域的图形 1.x y z -= 2. y x z -+-=11 3. 224y x z --= 4. xy z 2log = 习题二 一、是非题 1. 设y x z ln 2 +=,则 y x x z 1 2+=?? ( ) 2. 若函数),(y x f z =在),(00y x P 处的两个偏导数),(00y x f x 与),(00y x f y 均存在,则 该函数在P 点处一定连续 ( ) 3. 函数),(y x f z =在),(00y x P 处一定有),(00y x f xy ),(00y x f yx = ( ) 4. 函数?? ? ?? =+≠++=0,00,),(222222y x y x y x xy y x f 在点)0,0(处有0)0,0(=x f 及 0)0,0(=y f ( ) 5. 函数22y x z += 在点)0,0(处连续,但该函数在点)0,0(处的两个偏导数 )0,0(x z )0,0(,y z 均不存在。 ( ) 二、填空题

1. 设2 ln y x z = ,则_;___________; __________1 2=??=??==y x y z x z 2. 设),(y x f 在点),(b a 处的偏导数),(b a f x 和),(b a f y 均存在,则 ._________) 2,(),(lim =--+→h h b a f b h a f h 三、求下列函数的偏导数: 1. ;133+-=x y y x z 2. ;) sin(22y e x xy xy z ++= 3. ;)1(y xy z += 4. ;tan ln y x z = 5. 222zx yz xy u ++= 四、求下列函数的,22x z ??22y z ??和y x z ???2: 1. ;234 23+++=y y x x z 2. y x z arctan = 五、计算下列各题 1. 设),2(),(sin y x e y x f x +=-求);1,0(),1,0(y x f f 2. 设)ln(),(y x x y x f +=,求,2 12 2==??y x x z , 2 122==??y x y z .2 12==???y x y x z 六、设)ln(3 13 1y x z +=,证明:.3 1=??+??y z y x z x 习题三 一、填空题 1.xy e y x z +=2在点),(y x 处的._______________ =dz 2.2 2 y x x z += 在点)1,0(处的._______________ =dz

高数多元函数微分学教案 第一讲 多元函数的基本概念

第八章 多元函数微分法及其应用 第一讲 多元函数的基本概念 授课题目: §8.1多元函数的基本概念 教学目的与要求: 1、理解多元函数的概念. 2、了解二元函数的极限与连续性的概念,以及有界闭区域上连续函数的性质. 教学重点与难点: 重点:多元函数的概念、二元函数的极限和连续的概念. 讲授内容: 一、平面点集 n 维空间 1、平面点集 平面上一切点的集合称为二维空间, 记为R 2 即 R 2=R ?R={(x , y ):x , y ∈R } 坐标平面上具有某种性质P 的点的集合, 称为平面点集,记作 E ={(x , y ):(x , y )具有性质P }. 例如,平面上以原点为中心、r 为半径的圆内所有点的集合是 C ={(x , y ):x 2+y 2

如果不需要强调邻域的半径δ, 则用U (P 0)表示点P 0的某个邻域, 点P 0的去心邻域记作)(0P U .. 点与点集之间的关系: 任意一点P ∈R 2与任意一个点集E ?R 2之间必有以下三种关系中的一种: (1)内点:如果存在点P 的某一邻域U (P ), 使得U (P )?E , 则称P 为E 的内点. (2)外点:如果存在点P 的某个邻域U (P ), 使得U (P )?E =?, 则称P 为E 的外点. (3)边界点:如果点P 的任一邻域内既有属于E 的点, 也有不属于E 的点, 则称P 点为E 的边点. E 的边界点的全体, 称为E 的边界, 记作?E . E 的内点必属于E ; E 的外点必定不属于E ; 而E 的边界点可能属于E , 也可能不属于E . (4)聚点:如果对于任意给定的δ>0, 点P 的去心邻域),(δP U 内总有E 中的点, 则称P 是E 的聚点. 由聚点的定义可知, 点集E 的聚点P 本身, 可以属于E , 也可能不属于E . 例如, 设平面点集E ={(x , y )|1

第八章多元函数微分法及其应用

第八章 多元函数微分法及其应用 第一节 多元函数的基本概念 1、 平面点集、n 维空间、多元函数的概念,这些你如果不知道就看看。我下面的资料是从P7开始 的。 2、 在数轴上(一维空间),当0x x →时,只有两种趋近方式:一是x 从左边趋近于0x ,即0x x - →; 二是x 从右边趋近于0x ,即0x x + →。在平面直角坐标系中(二维空间),点(,)x y 趋近于点 00(,)x y 时,即00(,)(,)x y x y →的方式有无穷多种,例如,当(,)(0,0)x y →时,点(,)x y 既可 以沿x 正半轴趋于点(0,0)——这时(,)(0,0) lim (,)x y f x y →便可写成0 lim (,0)x f x + →,也可以沿x 负半轴趋于点(0,0)——这时(,)(0,0) lim (,)x y f x y →便可写成0 lim (,0)x f x - →;点(,)x y 既可以沿y 正半轴趋于点(0,0)——这时(,)(0,0) lim (,)x y f x y →便可写成0 lim (0,)y f y + →,也可以沿y 负半轴趋于点(0,0)——这时 (,)(0,0) lim (,)x y f x y →便可写成0 lim (0,)y f y - →;同时点(,)x y 也可以沿直线3y x =趋于点(0,0)——这时 (,)(0,0) lim (,)x y f x y →便可以写成0 lim (,3)x f x x →;也可以沿正弦函数图象sin y x =趋于点 (0,0)——这时 (,)(0,0) lim (,)x y f x y →便可以写成0 lim (,sin )x f x x →。我们应该意识到,点(,)x y 还可以 沿着一些不规则的路径趋于点(0,0)。这里说了这么多,就是要让你明白P7第二段中的“这里 0P P →表示点P 以任何方式趋于点0P ”这句话的涵义。 3、 对于多元函数的极限,特别是二元函数的极限,只需要了解它的定义,并且会求简单的二元函 数的极限,如本节例5、7、8这些题型。考研中,二元函数的极限的计算应该不会考到,重点是一元函数的极限的计算题。但是要会判断 (,)(0,0) lim (,)x y f x y A →≠这类题型,就是通过找一条特 殊路径求出它的极限不等于A 。如P8页给出的那个例题: 22 22 22,00,0 (,){ xy x y x y x y f x y +≠++== 4、 了解多元函数(二元函数)连续性的定义,后面的间断点、最大值最小值定理、介值定理看看 就行了。 5、 习题8——1第 6、7题,结合答案看看就行了。

高等数学多元函数微分法

第 八 章 多元函数微分法及其应用 第 一 节 多元函数的基本概念 教学目的:学习并掌握关于多元函数的区域、极限以及多元函数 概念,掌握多元函数的连续性定理,能够判断多元函数的连续性,能够求出连续函数在连续点的极限。 教学重点:多元函数概念和极限,多元函数的连续性定理。 教学难点:计算多元函数的极限。 教学内容: 一、 区域 1. 邻域 设),(000y x p 是xoy 平面上的一个点,δ是某一正数。与点),(000y x p 距离小于δ的点(,)p x y 的全体,称为点0P 的δ邻域,记为),(0δP U ,即 ),(0δP U =}{0δδ为半径的圆内部的点),(y x P 的全体。 2. 区域 设E 是平面上的一个点集,P 是平面上的一个点。如果存在点P 的某一邻域E P U ?)(,则称P 为E 的内点。显然,E 的内点属于E 。 如果E 的点都是内点,则称E 为开集。例如,集合 }41),{(221<+<=y x y x E 中每个点都是E 1的内点,因此E 1为开集。

如果点P 的任一邻域内既有属于E 的点,也有不属于E 的点(点P 本身可以属于E ,也可以不属于E ),则称P 为E 的边界点。E 的边界点的全体称为E 的边界。例如上例中,E 1的边界是圆周12 2 =+y x 和 22y x +=4。 设D 是点集。如果对于D 内任何两点,都可用折线连结起来,且该折线上的点都属于D ,则称点集D 是连通的。 连通的开集称为区域或开区域。例如,}0),{(>+y x y x 及 }41),{(22<+0}是无界开区域。 二、多元函数概念 在很多自然现象以及实际问题中,经常遇到多个变量之间的依赖关系,举例如下: 例1 圆柱体的体积V 和它的底半径r 、高h 之间具有关系 h r V 2 π=。 这里,当r 、h 在集合}0,0),{(>>h r h r 内取定一对值),(h r 时,V 的对应值就随之确定。

第八章多元函数微分法及其应用.doc

第八章多元函数微分法及其应用 一、内容提要 多元函数微分法是一元两数微分法的推广,有许多相似之处,学习时应 注意对比,搞清界同. 1. 基本概念与定理 设函数U = f(P),点P 可以是1,2,3,…丿维的.当n>2时,称此函数为多 ① 二元函数z = /(X, y)在儿何上表示空间一张曲面. ② 二元函数z = /(x,y)在点心(巾,儿)处的极限、连续、偏导数、全 微分的定义及关系. 极限 lim f(x,y) = A : V^>0,3t> >0,当 X->X0 .v->yo ()< p = J(_r_x ())2 +(y _y ())2 < 6时,有 I f(x, y) - A \0 Ay 二阶偏导数. 类似,可定义三阶以上的偏导数. _ 可微 若全增量A< = f(x 0 + 心,y ()+ Ay) - f(x 0,y 0)町表示为 Az = AAx + BAy + o(p),其中 q 二 J (心尸 +(2\)护, 则称z = f (x, y)在点P 0(x 0,y 0)可微.而AAx + BAy 为函数z = f (x, y)在点 P ()(w ),y ())的全微分,记 作 dA. . =AAx + B^y 定理1若函数z = /(x,y)的二阶混合偏导数f xy (x,y)及 /vx (x,y)在区域D 内连续,贝I 」在该区域内(x, y) = /VA .(x,y) ? 偏导 高阶偏导 —阶偏导数f x (x, y), fy (x, y)的偏导数,称为函数f (x, y)的 a? = /.u-UoO=£ dydx 空、 dx )

第七章多元函数微分高等数学

第七章 多元函数微分学 一、内容分析与教学建议 (一) 本章主要是把一元函数微分学中一些主要概念、理论和方法推广到多元函数,一方 面充实微分学,另一方面也给工程技术及自然科学提供一些处理问题的方法和工具。 在教学方法上,在一元函数微分学基础上,通过类比方法引入新的问题、概念、理论和方法,并注意比较它们的异同。 (二) 多元函数、极限、连续 先通过介绍平面点集的几个基础概念,引入二元函数由点函数再过渡到多元函数,并引入多元函数极限,讲清它的概念,并指出二元函数与一元函数极限点0P P →方式的异同,可补充一些简单例题给出二元函数求极限的一些常用方法,如换元化为一元函数两边夹准则,运用连续性等。在理解极限概念之基础上,不难得到求一个二元函数极限不存在之方法,最后可介绍累次极限与重极限之关系。 (三) 偏导数与全微分 1、可先介绍偏增量概念,类比一元函数,引入偏导数,通过例题说明,偏导与连续之关系,在偏导数的计算中,注意讲清分段函数分界点处的偏导数。 2、可由测量矩形相邻边长计算面积实例,类比一元函数的微分,引入全微分的定义,并指出用定义判断),(y x f z =可微,即求极限[ ]ρ y y x z x y x z z y x y x ?+?-?→?→?),(),(lim 0 是 否为0。 3、讲清教材中全微分存在的必要条件和充分条件,重点指出可微与偏导之关系,让学生理解关系式dy y z dx x z dz ??+??= 之意义,最后可通过列表给出多元函数连续、偏导存在、可微之相互关系。 (四) 复合函数求偏导 1、可先证明简单情形的全导数公式,画出函数关系图,通过关系图中“分线相加,连线相乘”法则推广至偏导数或全微分的各种情形),(v u f z =,)(x u ?=,)(x v ?=从中让学生理解口诀的含义。

高等数学(同济第五版)第八章-多元函数微分学-练习题册

. 第八章 多元函数微分法及其应用 第 一 节 作 业 一、填空题: . sin lim .4. )](),([,sin )(,cos )(,),(.3arccos ),,(.21)1ln(.102 2 2 2 322= ===-=+=+++-+-=→→x xy x x f x x x x y x y x f y x z z y x f y x x y x z a y x ψ?ψ?则设的定义域为 函数的定义域为函数 二、选择题(单选): 1. 函数 y x sin sin 1 的所有间断点是: (A) x=y=2n π(n=1,2,3,…); (B) x=y=n π(n=1,2,3,…); (C) x=y=m π(m=0,±1,±2,…); (D) x=n π,y=m π(n=0,±1,±2,…,m=0,±1,±2,…)。 答:( ) 2. 函数?? ???=+≠+++=0,20,(2sin ),(22222 22 2y x y x y x y x y x f 在点(0,0)处: (A )无定义; (B )无极限; (C )有极限但不连续; (D )连续。 答:( )

. 三、求.4 2lim 0xy xy a y x +-→→ 四、证明极限2222 20 0)(lim y x y x y x y x -+→→不存在。

第 二 节 作 业 一、填空题: . )1,(,arcsin )1(),(.2. )1,0(,0,0 ),sin(1),(.122 =-+== ?????=≠=x f y x y x y x f f xy x xy y x xy y x f x x 则设则设 二、选择题(单选): . 4 2)(;)(2)(;4ln 2)()(;4ln 2 )(:,22 2 2 2 2 2y x y x y x y y x y D e y x y C y y x B y A z z ++++?+?+??=等于则设 答:( ) 三、试解下列各题: .,arctan .2. ,,tan ln .12y x z x y z y z x z y x z ???=????=求设求设 四、验证.2 2222222 2 2 r z r y r x r z y x r =??+??+??++=满足 第 三 节 作 业 一、填空题:

高等数学导数、微分、不定积分公式

一、基本导数公式: ()()()()()()()()()()()()( )( )()' '1 ' ' ' ' ' ' '2 ' 2 ' ' '' ' 2 1.2.3.ln 4.1 5.log ln 1 6.ln 7.sin cos 8.cos sin 9.tan sec 10.cot csc 11.sec sec tan 12.csc csc cot 1 13.arcsin 114.arccos 115.arctan 11n n x x x x a kx k x nx a a a e e x x a x x x x x x x x x x x x x x x x x x x -===== = ==-==-==-= =- = +()' 2 16.a cot 1rc x =- + 二、基本微分公式: ()()()()()()()()()()()()( )()12 21.2.3.ln 4.1 5.ln 1 6.log ln 7.sin cos 8.cos sin 9.tan sec 10.cot csc 11.sec sec tan 12.csc csc cot 1 13.arcsin 14.arccos n n x x x x a d kx k d x nx dx d a a adx d e e dx d x dx x d x dx x a d x xdx d x xdx d x xdx d x xdx d x x xdx d x x xdx d x dx d x -========-==-==-= ()()2 2 1 1 15.arctan 11 16.cot 1dx d x dx x d arc x dx x =-=+=-+

多元函数微分学总结

`第八章多元函数微分学 8.1基本知识点要求 1.理解多元函数的概念,理解二元函数的几何意义. 2.了解二元函数的极限与连续的概念以及有界闭区域上连续函数的性质。 3.理解多元函数偏导数和全微分的概念,会求全微分,了解全微分存在的必要条件和充分条件,了解全微分形式的不变性。 4.理解方向导数与梯度的概念,并掌握其计算方法. 5.熟练掌握多元复合函数一阶、二阶偏导数的求法. 6.了解隐函数存在定理,熟练掌握多元隐函数偏导数的求法. 7.了解空间曲线的切线和法平面及曲面的切平面和法线的概念,熟练掌握它们的方程的求法。 8.了解二元函数的二阶泰勒公式. 9.理解多元函数极值和条件极值的概念,掌握多元函数极值存在的必要条件,掌握二元函数极值存在的充分条件,并会求二元函数的极值,会用拉格朗日乘数法求条件极值,会求简单多元函数的最大值和最小值,并会解决一些简单的应用问题。 8.2基本题型及解题思路分析 题型1 与多元函数极限、连续、偏导数和可微的概念及其之间的关系有关的题 1.二元函数的极限与连续的概念及二元函数极限的计算。

(1)基本概念 ①二元函数极限的定义:设()(,)f P f x y =的定义域为D ,000(,)P x y 是D 的聚点.若?常数A ,对于?0ε>,总?0δ>,使得当0(,)(,)P x y D U P δ∈时,都有 ()(,)f P A f x y A ε-=-<成立,则称A 为函数(,)f x y 当00(,)(,)x y x y →时的极限,记作 000 (,)(,) lim (,)lim ()x y x y P P f x y A f P A →→==或。 ②二元函数的连续:设()(,)f P f x y =的定义域为D ,000(,)P x y 为D 的聚点,且0P D ∈.若 0000(,)(,) lim (,)(,)x y x y f x y f x y →=,则称(,)f x y 在点000(,)P x y 连续。 (2)关于二元函数极限的解题思路 注意:在二元函数0 lim ()P P f P A →=存在的定义中,0P P →方式任意,正是由于 这一点致使二元函数有与一元函数不一样的性态,在学习过程中注意比较、总结和体会二者之间的不同。 ① 证明二元函数的极限不存在:若0P P 以两种不同的方式趋于时,()f P 的极 限不同,则0 lim ()P P f P →一定不存在(见例1)。 ②求二元函数的极限:可以应用一元函数求极限方法中的适用部分求二元函数的极限,比如:极限的局部有界性、局部保号性、四则运算法则、夹逼准则、两个重要的极限、变量代换法则、等价无穷小代换、分子分母有理化、无穷小量与有界变量的乘积仍为无穷小量、连续性等(见例2) 例1证明:2 24 (,)xy f x y x y =+在原点0,0()的极限不存在。 【分析】观察分子、分母中变量,x y 的各次幂的特点,可考虑选择路径 2x ky =。 证明: 22 24242442000lim (,)lim lim 1y y y x ky x ky xy ky k f x y x y k y y k →→→=====+++,

相关文档
最新文档