往年六年高考题荟萃汇编13

合集下载

历年(2013)高考真题分类汇编(共14套)含答案精品打包下载

历年(2013)高考真题分类汇编(共14套)含答案精品打包下载

历年(2013)高考真题分类汇编(共14套)含答案精品打包下载.docA单元集合与常用逻辑用语A1集合及其运算-5<x<5,则1.A1[2013·新课标全国卷Ⅰ] 已知集合A={x|x2-2x>0},B=x} ()A.A∩B=B.A∪B=RC.B A D.A B1.B[解析] A={x|x<0或x>2},故A∪B=R.1.A1[2013·北京卷] 已知集合A={-1,0,1},B={x|-1≤x<1},则A∩B=() A.{0} B.{-1,0} C.{0,1} D.{-1,0,1}1.B[解析] ∵-1∈B,0∈B,1B,∴A∩B={-1,0},故选B.1.A1[2013·广东卷] 设集合M={x|x2+2x=0,x∈R},N={x|x2-2x=0,x∈R},则M∪N=()A.{0} B.{0,2}C .{-2,0}D .{-2,0,2}1.D [解析] ∵M ={-2,0},N ={0,2},∴M ∪N ={-2,0,2},故选D. 2.A1[2013·湖北卷] 已知全集为R ,集合A =x 错误!错误!x ≤1,B ={x|x 2-6x +8≤0},则A ∩(∁R B)=( )A .{x|x ≤0}B .{x|2≤x ≤4}C .{x|0≤x<2或x>4}D .{x|0<x ≤2或x ≥4}2.C [解析] A ={x|x ≥0},B ={x|2≤x ≤4},∁R B ={x|x<2或x>4},可得答案为C. 16.A1,A3,B6[2013·湖南卷] 设函数f(x)=a x +b x -c x ,其中c>a>0,c>b>0.(1)记集合M ={(a ,b ,c)|a ,b ,c 不能构成一个三角形的三条边长,且a =b},则(a ,b ,c)∈M 所对应的f(x)的零点的取值集合为________;(2)若a ,b ,c 是△ABC 的三条边长,则下列结论正确的是________.(写出所有正确结论的序号)①x ∈(-∞,1),f(x)>0;②x ∈R ,使a x ,b x ,c x 不能构成一个三角形的三条边长; ③若△ABC 为钝角三角形,则x ∈(1,2),使f(x)=0. 16.(1){x|0<x ≤1} (2)①②③ [解析] (1)因a =b ,所以函数f(x)=2a x -c x ,又因a ,b ,c 不能构成一个三角形,且c>a>0,c>b>0,故a +b =2a<c ,令f(x)=2a x -c x =0,即f(x)=c x⎣⎡⎦⎤2⎝⎛⎭⎫a c x-1=0,故可知⎝⎛⎭⎫a c x=12,又0<a c <12,结合指数函数性质可知0<x ≤1,即取值集合为{x|0<x ≤1}.(2)因f(x)=a x+b x-c x=c x⎣⎡⎦⎤⎝⎛⎭⎫a c x+⎝⎛⎭⎫b c x-1,因c>a>0,c>b>0,则0<a c <1,0<bc <1,当x ∈(-∞,1)时,有⎝⎛⎭⎫a c x >a c ,⎝⎛⎭⎫b c x >b c ,所以⎝⎛⎭⎫a c x +⎝⎛⎭⎫b c x>a c +b c ,又a ,b ,c 为三角形三边,则定有a +b>c ,故对x ∈(-∞,1),⎝⎛⎭⎫a c x+⎝⎛⎭⎫b c x-1>0,即f(x)=a x +b x -c x =c x ⎣⎡⎦⎤⎝⎛⎭⎫a c x+⎝⎛⎭⎫b c x-1>0,故①正确;取x =2,则⎝⎛⎭⎫a c 2+⎝⎛⎭⎫b c 2<a c +b c ,取x =3,则⎝⎛⎭⎫a c 3+⎝⎛⎭⎫b c 3<⎝⎛⎭⎫a c 2+⎝⎛⎭⎫b c 2,由此递推,必然存在x =n 时,有⎝⎛⎭⎫a c n+⎝⎛⎭⎫b c n<1,即a n +b n <c n,故②正确;对于③,因f(1)=a +b -c>0,f(2)=a 2+b 2-c 2<0(C 为钝角),根据零点存在性定理可知,x ∈(1,2),使f(x)=0,故③正确.故填①②③.4.A1[2013·江苏卷] 集合{-1,0,1}共有________个子集. 4.8 [解析] 集合{-1,0,1}共有3个元素,故子集的个数为8. 1.A1,L4[2013·江西卷] 已知集合M ={1,2,zi},i 为虚数单位,N ={3,4},M ∩N ={4},则复数z =( )A .-2iB .2iC .-4iD .4i1.C [解析] zi =4z =-4i ,故选C. 2.A1[2013·辽宁卷] 已知集合A ={}x|0<log 4x<1,B ={}x|x ≤2,则A ∩B =( ) A .(0,1) B .(0,2] C .(1,2) D .(1,2]2.D [解析] ∵A ={x|1<x<4},B ={x|x ≤2},∴A ∩B ={x|1<x ≤2},故选D. 1.A1[2013·全国卷] 设集合A ={1,2,3},B ={4,5},M ={x|x =a +b ,a ∈A ,b ∈B},则M 中元素的个数为( )A .3B .4C .5D .61.B [解析] 1,2,3与4,5分别相加可得5,6,6,7,7,8,根据集合中元素的互异性可得集合M 中有4个元素.2.A1[2013·山东卷] 已知集合A ={0,1,2},则集合B ={x -y|x ∈A ,y ∈A}中元素的个数是( )A .1B .3C .5D .92.C [解析] ∵x ,y ∈{}0,1,2,∴x -y 值只可能为-2,-1,0,1,2五种情况,∴集合B 中元素的个数是5.1.A1[2013·陕西卷] 设全集为R ,函数f(x)=1-x 2的定义域为M ,则∁R M 为( )A .[-1,1]B .(-1,1)C .(-∞,-1]∪[1,+∞)D .(-∞,-1)∪(1,+∞) 1.D [解析] 要使二次根式有意义,则M ={x ︱1-x 2≥0}=[-1,1],故∁R M =(-∞,-1)∪(1,+∞).1.A1[2013·四川卷] 设集合A ={x|x +2=0},集合B ={x|x 2-4=0},则A ∩B =( ) A .{-2} B .{2} C .{-2,2} D.1.A [解析] 由已知,A ={-2},B ={-2,2},故A ∩B ={-2}. 1.A1[2013·天津卷] 已知集合A ={x ∈R ||x|≤2},B ={x ∈R |x ≤1},则A ∩B =( ) A .(-∞,2] B .[1,2] C .[-2,2] D .[-2,1]1.D [解析] A ∩B ={x ∈R |-2≤x ≤2}∩{x ∈R |x ≤1}={x ∈R |-2≤x ≤1}. 1.A1[2013·新课标全国卷Ⅱ] 已知集合M ={x|(x -1)2<4,x ∈R },N ={-1,0,1,2,3},则M ∩N =( )A .{0,1,2}B .{-1,0,1,2}C .{-1,0,2,3}D .{0,1,2,3}1.A [解析] 集合M ={x|-1<x<3},则M ∩N ={0,1,2}. 2.A1[2013·浙江卷] 设集合S ={x|x>-2},T ={x|x 2+3x -4≤0},则(∁R S)∪T =( ) A .(-2,1] B .(-∞,-4] C .(-∞,1] D .[1,+∞)2.C [解析] ∁R S ={x|x ≤-2},T ={x|(x +4)(x -1)≤0}={x|-4≤x ≤1},所以(∁R S)∪T =(-∞,1].故选择C.22.A1、A2,J1[2013·重庆卷] 对正整数n ,记I n ={1,2,…,n},P n =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫m k⎪⎪⎪⎪ m ∈I n ,k ∈I n ). (1)求集合P 7中元素的个数;(2)若P n 的子集A 中任意两个元素之和不是..整数的平方,则称A 为“稀疏集”,求n 的最大值,使P n 能分成两个不相交的稀疏集的并.22.解:(1)当k =4时,⎩⎨⎧m km ∈I 7中有3个数与I 7中的3个数重复,因此P 7中元素的个数为7×7-3=46.(2)先证:当n ≥15时,P n 不能分成两个不相交的稀疏集的并.若不然,设A ,B 为不相交的稀疏集,使A ∪B =P n I n .不妨设1∈A ,则因1+3=22,故3A ,即3∈B.同理6∈A ,10∈B ,又推得15∈A ,但1+15=42,这与A 为稀疏集矛盾.再证P 14符合要求,当k =1时,⎩⎨⎧mk m ∈I 14=I 14可分成两个稀疏集之并,事实上,只要取A 1={1,2,4,6,9,11,13},B 1={3,5,7,8,10,12,14},则A 1,B 1为稀疏集,且A 1∪B 1=I 14.当k =4时,集⎩⎨⎧m km ∈I 14中除整数外剩下的数组成集⎩⎨⎧⎭⎬⎫12,32,52,…,132,可分解为下面两稀疏集的并:A 2=⎩⎨⎧⎭⎬⎫12,52,92,112,B 2=⎩⎨⎧⎭⎬⎫32,72,132.当k =9时,集⎩⎨⎧m km ∈I 14中除正整数外剩下的数组成集⎩⎨⎧⎭⎬⎫13,23,43,53,…,133,143,可分解为下面两稀疏集的并:A 3=⎩⎨⎧⎭⎬⎫13,43,53,103,133,B 3=⎩⎨⎧⎭⎬⎫23,73,83,113,143.最后,集C =⎩⎨⎧mkm ∈I 14,k ∈I 14,且k ≠1,4,9中的数的分母均为无理数,它与P 14中的任何其他数之和都不是整数,因此,令A =A 1∪A 2∪A 3∪C ,B =B 1∪B 2∪B 3,则A 和B 是不相交的稀疏集,且A ∪B =P 14.综上,所求n 的最大值为14.注:对P 14的分拆方法不是唯一的. 1.A1[2013·重庆卷] 已知全集U ={1,2,3,4},集合A ={1,2},B ={2,3},则∁U (A ∪B)=( )A .{1,3,4}B .{3,4}C .{3}D .{4}1.D [解析] 因为A ∪B ={1,2,3},所以∁U (A ∪B)={4},故选D.A2 命题及其关系、充分条件、必要条件4.A2、B5[2013·安徽卷] “a ≤0”是“函数f(x)=|(ax -1)x|在区间(0,+∞)内单调递增”的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件4.C [解析] f(x)=|(ax -1)x|=|ax 2-x|,若a =0,则f(x)=|x|,此时f(x)在区间(0,+∞)上单调递增;若a<0,则二次函数y =ax 2-x 的对称轴x =12a <0,且x =0时y =0,此时y =ax 2-x 在区间(0,+∞)上单调递减且y<0恒成立,故f(x)=|ax 2-x|在区间(0,+∞)上单调递增,故a ≤0时,f(x)在区间(0,+∞)上单调递增,条件是充分的;反之若a>0,则二次函数y =ax 2-x 的对称轴x =12a >0,且在区间0,12a 上y<0,此时f(x)=|ax 2-x|在区间0,12a 上单调递增,在区间12a ,1a 上单调递减,故函数f(x)不可能在区间(0,+∞)上单调递增,条件是必要的.3.A2、C3[2013·北京卷] “φ=π”是“曲线y =sin(2x +φ)过坐标原点”的( ) A .充分而不必要条件 B .必要而不充分条件 C .充分必要条件D .既不充分也不必要条件3.A [解析] ∵曲线y =sin(2x +φ)过坐标原点, ∴sin φ=0,∴φ=k π,k ∈Z ,故选A. 2.A2[2013·福建卷] 已知集合A ={1,a},B ={1,2,3},则“a =3”是“A B ”的( )A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件2.A [解析] 当a =3时,A ={1,3},A B ;当A B 时,a =2或a =3,故选A. 3.F1,A2[2013·陕西卷] 设a ,b 为向量,则“|a·b|=|a||b|”是“a ∥b ”的( ) A .充分不必要条件 B .必要不充分条件 C .充分必要条件D .既不充分也不必要条件 3.C [解析] 由已知中|a·b|=|a|·|b|可得,a 与b 同向或反向,所以a ∥b .又因为由a ∥b ,可得|cos 〈a ,b 〉|=1,故|a·b|=|a|·|b ||cos 〈a ,b 〉|=|a|·|b |,故|a ·b |=|a |·|b |是a ∥b 的充分必要条件.4.D [解析] 注意到全称命题的否定为特称命题,故应选D.图1-44.A2[2013·天津卷] 已知下列三个命题:①若一个球的半径缩小到原来的12,则其体积缩小到原来的18;②若两组数据的平均数相等,则它们的标准差也相等; ③直线x +y +1=0与圆x 2+y 2=12相切.其中真命题的序号是( ) A .①②③ B .①② C .①③ D .②③4.C [解析] 由球的体积公式V =43πR 3知体积与半径是立方关系,①正确.平均数反映数据的所有信息,标准差反映数据的离散程度,②不正确.圆心到直线的距离为|0+0+1|1+1=22=r ,即直线与圆相切,③正确. 4.A2[2013·浙江卷] 已知函数f(x)=Acos (ωx +φ)(A>0,ω>0,φ∈R ),则“f(x)是奇函数”是“φ=π2”的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件4.B [解析] f(x)=Acos (ωx +φ)是奇函数的充要条件是f(0)=0,即cos φ=0,φ=k π+π2,k ∈Z ,所以“f(x)是奇函数”是“φ=π2”的必要不充分条件,故选择B.22.A1、A2,J1[2013·重庆卷] 对正整数n ,记I n ={1,2,…,n},P n =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫m k⎪⎪⎪⎪ m ∈I n ,k ∈I n ). (1)求集合P 7中元素的个数;(2)若P n 的子集A 中任意两个元素之和不是..整数的平方,则称A 为“稀疏集”,求n 的最大值,使P n 能分成两个不相交的稀疏集的并.22.解:(1)当k =4时,⎩⎨⎧mk m ∈I 7中有3个数与I 7中的3个数重复,因此P 7中元素的个数为7×7-3=46.(2)先证:当n ≥15时,P n 不能分成两个不相交的稀疏集的并.若不然,设A ,B 为不相交的稀疏集,使A ∪B =P n I n .不妨设1∈A ,则因1+3=22,故3A ,即3∈B.同理6∈A ,10∈B ,又推得15∈A ,但1+15=42,这与A 为稀疏集矛盾.再证P 14符合要求,当k =1时,⎩⎨⎧mk m ∈I 14=I 14可分成两个稀疏集之并,事实上,只要取A 1={1,2,4,6,9,11,13},B 1={3,5,7,8,10,12,14},则A 1,B 1为稀疏集,且A 1∪B 1=I 14.当k =4时,集⎩⎨⎧m km ∈I 14中除整数外剩下的数组成集⎩⎨⎧⎭⎬⎫12,32,52,…,132,可分解为下面两稀疏集的并:A 2=⎩⎨⎧⎭⎬⎫12,52,92,112,B 2=⎩⎨⎧⎭⎬⎫32,72,132.当k =9时,集⎩⎨⎧m k m ∈I 14中除正整数外剩下的数组成集⎩⎨⎧⎭⎬⎫13,23,43,53,…,133,143,可分解为下面两稀疏集的并:A 3=⎩⎨⎧⎭⎬⎫13,43,53,103,133,B 3=⎩⎨⎧⎭⎬⎫23,73,83,113,143.最后,集C =⎩⎨⎧mkm ∈I 14,k ∈I 14,且k ≠1,4,9中的数的分母均为无理数,它与P 14中的任何其他数之和都不是整数,因此,令A =A 1∪A 2∪A 3∪C ,B =B 1∪B 2∪B 3,则A 和B 是不相交的稀疏集,且A ∪B =P 14.综上,所求n 的最大值为14.注:对P 14的分拆方法不是唯一的.A3 基本逻辑联结词及量词16.A1,A3,B6[2013·湖南卷] 设函数f(x)=a x +b x -c x ,其中c>a>0,c>b>0.(1)记集合M ={(a ,b ,c)|a ,b ,c 不能构成一个三角形的三条边长,且a =b},则(a ,b ,c)∈M 所对应的f(x)的零点的取值集合为________;(2)若a ,b ,c 是△ABC 的三条边长,则下列结论正确的是________.(写出所有正确结论的序号)①x ∈(-∞,1),f(x)>0;②x ∈R ,使a x ,b x ,c x 不能构成一个三角形的三条边长; ③若△ABC 为钝角三角形,则x ∈(1,2),使f(x)=0. 16.(1){x|0<x ≤1} (2)①②③ [解析] (1)因a =b ,所以函数f(x)=2a x -c x ,又因a ,b ,c 不能构成一个三角形,且c>a>0,c>b>0,故a +b =2a<c ,令f(x)=2a x -c x =0,即f(x)=c x⎣⎡⎦⎤2⎝⎛⎭⎫a c x-1=0,故可知⎝⎛⎭⎫a c x=12,又0<a c <12,结合指数函数性质可知0<x ≤1,即取值集合为{x|0<x ≤1}.(2)因f(x)=a x+b x-c x=c x⎣⎡⎦⎤⎝⎛⎭⎫a c x+⎝⎛⎭⎫b c x-1,因c>a>0,c>b>0,则0<a c <1,0<bc <1,当x ∈(-∞,1)时,有⎝⎛⎭⎫a c x >a c ,⎝⎛⎭⎫b c x >b c ,所以⎝⎛⎭⎫a c x +⎝⎛⎭⎫b c x>a c +b c ,又a ,b ,c 为三角形三边,则定有a +b>c ,故对x ∈(-∞,1),⎝⎛⎭⎫a c x+⎝⎛⎭⎫b c x-1>0,即f(x)=a x +b x -c x =c x ⎣⎡⎦⎤⎝⎛⎭⎫a c x+⎝⎛⎭⎫b c x-1>0,故①正确;取x =2,则⎝⎛⎭⎫a c 2+⎝⎛⎭⎫b c 2<a c +b c ,取x =3,则⎝⎛⎭⎫a c 3+⎝⎛⎭⎫b c 3<⎝⎛⎭⎫a c 2+⎝⎛⎭⎫b c 2,由此递推,必然存在x =n 时,有⎝⎛⎭⎫a c n+⎝⎛⎭⎫b c n<1,即a n +b n <c n,故②正确;对于③,因f(1)=a +b -c>0,f(2)=a 2+b 2-c 2<0(C 为钝角),根据零点存在性定理可知,x ∈(1,2),使f(x)=0,故③正确.故填①②③.2.A3[2013·重庆卷] 命题“对任意x ∈R ,都有x 2≥0”的否定为( ) A .对任意x ∈R ,都有x 2<0 B .不存在x ∈R ,使得x 2<0C .存在x 0∈R ,使得x 20≥0 D .存在x 0∈R ,使得x 20<02.D [解析] 根据定义可知命题的否定为:存在x 0∈R ,使得x 20<0,故选D.A4 单元综合10.A4,B14[2013·福建卷] 设S ,T 是R 的两个非空子集,如果存在一个从S 到T 的函数y =f(x)满足:(1)T ={f(x)|x ∈S};(2)对任意x 1,x 2∈S ,当x 1<x 2时,恒有f(x 1)<f(x 2),那么称这两个集合“保序同构”.以下集合对不是“保序同构”的是( )A .A =N *,B =NB .A ={x|-1≤x ≤3},B ={x|x =-8或0<x ≤10}C .A ={x|0<x<1},B =RD .A =Z ,B =Q10.D [解析] 函数f(x)为定义域S 上的增函数,值域为T.构造函数f(x)=x -1,x ∈N ,如图①,则f(x)值域为N ,且为增函数,A 选项正确;构造函数f(x)=⎩⎪⎨⎪⎧-8,x =-1,52(x +1),-1<x ≤3,如图②,满足题设条件,B 选项正确;构造函数f(x)=tanx -错误!π,0<x<1,如图③,满足题设条件,C 选项正确;假设存在函数f(x),f(x)在定义域Z 上是增函数,值域为Q ,则存在a<b 且a 、b ∈Z ,使得f(a)=0,f(b)=1,因为区间(a ,b)内的整数至多有有限个,而区间(0,1)内的有理数有无数多个,所以必存在有理数m ∈(0,1),方程f(x)=m 在区间(a ,b)内无整数解,这与f(x)的值域为Q 矛盾,因此满足题设条件的函数f(x)不存在,D 选项错误,故选D.B 单元 函数与导数B1 函数及其表示21.B1,B12[2013·江西卷] 已知函数f(x)=a ⎝⎛⎭⎫1-2⎪⎪⎪⎪x -12,a 为常数且a>0. (1)证明:函数f(x)的图像关于直线x =12对称;(2)若x 0满足f(f(x 0))=x 0,但f(x 0)≠x 0,则称x 0为函数f(x)的二阶周期点.如果f(x)有两个二阶周期点x 1,x 2,试确定a 的取值范围;(3)对于(2)中的x 1,x 2和a ,设x 3为函数 f(f(x))的最大值点,A(x 1,f(f(x 1))),B(x 2,f(f(x 2))),C(x 3,0).记△ABC 的面积为S(a),讨论S(a)的单调性.解:(1)证明:因为f ⎝⎛⎭⎫12+x =a(1-2|x|), f ⎝⎛⎭⎫12-x =a(1-2|x|), 有f ⎝⎛⎭⎫12+x =f ⎝⎛⎭⎫12-x ,所以函数f(x)的图像关于直线x =12对称.(2)当0<a<12时,有f(f(x))=⎩⎨⎧4a 2x ,x ≤12,4a 2(1-x ),x>12.所以f(f(x))=x 只有一个解x =0,又f(0)=0,故0不是二阶周期点.当a =12时,有f(f(x))=⎩⎨⎧x ,x ≤12,1-x ,x>12.所以f(f(x))=x 有解集x 错误!x ≤错误!,又当x ≤错误!时f(x)=x ,故x 错误!)x ≤错误!中的所有点都不是二阶周期点.当a>12时,有f(f(x))=⎩⎪⎪⎨⎪⎪⎧4a 2x ,x ≤14a,2a -4a 2x ,14a <x ≤12,2a (1-2a )+4a 2x ,12<x ≤4a -14a,4a 2-4a 2x ,x>4a -14a.所以f(f(x))=x 有四个解0,2a1+4a 2,2a1+2a ,4a 21+4a2,又f(0)=0,f ⎝ ⎛⎭⎪⎫2a 1+2a =2a1+2a , f ⎝ ⎛⎭⎪⎫2a 1+4a 2≠2a 1+4a 2,f ⎝ ⎛⎭⎪⎫4a 21+4a 2≠4a 21+4a 2,故只有2a 1+4a 2,4a 21+4a 2是f(x)的二阶周期点. 综上所述,所求a 的取值范围为a>12.(3)由(2)得x 1=2a1+4a 2,x 2=4a 21+4a 2,因为x 3为函数f(f(x))的最大值点,所以x 3=14a ,或x 3=4a -14a.当x 3=14a 时,S(a)=2a -14(1+4a 2),求导得:S′(a)=-2⎝ ⎛⎭⎪⎫a -1+22⎝ ⎛⎭⎪⎫a -1-22(1+4a 2)2. 所以当a ∈⎝ ⎛⎭⎪⎫12,1+22时,S(a)单调递增,当a ∈⎝ ⎛⎭⎪⎫1+22,+∞时S(a)单调递减; 当x 3=4a -14a 时,S(a)=8a 2-6a +14(1+4a 2),求导得:S′(a)=12a 2+4a -32(1+4a 2)2;因a>12,从而有S′(a)=12a 2+4a -32(1+4a 2)2>0, 所以当a ∈⎝⎛⎭⎫12,+∞时S(a)单调递增.13.B1,B11[2013·江西卷] 设函数f(x)在(0,+∞)内可导,且f(e x )=x +e x ,则f′(1)=________.13.2 [解析] f(e x )=x +e x ,利用换元法可得f(x)=ln x +x ,f ′(x)=1x +1,所以f′(1)=2.10.B1,B8[2013·江西卷] 如图1-3所示,半径为1的半圆O 与等边三角形ABC 夹在两平行线l 1,l 2之间,l ∥l 1,l 与半圆相交于F ,G 两点,与三角形ABC 两边相交于E ,D 两点.设弧FG 的长为x(0<x<π),y =EB +BC +CD ,若l 从l 1平行移动到l 2,则函数y =f(x)的图像大致是( )图1-3图1-410.D [解析] 设l ,l 2距离为t ,cos x =2t 2-1,得t =cos x +12.△ABC 的边长为23,BE 23=1-t 1,得BE =23(1-t),则y =2BE +BC =2×23(1-t)+23=23-433cos x +12,当x ∈(0,π)时,非线性单调递增,排除A ,B ,求证x =π2的情况可知选D.2.B1[2013·江西卷] 函数y =xln(1-x)的定义域为( ) A .(0,1) B .[0,1) C .(0,1] D .[0,1]2.B [解析] x ≥0且1-x>0,得x ∈[0,1),故选B. 11.B1[2013·辽宁卷] 已知函数f(x)=x 2-2(a +2)x +a 2,g(x)=-x 2+2(a -2)x -a 2+8.设H 1(x)=max {}f (x ),g (x ),H 2(x)=min {}f (x ),g (x )(max {}p ,q 表示p ,q 中的较大值,min {}p ,q 表示p ,q 中的较小值).记H 1(x)的最小值为A ,H 2(x)的最大值为B ,则A -B =( ) A .16 B .-16C .a 2-2a -16D .a 2+2a -16 11.B [解析] 由题意知当f(x)=g(x)时,即x 2-2(a +2)x +a 2=-x 2+2(a -2)x -a 2+8, 整理得x 2-2ax +a 2-4=0,所以x =a +2或x =a -2,所以H 1(x)=max{f(x),g(x)}=⎩⎪⎨⎪⎧x 2-2(a +2)x +a 2(x ≤a -2),-x 2+2(a -2)x -a 2+8(a -2<x<a +2),x 2-2(a +2)x +a 2(x ≥a +2),H 2(x)=min{f(x),g(x)}=⎩⎪⎨⎪⎧-x 2+2(a -2)x -a 2+8(x ≤a -2),x 2-2(a +2)x +a 2(a -2<x<a +2),-x 2+2(a -2)x -a 2+8(x ≥a +2).由图形(图形略)可知,A =H 1(x)min =-4a -4,B =H 2(x)max =12-4a ,则A -B =-16. 故选B. 4.B1[2013·全国卷] 已知函数f(x)的定义域为(-1,0),则函数f(2x +1)的定义域为( )A .(-1,1) B.⎝⎛⎭⎫-1,-12 C .(-1,0) D.⎝⎛⎭⎫12,14.B [解析] 对于f(2x +1),-1<2x +1<0,解得-1<x<-12,即函数f(2x +1)的定义域为⎝⎛⎭⎫-1,-12. 8.B1,J3[2013·陕西卷] 设函数f(x)=⎩⎪⎨⎪⎧⎝⎛⎭⎫x -1x 6,x<0,-x ,x ≥0,则当x>0时,f[f(x)]表达式的展开式中常数项为( )A .-20B .20C .-15D .158.A [解析] 由已知表达式可得:f[f(x)]=1x -x 6,展开式的通项为T r +1=C r 61x 6-r(-x)r =C r6·(-1)r ·x r -3,令r -3=0,可得r =3,所以常数项为T 4=-C 36=-20.7.B1,B3,B12[2013·四川卷] 函数y =x 33x -1的图像大致是( )图1-57.C [解析] 函数的定义域是{x ∈R |x ≠0},排除选项A ;当x<0时,x 3<0,3x -1<0,故y>0,排除选项B ;当x →+∞时,y>0且y →0,故为选项C 中的图像. 19.B1,I2,K6[2013·新课标全国卷Ⅱ] 经销商经销某种农产品,在一个销售季度内,每售出1 t 该产品获利润500元,未售出的产品,每1 t 亏损300元.根据历史资料,得到销售季度内市场需求量的频率分布直方图,如图1-4所示,经销商为下一个销售季度购进了130 t 该农产品,以X(单位:t ,100≤X ≤150)表示下一个销售季度内的市场需求量,T(单位:元)表示下一个销售季度内经销该农产品的利润.(1)将T 表示为X 的函数;(2)根据直方图估计利润T 不少于57 000元的概率;(3)在直方图的需求量分组中,以各组的区间中点值代表该组的各个值,并以需求量落入该区间的频率作为需求量取该区间中点值的概率(例如:若需求量X ∈[100,110),则取X =105,且X =105的概率等于需求量落入[100,110)的频率),求T 的数学期望.图1-419.解:(1)当X ∈[100,130)时,T =500X -300(130-X)=800X -39 000. 当X ∈[130,150]时,T =500×130=65 000.所以T =⎩⎪⎨⎪⎧800X -39 000,100≤X<130,65 000,130≤X ≤150.(2)由(1)知利润T 不少于57 000元,当且仅当120≤X ≤150.由直方图知需求量X ∈[120,150]的频率为0.7,所以下一个销售季度内的利润T 不少于57 000元的概率的估计值为0.7.(3)依题意可得T 的分布列为所以E(T)=59 400.B2 反函数5.B2[2013·全国卷] 函数f(x)=log 2⎝⎛⎭⎫1+1x (x>0)的反函数f -1(x)=( ) A.12x -1(x>0) B.12x -1(x ≠0) C .2x -1(x ∈R ) D .2x -1(x>0)5.A [解析] 令y =log 2⎝⎛⎭⎫1+1x ,则y>0,且1+1x =2y ,解得x =12y -1,交换x ,y 得f -1(x)=12x -1(x>0).B3 函数的单调性与最值21.B3,B9,B12[2013·四川卷] 已知函数f(x)=⎩⎪⎨⎪⎧x 2+2x +a ,x<0,lnx ,x>0,其中a 是实数.设A(x 1,f(x 1)),B(x 2,f(x 2))为该函数图像上的两点,且x 1<x 2. (1)指出函数f(x)的单调区间;(2)若函数f(x)的图像在点A ,B 处的切线互相垂直,且x 2<0,求x 2-x 1的最小值;(3)若函数f(x)的图像在点A ,B 处的切线重合,求a 的取值范围.21.解:(1)函数f(x)的单调递减区间为(-∞,-1),单调递增区间为[-1,0),(0,+∞).(2)由导数的几何意义可知,点A 处的切线斜率为f ′(x 1),点B 处的切线斜率为f′(x 2),故当点A 处的切线与点B 处的切线垂直时,有f′(x 1)f′(x 2)=-1.当x<0时,对函数f(x)求导,得f′(x)=2x +2. 因为x 1<x 2<0,所以,(2x 1+2)(2x 2+2)=-1, 所以2x 1+2<0,2x 2+2>0.因此x 2-x 1=12[-(2x 1+2)+2x 2+2]≥[-(2x 1+2)](2x 2+2)=1,当且仅当-(2x 1+2)=2x 2+2=1,即x 1=-32且x 2=-12时等号成立.所以,函数f(x)的图像在点A ,B 处的切线互相垂直时,x 2-x 1的最小值为1.(3)当x 1<x 2<0或x 2>x 1>0时,f′(x 1)≠f′(x 2),故x 1<0<x 2. 当x 1<0时,函数f(x)的图像在点(x 1,f(x 1))处的切线方程为 y -(x 21+2x 1+a)=(2x 1+2)(x -x 1), 即y =(2x 1+2)x -x 21+a.当x 2>0时,函数f(x)的图像在点(x 2,f(x 2))处的切线方程为 y -ln x 2=1x 2(x -x 2),即y =1x 2·x +ln x 2-1.两切线重合的充要条件是 ⎩⎪⎨⎪⎧1x 2=2x 1+2,①ln x 2-1=-x 21+a.②由①及x 1<0<x 2,知-1<x 1<0.由①②得,a =x 21+ln 12x 1+2-1=x 21-ln(2x 1+2)-1.设h(x 1)=x 21-ln(2x 1+2)-1(-1<x 1<0), 则h′(x 1)=2x 1-1x 1+1<0.所以,h(x 1)(-1<x 1<0)是减函数. 则h(x 1)>h(0)=-ln 2-1, 所以a>-ln 2-1.又当x 1∈(-1,0)且趋近于-1时,h(x 1)无限增大, 所以a 的取值范围是(-ln 2-1,+∞).故当函数f(x)的图像在点A ,B 处的切线重合时,a 的取值范围是(-ln 2-1,+∞). 10.B3,B12[2013·四川卷] 设函数f(x)=e x +x -a(a ∈R ,e 为自然对数的底数).若曲线y =sinx 上存在(x 0,y 0)使得f(f(y 0))=y 0,则a 的取值范围是( )A .[1,e]B .[e -1-1,1]C .[1,e +1]D .[e -1-1,e +1]10.A [解析] 因为y 0=sin x 0∈[-1,1],且f(x)在[-1,1]上(有意义时)是增函数,对于y 0∈[-1,1],如果f(y 0)=c >y 0,则f(f(y 0))=f(c)>f(y 0)=c >y 0,不可能有f(f(y 0))=y 0.同理,当f(y 0)=d <y 0时,则f(f(y 0))=f(d)<f(y 0)=d <y 0,也不可能有f(f(y 0))=y 0,因此必有f(y 0)=y 0,即方程f(x)=x 在[-1,1]上有解,即e x +x -a =x 在[-1,1]上有解.显然,当x <0时,方程无解,即需要e x +x -a =x 在[0,1]上有解.当x ≥0时,两边平方得e x +x -a =x 2,故a =e x -x 2+x.记g(x)=e x -x 2+x ,则g ′(x)=e x -2x +1.当x ∈⎣⎡⎦⎤0,12时,e x >0,-2x +1≥0,故g′(x)>0, 当x ∈⎝⎛⎦⎤12,1时,e x >e >1,0>-2x +1≥-1, 故g′(x)>0.综上,g′(x)在x ∈[0,1]上恒大于0,所以g(x)在[0,1]上为增函数,值域为[1,e],从而a 的取值范围是[1,e].7.B1,B3,B12[2013·四川卷] 函数y =x 33x -1的图像大致是( )图1-57.C [解析] 函数的定义域是{x ∈R |x ≠0},排除选项A ;当x<0时,x 3<0,3x -1<0,故y>0,排除选项B ;当x →+∞时,y>0且y →0,故为选项C 中的图像. 10.B3,B5,B8,B12[2013·新课标全国卷Ⅱ] 已知函数f(x)=x 3+ax 2+bx +c ,下列结论中错误的是( )A .x 0∈R ,f(x 0)=0B .函数y =f(x)的图像是中心对称图形C .若x 0是f(x)的极小值点,则f(x)在区间(-∞,x 0)单调递减D .若x 0是f(x)的极值点,则f′(x 0)=010.C [解析] x →-∞ 时,f(x)<0 ,x →+∞ 时,f(x)>0,f(x) 连续,x 0∈R ,f(x 0)=0,A 正确;通过平移变换,函数可以化为f(x)=x 3+c ,从而函数y =f(x)的图像是中心对称图形,B 正确; 若x 0是f(x)的极小值点,可能还有极大值点x 1 ,则f(x)在区间(x 1 ,x 0)单调递减.C 错误.D 正确.故答案为C.B4 函数的奇偶性与周期性2.B4[2013·广东卷] 定义域为R 的四个函数y =x 3,y =2x ,y =x 2+1,y =2 sin x 中,奇函数的个数是( )A .4B .3C .2D .12.C [解析] 函数y =x 3,y =2sin x 是奇函数.11.B4[2013·江苏卷] 已知f(x)是定义在R 上的奇函数.当x>0时,f(x)=x 2-4x ,则不等式f(x)>x 的解集用区间表示为________.11.(-5,0)∪(5,+∞) [解析] 设x<0,则-x>0.因为f(x)是奇函数,所以f(x)=-f(-x)=-(x 2+4x).又f(0)=0,于是不等式f(x)>x 等价于⎩⎪⎨⎪⎧x ≥0,x 2-4x>x 或⎩⎪⎨⎪⎧x<0,-(x 2+4x )>x.解得x>5或-5<x<0,故不等式的解集为(-5,0)∪(5,+∞).3.B4[2013·山东卷] 已知函数f(x)为奇函数,且当x>0时,f(x)=x 2+1x ,则f(-1)=( )A .-2B .0C .1D .23.A [解析] ∵f ()x 为奇函数,∴f ()-1=-f(1)=-⎝⎛⎭⎫12+11=-2.14.B4,E3[2013·四川卷] 已知f(x)是定义域为R 的偶函数,当x ≥0时,f(x)=x 2-4x ,那么,不等式f(x +2)<5的解集是________.14.(-7,3) [解析] 当x +2≥0时,f(x +2)=(x +2)2-4(x +2)=x 2-4,由f(x +2)<5,得x 2-4<5,即x 2<9,解得-3<x <3,又x +2≥0,故-2≤x <3为所求.又因为f(x)为偶函数,故f(x +2)的图像关于直线x =-2对称,于是-7<x <-2也满足不等式.(注:本题还可以借助函数的图像及平移变换求解)B5 二次函数4.A2、B5[2013·安徽卷] “a ≤0”是“函数f(x)=|(ax -1)x|在区间(0,+∞)内单调递增”的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件4.C [解析] f(x)=|(ax -1)x|=|ax 2-x|,若a =0,则f(x)=|x|,此时f(x)在区间(0,+∞)上单调递增;若a<0,则二次函数y =ax 2-x 的对称轴x =12a <0,且x =0时y =0,此时y =ax 2-x 在区间(0,+∞)上单调递减且y<0恒成立,故f(x)=|ax 2-x|在区间(0,+∞)上单调递增,故a ≤0时,f(x)在区间(0,+∞)上单调递增,条件是充分的;反之若a>0,则二次函数y =ax 2-x 的对称轴x =12a >0,且在区间0,12a 上y<0,此时f(x)=|ax 2-x|在区间0,12a 上单调递增,在区间12a ,1a 上单调递减,故函数f(x)不可能在区间(0,+∞)上单调递增,条件是必要的.5.B5,B9[2013·湖南卷] 函数f(x)=2ln x 的图像与函数g(x)=x 2-4x +5的图像的交点个数为( )A .3B .2C .1D .05.B [解析] 法一:作出函数f(x)=2ln x ,g(x)=x 2-4x +5的图像如图:可知,其交点个数为2,选B. 法二:也可以采用数值法:10.B3,B5,B8,B12[2013·新课标全国卷Ⅱ] 已知函数f(x)=x 3+ax 2+bx +c ,下列结论中错误的是( )A .x 0∈R ,f(x 0)=0B .函数y =f(x)的图像是中心对称图形C .若x 0是f(x)的极小值点,则f(x)在区间(-∞,x 0)单调递减D .若x 0是f(x)的极值点,则f′(x 0)=010.C [解析] x →-∞ 时,f(x)<0 ,x →+∞ 时,f(x)>0,f(x) 连续,x 0∈R ,f(x 0)=0,A 正确;通过平移变换,函数可以化为f(x)=x 3+c ,从而函数y =f(x)的图像是中心对称图形,B 正确; 若x 0是f(x)的极小值点,可能还有极大值点x 1 ,则f(x)在区间(x 1 ,x 0)单调递减.C 错误.D 正确.故答案为C.B6 指数与指数函数6.E3、B6、B7[2013·安徽卷] 已知一元二次不等式f(x)<0的解集为x⎪⎪⎪⎪)x<-1或x>12,则f(10x )>0的解集为( ) A .{x|x<-1或x>-lg 2} B .{x|-1<x<-lg 2} C .{x|x>-lg 2} D .{x|x<-lg 2}6.D [解析] 根据已知可得不等式f(x)>0的解是-1<x<12,故-1<10x <12,解得x<-lg2.16.A1,A3,B6[2013·湖南卷] 设函数f(x)=a x +b x -c x ,其中c>a>0,c>b>0.(1)记集合M ={(a ,b ,c)|a ,b ,c 不能构成一个三角形的三条边长,且a =b},则(a ,b ,c)∈M 所对应的f(x)的零点的取值集合为________;(2)若a ,b ,c 是△ABC 的三条边长,则下列结论正确的是________.(写出所有正确结论的序号)①x ∈(-∞,1),f(x)>0;②x ∈R ,使a x ,b x ,c x 不能构成一个三角形的三条边长; ③若△ABC 为钝角三角形,则x ∈(1,2),使f(x)=0. 16.(1){x|0<x ≤1} (2)①②③ [解析] (1)因a =b ,所以函数f(x)=2a x -c x ,又因a ,b ,c 不能构成一个三角形,且c>a>0,c>b>0,故a +b =2a<c ,令f(x)=2a x -c x =0,即f(x)=c x⎣⎡⎦⎤2⎝⎛⎭⎫a c x-1=0,故可知⎝⎛⎭⎫a c x=12,又0<a c <12,结合指数函数性质可知0<x ≤1,即取值集合为{x|0<x ≤1}.(2)因f(x)=a x+b x-c x=c x⎣⎡⎦⎤⎝⎛⎭⎫a c x+⎝⎛⎭⎫b c x-1,因c>a>0,c>b>0,则0<a c <1,0<bc <1,当x ∈(-∞,1)时,有⎝⎛⎭⎫a c x >a c ,⎝⎛⎭⎫b c x >b c ,所以⎝⎛⎭⎫a c x +⎝⎛⎭⎫b c x>a c +b c ,又a ,b ,c 为三角形三边,则定有a +b>c ,故对x ∈(-∞,1),⎝⎛⎭⎫a c x+⎝⎛⎭⎫b c x-1>0,即f(x)=a x +b x -c x =c x ⎣⎡⎦⎤⎝⎛⎭⎫a c x+⎝⎛⎭⎫b c x-1>0,故①正确;取x =2,则⎝⎛⎭⎫a c 2+⎝⎛⎭⎫b c 2<a c +b c ,取x =3,则⎝⎛⎭⎫a c 3+⎝⎛⎭⎫b c 3<⎝⎛⎭⎫a c 2+⎝⎛⎭⎫b c 2,由此递推,必然存在x =n 时,有⎝⎛⎭⎫a c n+⎝⎛⎭⎫b c n<1,即a n +b n <c n,故②正确;对于③,因f(1)=a +b -c>0,f(2)=a 2+b 2-c 2<0(C 为钝角),根据零点存在性定理可知,x ∈(1,2),使f(x)=0,故③正确.故填①②③.3.B6,B7[2013·浙江卷] 已知x ,y 为正实数,则( )A .2lg x +lg y =2lg x +2lg yB .2lg(x +y)=2lg x ·2lg yC .2lg x ·lg y =2lg x +2lg y D .2lg(xy)=2lg x ·2lg y3.D [解析] ∵lg(xy)=lg x +lg y ,∴2lg(xy)=2lg x +lg y =2lgx 2lgy ,故选择D.B7 对数与指数函数6.E3、B6、B7[2013·安徽卷] 已知一元二次不等式f(x)<0的解集为x⎪⎪⎪⎪)x<-1或x>12,则f(10x )>0的解集为( ) A .{x|x<-1或x>-lg 2} B .{x|-1<x<-lg 2} C .{x|x>-lg 2} D .{x|x<-lg 2}6.D [解析] 根据已知可得不等式f(x)>0的解是-1<x<12,故-1<10x <12,解得x<-lg2.16.B7、M1[2013·山东卷] 定义“正对数”:ln +x =⎩⎪⎨⎪⎧0,0<x<1,ln x ,x ≥1.现有四个命题:①若a>0,b>0,则ln +(a b )=bln +a ;②若a>0,b>0,则ln +(ab)=ln +a +ln +b ;③若a>0,b>0,则ln +⎝⎛⎭⎫a b ≥ln +a -ln +b ; ④若a>0,b>0,则ln +(a +b)≤ln +a +ln +b +ln 2. 其中的真命题有________.(写出所有真命题的编号)16.①③④ [解析] ①中,当a b ≥1时,∵b>0,∴a ≥1,ln +(a b )=ln a b =bln a =bln +a ;当0<a b <1时,∵b>0,∴0<a<1,ln +(a b )=bln +a =0,∴①正确;②中,当0<ab<1,且a>1时,左边=ln +(ab)=0,右边=ln +a +ln +b =ln a +0=ln a>0,∴②不成立;③中,当a b ≤1,即a ≤b 时,左边=0,右边=ln +a -ln +b ≤0,左边≥右边成立;当a b >1时,左边=ln ab =ln a -ln b>0,若a>b>1时,右边=ln a -ln b ,左边≥右边成立;若0<b<a<1时,右边=0, 左边≥右边成立;若a>1>b>0,左边=ln ab =ln a -ln b>ln a ,右边=ln a ,左边≥右边成立,∴③正确;④中,若0<a +b<1,左边=ln+()a +b =0,右边=ln +a +ln +b +ln 2=ln 2>0,左边≤右边;若a +b ≥1,ln+()a +b -ln 2=ln ()a +b -ln 2=ln a +b2,又∵a +b 2≤a 或a +b 2≤b ,a ,b 至少有1个大于1,∴ln a +b 2≤ln a 或ln a +b 2≤ln b ,即有ln+()a +b -ln 2=ln ()a +b -ln 2=ln a +b 2≤ln +a +ln +b ,∴④正确.8.B7,E1[2013·新课标全国卷Ⅱ] 设a =log 36,b =log 510,c =log 714,则( ) A .c >b >a B .b >c >a C .a >c >b D .a >b >c8.D [解析] a -b =log 36-log 510=(1+log 32)-(1+log 52)=log 32-log 52>0, b -c =log 510-log 714=(1+log 52)-(1+log 72)=log 52-log 72>0, 所以a>b>c ,选D. 3.B6,B7[2013·浙江卷] 已知x ,y 为正实数,则( )A .2lg x +lg y =2lg x +2lg yB .2lg(x +y)=2lg x ·2lg yC .2lg x ·lg y =2lg x +2lg y D .2lg(xy)=2lg x ·2lg y3.D [解析] ∵lg(xy)=lg x +lg y ,∴2lg(xy)=2lg x +lg y =2lgx 2lgy ,故选择D.B8 幂函数与函数的图像5.B8[2013·北京卷] 函数f(x)的图像向右平移1个单位长度,所得图像与曲线y =e x 关于y 轴对称,则f(x)=( )A .e x +1B .e x -1C .e -x +1D .e -x -15.D [解析] 依题意,f(x)向右平移一个单位长度得到f(x -1)的图像,又y =e x 的图像关于y 轴对称的图像的解析式为y =e -x ,所以f(x -1)=e -x ,所以f(x)=e -x -1.10.B1,B8[2013·江西卷] 如图1-3所示,半径为1的半圆O 与等边三角形ABC 夹在两平行线l 1,l 2之间,l ∥l 1,l 与半圆相交于F ,G 两点,与三角形ABC 两边相交于E ,D 两点.设弧FG 的长为x(0<x<π),y =EB +BC +CD ,若l 从l 1平行移动到l 2,则函数y =f(x)的图像大致是( )1-31-410.D [解析] 设l ,l 2距离为t ,cos x =2t 2-1,得t =cos x +12.△ABC 的边长为23,BE 23=1-t 1,得BE =23(1-t),则y =2BE +BC =2×23(1-t)+23=23-433cos x +12,当x ∈(0,π)时,非线性单调递增,排除A ,B ,求证x =π2的情况可知选D.10.B3,B5,B8,B12[2013·新课标全国卷Ⅱ] 已知函数f(x)=x 3+ax 2+bx +c ,下列结论中错误的是( )A .x 0∈R ,f(x 0)=0B .函数y =f(x)的图像是中心对称图形C .若x 0是f(x)的极小值点,则f(x)在区间(-∞,x 0)单调递减D .若x 0是f(x)的极值点,则f′(x 0)=010.C [解析] x →-∞ 时,f(x)<0 ,x →+∞ 时,f(x)>0,f(x) 连续,x 0∈R ,f(x 0)=0,A 正确;通过平移变换,函数可以化为f(x)=x 3+c ,从而函数y =f(x)的图像是中心对称图形,B 正确; 若x 0是f(x)的极小值点,可能还有极大值点x 1 ,则f(x)在区间(x 1 ,x 0)单调递减.C 错误.D 正确.故答案为C.B9 函数与方程11.B9,B11[2013·新课标全国卷Ⅰ] 已知函数f(x)=⎩⎪⎨⎪⎧-x 2+2x ,x ≤0,ln (x +1),x >0.若|f(x)|≥ax ,则a 的取值范围是( )A .(-∞,0]B .(-∞,1]C .[-2,1]D .[-2,0]11.D [解析] 方法一:若x ≤0,|f(x)|=|-x 2+2x|=x 2-2x ,x =0时,不等式恒成立,x<0时,不等式可变为a ≥x -2,而x -2<-2,可得a ≥-2;若x>0,|f(x)|=|ln(x +1)|=ln(x +1),由ln(x +1)≥ax ,可得a ≤ln (x +1)x 恒成立,令h(x)=ln (x +1)x ,则h′(x)=xx +1-ln (x +1)x 2,再令g(x)=xx +1-ln(x +1),则 g ′(x)=-x(x +1)2<0,故g(x)在(0,+∞)上单调递减,所以g(x)<g(0)=0,可得h′(x)=xx +1-ln (x +1)x 2<0,故h(x)在(0,+∞)上单调递减,x →+∞时,h(x)→0,所以h(x)>0,a ≤0.综上可知,-2≤a ≤0,故选D.方法二:数形结合:画出函数|f(x)|=⎩⎪⎨⎪⎧x 2-2x ,x ≤0,ln (x +1),x>0与直线y =ax 的图像,如下图,要使|f(x)|≥ax 恒成立,只要使直线y =ax 的斜率最小时与函数y =x 2-2x ,x ≤0在原点处的切线斜率相等即可,最大时与x 轴的斜率相等即可,因为y′=2x -2,所以y′|x =0=-2,所以-2≤a ≤0.10.B9,B12[2013·安徽卷] 若函数f(x)=x 3+ax 2+bx +c 有极值点x 1,x 2,且f(x 1)=x 1,则关于x 的方程3(f(x))2+2af(x)+b =0的不同实根个数是( )A .3B .4C .5D .610.A [解析] 因为f′(x)=3x 2+2ax +b ,3(f(x))2+2af(x)+b =0且3x 2+2ax +b =0的两根分别为x 1,x 2,所以f(x)=x 1或f(x)=x 2,当x 1是极大值点时,f(x 1)=x 1,x 2为极小值点,且x 2>x 1,如图(1)所示,可知方程f(x)=x 1有两个实根,f(x)=x 2有一个实根,故方程3(f(x))2+2af(x)+b =0共有3个不同实根;当x 1是极小值点时,f(x 1)=x 1,x 2为极大值点,且x 2<x 1,如图(2)所示,可知方程f(x)=x 1有两个实根,f(x)=x 2有一个实根,故方程3(f(x))2+2af(x)+b =0共有3个不同实根;综合以上可知,方程3(f(x))2+2af(x)+b =0共有3个不同实根.8.B9[2013·安徽卷] 函数y =f(x)的图像如图1-2所示,在区间[a ,b]上可找到n(n ≥2)个不同的数x 1,x 2,…,x n ,使得f (x 1)x 1=f (x 2)x 2=…=f (x n )x n,则n 的取值范围是( )图1-2A .{3,4}B .{2,3,4}C .{3,4,5}D .{2,3}8.B [解析] 问题等价于直线y =kx 与函数y =f(x)图像的交点个数,从图中可以看出交点个数可以为2,3,4,故n 的取值范围是{2,3,4}.5.B5,B9[2013·湖南卷] 函数f(x)=2ln x 的图像与函数g(x)=x 2-4x +5的图像的交点个数为( )A .3B .2C .1D .05.B [解析] 法一:作出函数f(x)=2ln x ,g(x)=x 2-4x +5的图像如图:可知,其交点个数为2,选B. 法二:也可以采用数值法:可知它们有2个交点,选B.21.B9、B12[2013·山东卷] 设函数f(x)=xe 2x +c(e =2.718 28…是自然对数的底数,c ∈R ).(1)求f(x)的单调区间、最大值;(2)讨论关于x 的方程|ln x|=f(x)根的个数.21.解:(1)f′(x)=(1-2x)e -2x . 由f′(x)=0,解得x =12,当x<12时,f′(x)>0,f(x)单调递增;当x>12时,f′(x)<0,f(x)单调递减.所以,函数f(x)的单调递增区间是-∞,12,单调递减区间是12,+∞,最大值为f ⎝⎛⎭⎫12=12e -1+c. (2)令g(x)=|lnx|-f(x)=|lnx|-xe-2x-c ,x ∈(0,+∞).①当x ∈(1,+∞)时,lnx>0,则g(x)=lnx -xe -2x-c ,所以g′(x)=e-2xe 2xx+2x -1.因为2x -1>0,e 2xx>0,所以g′(x)>0.因此g(x)在(1,+∞)上单调递增.②当x ∈(0,1)时,lnx<0,则g(x)=-lnx -xe -2x -c , 所以g′(x)=e-2x-e 2xx+2x -1. 因为e 2x∈(1,e 2),e 2x>1>x>0,所以-e 2xx<-1.又2x -1<1,所以-e 2xx+2x -1<0,即g′(x)<0.因此g(x)在(0,1)上单调递减.综合①②可知,当x ∈(0,+∞)时,g(x)≥g(1)=-e -2-c.当g(1)=-e -2-c>0,即c<-e -2时,g(x)没有零点,故关于x 的方程|lnx|=f(x)根的个数为0;当g(1)=-e -2-c =0,即c =-e -2时,g(x)只有一个零点,故关于x 的方程|lnx|=f(x)根的个数为1;当g(1)=-e -2-c<0,即c>-e -2时,(ⅰ)当x ∈(1,+∞)时,由(1)知g(x)=lnx -xe-2x-c ≥lnx -12e -1+c>lnx -1-c ,要使g(x)>0,只需使lnx -1-c>0,即x ∈(e 1+c ,+∞); (ⅱ)当x ∈(0,1)时,由(1)知g(x)=-lnx -xe -2x-c ≥-lnx -12e -1+c>-lnx -1-c ,要使g(x)>0,只需-lnx -1-c>0,即x ∈(0,e-1-c);所以c>-e -2时,g(x)有两个零点,故关于x 的方程|lnx|=f(x)根的个数为2. 综上所述,当c<-e -2时,关于x 的方程|lnx|=f(x)根的个数为0;当c =-e -2时,关于x 的方程|lnx|=f(x)根的个数为1;当c>-e -2时,关于x 的方程|lnx|=f(x)根的个数为2.21.B3,B9,B12[2013·四川卷] 已知函数f(x)=⎩⎪⎨⎪⎧x 2+2x +a ,x<0,lnx ,x>0,其中a 是实数.设A(x 1,f(x 1)),B(x 2,f(x 2))为该函数图像上的两点,且x 1<x 2. (1)指出函数f(x)的单调区间;(2)若函数f(x)的图像在点A ,B 处的切线互相垂直,且x 2<0,求x 2-x 1的最小值; (3)若函数f(x)的图像在点A ,B 处的切线重合,求a 的取值范围.21.解:(1)函数f(x)的单调递减区间为(-∞,-1),单调递增区间为[-1,0),(0,+∞).(2)由导数的几何意义可知,点A 处的切线斜率为f ′(x 1),点B 处的切线斜率为f′(x 2),故当点A 处的切线与点B 处的切线垂直时,有f′(x 1)f′(x 2)=-1.当x<0时,对函数f(x)求导,得f′(x)=2x +2. 因为x 1<x 2<0,所以,(2x 1+2)(2x 2+2)=-1, 所以2x 1+2<0,2x 2+2>0.因此x 2-x 1=12[-(2x 1+2)+2x 2+2]≥[-(2x 1+2)](2x 2+2)=1,当且仅当-(2x 1+2)=2x 2+2=1,即x 1=-32且x 2=-12时等号成立.所以,函数f(x)的图像在点A ,B 处的切线互相垂直时,x 2-x 1的最小值为1.(3)当x 1<x 2<0或x 2>x 1>0时,f′(x 1)≠f′(x 2),故x 1<0<x 2. 当x 1<0时,函数f(x)的图像在点(x 1,f(x 1))处的切线方程为 y -(x 21+2x 1+a)=(2x 1+2)(x -x 1), 即y =(2x 1+2)x -x 21+a.当x 2>0时,函数f(x)的图像在点(x 2,f(x 2))处的切线方程为 y -ln x 2=1x 2(x -x 2),即y =1x 2·x +ln x 2-1.两切线重合的充要条件是 ⎩⎪⎨⎪⎧1x 2=2x 1+2,①ln x 2-1=-x 21+a.②由①及x 1<0<x 2,知-1<x 1<0.由①②得,a =x 21+ln 12x 1+2-1=x 21-ln(2x 1+2)-1.设h(x 1)=x 21-ln(2x 1+2)-1(-1<x 1<0),。

全国卷6年数列高考题整理汇总(附答案)培训资料.docx

全国卷6年数列高考题整理汇总(附答案)培训资料.docx

数列专题高考真题(2014·I)17. (本小题满分12分)已知数列{a n}的前n项和为S n,a1=1,a n≠0,a n a n+1=λS n−1,其中λ为常数.(Ⅰ)证明:a n+2−a n=λ;(Ⅱ)是否存在λ,使得{a n}为等差数列?并说明理由.(2014·II)17.(本小题满分12分)已知数列{a n}满足a1=1,a n+1=3a n+1.(Ⅰ)证明{a n+12}是等比数列,并求{a n}的通项公式;(Ⅱ)证明:1a1+1a2+⋯+1a n<32.(2015·I)(17)(本小题满分12分)S n为数列{a n}的前n项和.已知a n>0,a n2+2a n=4S n+3,(Ⅰ)求{a n}的通项公式:(Ⅱ)设b n=1a n a n+1,求数列{b n}的前n项和。

(2015·II)(4)等比数列{a n}满足a1=3,=21,则( ) (A)21 (B)42 (C)63 (D)84(2015·II)(16)设是数列的前n 项和,且,,则________.(2016·I)(3)已知等差数列{a n }前9项的和为27,a 10=8,则a 100=(A )100 (B )99(C )98(D )97(2016·I)(15)设等比数列{a n }满足a 1+a 3=10,a 2+a 4=5,则a 1a 2…a n 的最大值为__________。

(2016·II)(17)(本题满分12分)S n 为等差数列{a n }的前n 项和,且a 1=1 ,S 7=28 记b n =[log a n ],其中[x]表示不超过x 的最大整数,如[0.9] = 0,[lg 99]=1.(I )求b 1,b 11,b 101;(II )求数列{b n }的前1 000项和.(2016·III)(12)定义“规范01数列”{a n }如下:{a n }共有2m 项,其中m 项为0,m 项为1,且对任意k ≤2m ,a 1,a 2,⋯,a k 中0的个数不少于1的个数.若m =4,则不同的“规范01数列”共有(A )18个(B )16个(C )14个(D )12个(2016·III)(17)(本小题满分12分)已知数列{a n }的前n 项和S n =1+λa n ,其中λ≠0 (I )证明{a n }是等比数列,并求其通项公式;(II )若S n =3132,求λ.(2017·I)4.记为等差数列的前项和.若,,则的公差为A .1B .2C .4D .8(2017·I)12.几位大学生响应国家的创业号召,开发了一款应用软件。

530页,高考英语2015—2020六年真题汇总,含答案解析

530页,高考英语2015—2020六年真题汇总,含答案解析

530页,高考英语2015—2020六年真题汇总,含答案解析
即将高考的高三同学,不论哪一科,都要刷真题,因为考试真题代表每年高考的考点和题型趋势。

高考真题是由一群专家级命题人花费很长时间,封闭式制作而成,其品质能秒杀市面上的任何一套练习题。

而且,高考真题的命题规律最直接地体现在往年的真题中。

同学们通过研究真题可以快速掌握高考的重难点、命题方向和趋势等。

同学们在学习英语时,它是不同于其他的学科的,英语可以随时随地进行复习。

所以同学们可以见缝插针地学英语,更可以作为两个学科复习中间的调剂。

如单词、词组,每天记背几个或加深记忆。

课文每天朗读一篇到三篇。

即将高考的高三同学,一定要刷真题,任何科目都是!最后,高考真题是临考前用来进行系统练手,提前找到高考感觉的最好资料。

贴心的小器今天就给大家整理了高考英语六年真题汇总!含答案解析!共530页,高考生必备!拿去做做,稳稳得140分!
由于资料内容过多!小器只分享了部分截图,全部资料内容可关注后私信我【英语真题】就可以,依旧无偿分享,家里有正在上高中的孩子,一定要领取一份!如果孩子偏科,提升成绩有困难可以跟小器讲一讲哦!我是一点也不小气的小器官,今天依旧是爱你的一天~#高考#。

2022高考真题汇编专题13 二战后经济全球化背景下的世界(1945年至今)(解析版)

2022高考真题汇编专题13 二战后经济全球化背景下的世界(1945年至今)(解析版)

专题13 二战后经济全球化背景下的世界(1945年至今)1.(2022·全国甲卷·高考真题)1951年,美国黑人团体民权大会向联合国发起请愿活动,指控美国政府对黑人犯有种族灭绝罪行。

美国政府指责请愿活动是共产主义的宣传,并寻找支持政府的黑人来驳斥这些指控。

这反映出当时()A.美苏两极对峙格局的正式形成B.民权大会的指控缺乏事实依据C.美国对待种族问题的态度受冷战意识影响D.美国政府对国内的种族平等问题漠不关心【答案】C【详解】1951年正处于冷战时期,美国政府面对黑人团体在联合国大会上的指控,认为民权大会的请愿活动是共产主义的宣传,以此来反对民权大会的指控,美国政府对待种族问题的做法显然是受到了冷战意识的影响,C 项正确;1955年华约成立标志两极对峙格局正式形成,排除A项;美国历史上白人残酷对待黑人,民权大会的指控有事实依据,排除B项;战后美国政府关注到了种族平等问题,D项表述绝对,排除D项。

故选C项。

2.(2022·山东·高考真题)20世纪七八十年代,中国除向非洲国家提供大量经援贷款外,还与非洲国家开展了广泛的济技术合作。

1974~1980年,中国先后与45个非洲国家签订了100多项经济技术合作协定。

这表明我国致力于与非洲人民一起A.建立区域性经济合作组织B.改善非洲的经济治理机制C.促进发展中国家的均衡发展D.推动国际经济新秩序的建立【答案】D【详解】根据材料“向非洲国家提供大量经援贷款、非洲国家开展了广泛的济技术合作、100多项经济技术合作协定”可知,中国为非洲国家提供帮助和合作,有利于非洲国家和中国的经济发展,有利于推动国际经济新秩序的建立,D项正确;材料中未涉及区域性经济合作组织的成立,排除A项;B项表述片面,中国和非洲进行经济合作也有利于中国经济治理机制的改善,排除B项;有利于促进发展中国家发展,均衡错误,排除C项。

故选D项。

3.(2022·6浙江·高考真题)20世纪60年代末70年代初,日本在一些主要工业产品的产量和质量上居世界第一,日本产品在激烈竞争中占领美国市场,美国对日本贸易赤字不断扩大。

2013~2018年高考历史六年真题分类汇编(含答案和解析)

2013~2018年高考历史六年真题分类汇编(含答案和解析)

2013~2018年高考历史六年真题分类汇编第一单元古代中国的政治制度第一讲商周时期的政治制度1.(2018·全国卷Ⅱ,24)据《史记》记载,商汤见野外有人捕猎鸟兽,张设的罗网四面密实,认为这样便将鸟兽杀绝了,“乃去其三面”,因此获得诸侯的拥护,最终推翻夏桀,创立商朝。

这一记载意在说明( )A.商汤成功缘于他的仁德之心 B.捕猎是夏商时主要经济活动C.商朝已经注重生态环境保护 D.资源争夺是夏商更替的主因【答案】A【解析】商汤认为四面密实的网会将鸟兽杀绝,所以采取了“去其三面”的做法,这表面看是对鸟兽的仁慈,不赶尽杀绝,实际上《史记》的作者意在说明商汤能够建立商朝是其仁德的结果,故选A项。

夏商时期农耕应该是主要的经济活动,故B项不符合史实。

保护生态环境与材料主旨不符,而且材料没有说到商朝建立之后的事情,故排除C项。

材料提到的是商汤的举动与夏商更替的关系,而不是资源争夺,故排除D项。

2.(2017·全国卷Ⅰ,24)周灭商之后,推行分封制,如封武王弟康叔于卫,都朝歌(今河南淇县);封周公长子伯禽于鲁,都奄(今山东曲阜);封召公奭于燕,都蓟(今北京)。

分封( )A.推动了文化的交流与文化认同 B.强化了君主专制权力C.实现了王室对地方的直接控制 D.确立了贵族世袭特权【答案】A【解析】题干材料反映了周灭商之后,推行分封制,分封王族等到各地建立诸侯国,从而使周的文化影响也因此覆盖其所辖之处,客观上推动了文化的交流;周天子成为天下共主,加强了文化认同,故选A 项。

在西周分封制下,诸侯具有较大的自主权,没有形成君主专制局面,排除B项;西周分封制下,周天子直接控制的地区称为王畿,诸侯国有相对的独立性,周天子对地方是间接控制,排除C项;题干没有提到贵族的世袭特权问题,排除D项。

3.(2017·江苏高考,1)《国语》讲“祀,国之大节”。

有学者认为,青铜器在商周时期被视为“政治的权力”。

2013年高考试题分类汇编(集合)

2013年高考试题分类汇编(集合)

2013年高考试题分类汇编(集合)考点1 集合的基本概念1.(2013·全国大纲卷·理科)设集合{}1,2,3A =,{}4,5B =,{|,M x x a b ==+ ,}a A b B ∈∈,则M 中元素的个数为A.3B.4C.5D.62.(2013·山东卷·理科)设集合{}0,1,2A =,则集合{},B x y x A y A =-∈∈中元素的个数是A. 1B. 3C. 5D.93.(2013·江西卷·文科)若集合{}210A x R ax ax =∈++=中只有一个元素, 则a =A.4B.2C.0D.0或44.(2013·江苏卷)集合}1,0,1{-共有 个子集.考点2 集合的基本关系1.(2013·福建卷·理科)已知集合{}a A ,1=,{}3,2,1=B ,则”“3=a 是”“B A ⊆的 A.充分不必要条件B.必要不充分条件C.充要条件D. 既不充分也不必要条件2.(2013·福建卷·文科)若集合{}=1,2,3A ,{}=1,3,4B ,则A B 的子集个数为A .2B .3C .4D .163.(2013·全国卷Ⅰ·理科)已知集合{}220A x x x =->,{B x x =<<,则A.A B =∅B.A B R =C.B A ⊆D.A B ⊆ 考点3 集合的基本运算考法1 交集1.(2013·浙江卷·文科)设集合{}2S x x =>-,{}41T x x =-≤≤,则S T =A.[)4,-+∞B.(2,)-+∞C.[]4,1-D.(]2,1-2.(2013·四川卷·文科)设集合{1,2,3}A =,集合{2,2}B =-,则A B =A.∅B.{2}C.{2,2}-D.{2,1,2,3}-3.(2013·四川卷·理科)设集合{|20}A x x =+=,集合2{|40}B x x =-=,则A B =A.{2}-B.{2}C.{2,2}-D.∅4.(2013·广东卷·文科)设集合{}220,S x x x x R =+=∈,2{20,T x x x =-= }x R ∈则S T = A.{}0 B.{}0,2 C.{}20-, D.{}20,2-,5.(2013·全国卷Ⅱ·文科)已知集合{}31M x x =-<<,{}3,2,1,0,1N =---,则M N =A.{}2,1,0,1--B.{}3,2,1,0---C.{}2,1,0--D.{}3,2,1---6.(2013·辽宁卷·文科)已知集合{}1,2,3,4A =,{}|2B x x =<,则A B =A.{}0B.{}0,1C.{}0,2D.{}0,1,27.(2013·北京卷·文理科)已知集合{}1,0,1A =-,{}11B x x =-≤<,则A B =A.{}0B.{}1,0-C.{}0,1D.{}1,0,1-8.(2013·天津卷·文理科)已知集合{}2A x R x =∈≤, {}1B x R x =∈≤, 则 A B =A.(],2-∞B.[]1,2C.[]2,2-D.[]2,1-9.(2013·全国卷Ⅰ·理科)已知集合{}1,2,3,4A =,{}2,B x x n n A ==∈,则 A B =A.{}1,4B.{}2,3C.{}9,16D.{}1,210.(2013·全国卷Ⅱ·理科)已知集合{}2(1)4M x x x R =-<∈,,{1,0,1,N =- 2,3},则M N =A.{}0,1,2B.{}1,0,1,2-C.{}1,0,2,3-D.{}0,1,2,311.(2013·江西卷·理科)设集合{}1,2,M zi =,i 为虚数单位,{}3,4N =, {}4M N =,则复数z =A.2i -B.2iC.4i -D.4i12.(2013·辽宁卷·理科)已知集合{}4|0log 1A x x =<<,{}|2B x x =≤,则A B =A.()01,B.(]02,C.()1,2D.(]12, 考法2 并集1.(2013·广东卷·理科)设集合{}220,M x x x x R =+=∈,{}220,N x x x x R =-=∈,则M N =A.{}0B.{}0,2C.{}20-,D.{}20,2-, 考法3 补集1.(2013·全国大纲卷·文科)设集合{}1,2,3,4,5U =,集合{}1,2A =,则u A =A.{}1,2B.{}3,4,5C.{}1,2,3,4,5D.∅2.(2013·安徽卷·文科)已知{}10A x x =+>,{}2,1,0,1B =--,则()R C A B =A.{}2,1--B.{}2-C.{}2,0,1-D.{}0,13.(2013·陕西卷·理科)设全集为R , 函数()f x =M , 则 U C M 为 A.[1,1]- B.(1,1)- C.(,1][1,)-∞-+∞ D.(,1)(1.)-∞-+∞4.(2013·陕西卷·文科)设全集为R , 函数()f x =M , 则 U C M 为A.(,1)-∞B.(1,)+∞C.(],1-∞D.[)1,+∞ 考法4 交、并、补集混合运算1.(2013·湖北卷·文科)已知全集{}12345U =,,,,,集合{}12A =,,{}234B =,,,则()U B C A =A .{}2B .{}34,C .{}145,,D .{}2345,,,2.(2013·山东卷·文科)已知集合B A 、均为全集}4,3,2,1{=U 的子集,且 (){4}U A B =,{1,2}B =,则U A B =A.{}3B.{}4C.{}3,4D.∅3.(2013·重庆卷·文理科)已知集合{1,2,3,4}U =,集合={1,2}A ,={2,3}B ,则()U A B =A.{1,3,4}B.{3,4}C.{3}D.{4}4.(2013·安徽卷·文科)已知{}10A x x =+>,{}2,1,0,1B =--,则()R C A B = A.{}2,1-- B.{}2- C.{}2,0,1- D.{}0,15.(2013·浙江卷·理科)设集合{}2S x x =>-,{}2340T x x x =+-≤,则 ()R C S T = A.[)4,-+∞ B.(2,)-+∞ C.[]4,1- D.(]2,1-6.(2013·湖南卷·文科)已知集合{2,3,6,8}U =,{2,3}A =,{2,6,8}B =,则 ()C A B = .7.(2013·湖北卷·理科)已知全集为R ,1{()1}2x A x =≤,2{680}B x x x =-+≤, 则()A C B = A.{0}x x ≤ B.{24}x x ≤≤ C.{024}x x x ≤<>或 D.{024}x x x <≤≥或。

2013-2018近六年全国高考(2卷)真题整理汇编(理科数学)WOER

2013-2018近六年全国高考(2卷)真题整理汇编(理科数学)一、集合与逻辑用语1、【2018,2】已知集合A ={(x , y)|x 2+y 2≤3 , x ∈Z , y ∈Z},则A 中元素的个数为A. 9B. 8C. 5D. 42、【2017,2】设集合{}1,2,4A =,{}240x x x m B =-+=.若{}1A B =,则B =( )A .{}1,3-B .{}1,0C .{}1,3D .{}1,53、【2016,2】已知集合A ={1,2,3},B ={x |(x +1)(x -2)<0,x ∈Z },则A B =( )A .{1}B .{1,2}C .{0,1,2,3}D .{-1,0,1,2,3}4、【2015,1】已知集合A ={-2,-1,0,2},B ={x |(x -1)(x +2)<0},则A ∩B =( )A .{-1,0}B .{0,1}C .{-1,0,1}D .{0,1,2}5、【2014,1】设集合M ={0, 1, 2},N ={}2|320x x x -+≤,则MN =( )A .{1}B .{2}C .{0,1}D .{1,2}6、【2013,1】已知集合M ={x|(x -1)2 < 4, x ∈R },N ={-1,0,1,2,3},则M ∩ N =( )A .{0, 1, 2}B .{-1, 0, 1, 2}C .{-1, 0, 2, 3}D .{0, 1, 2, 3}{}1AB =,}30+=,故{01AB =,{1,2}M N =x <3}.而二、复数1、【2018,1】=-+ii2121 A.i 5354-- B.i 5354+- C.=--i 5453 D. =+-i 54532、【2017,1】31ii+=+()3、【2016,1】已知(3)(1)i z m m =++-在复平面内对应的点在第四象限,则实数m 的取值范围是( )A .(-3,1)B .(-1,3)C .(1,+∞)D .(-∞,-3)4、【2015,2】若a 为实数且(2+ai )(a -2i ) = -4i ,则a =( )A .-1B .0C .1D .25、【2014,2】设复数1z ,2z 在复平面内的对应点关于虚轴对称,12z i =+,则12z z=( )A .- 5B .5C .- 4 + iD .- 4 - i6、【2013,2】设复数z 满足(1i)2i z -=,则z =( )A .1i -+B .1i --C .1i +D .1i -三、程序框图1、【2018,7】为计算S =1−12+13−14+⋯+199−1100,设计了下面的程序框图,则在空白框中应填入A. i =i +1B. i =i +2C. i =i +3D. i =i +4第1小题 第2小题 第3小题2、【2017,8】执行右面的程序框图,如果输入的1a =-,则输出的S =( )A .2B .3C .4D .5 3、【2016,8】中国古代有计算多项式值的秦九韶算法,右图是实现该算法的程序框图.执行该程序框图,若输入的x =2,n =2,依次输入的a 为2,2,5,则输出的s =( ) A .7 B .12 C .17 D .344、【2015,8】右边程序框图的算法思路源于我国古代数学名著《九章算术》中的“更相减损术”. 执行该程序框图,若输入a ,b 分别为14,18,则输出的a =( ) A .0 B .2C .4D .14开始,x n输入00k s ==,a输入s s x a=⋅+1k k =+k n>s输出结束否是第4小题 第5小题 第6小题5、【2014,7】执行右面程序框图,如果输入的x ,t 均为2,则输出的S = ( )A .4B .5C .6D .76、【2013,6】执行右面的程序框图,如果输入的10N =,那么输出的S =( ) A.11112310++++B .11112!3!10!++++C.11112311++++ D .11112!3!11!++++四、平面向量1、【2018,4】 已知向量,b 满足|a | =1,a ⋅b =−1,则a ⋅(2a−b )=A. 4B. 3C. 2D. 02、【2017,12】已知ABC ∆是边长为2的等边三角形,P 为平面ABC 内一点,则()PA PB PC ⋅+的最小值是( )A.2-B.32-C. 43- D.1-结束输出S 1M =,3S =开始输入x ,t1k =k t ≤M M x k=S M S =+1k k =+是否 110⨯⨯,110!++,k3、【2016,3】已知向量(1)(32),,=,m =-a b ,且()⊥a +b b ,则m =( )A .-8B .-6C .6D .84、【2015,13】设向量a ,b 不平行,向量λ+a b 与2+a b 平行,则实λ=____________.5、【2014,3】设向量a ,b 满足10|a b |+=,6|a b |-=,则a b ⋅=( )A .1B .2C .3D . 56、【2013,13】已知正方形的边长为2,为的中点,则_______. 五、线性规划1、【2018,14】若x, y 满足约束条件{x +2y −5≥0 ,x −2y +3≥0 ,x −5≤0 ,则z =x +y 的最大值为__________,ABCD E CD AE BD ⋅=∵2PC PB PO +=,∴ ()2PA PC PB PO PA ⋅+=⋅ 由上图可知:OA PA PO =-;两边平方可得()()2232PA POPA PO =+-⋅()()222PA PO PA PO +≥-⋅,∴ 322PO PA ⋅≥-,∴ ()322PA PC PB PO PA ⋅+=⋅≥-(42)a b m +=-,,∵()a b b +⊥,∴()122(2)0a b b m +⋅=--=,解得8m =,选a b λ+与2a b +平行,所以(2)a b k a b λ+=+,则12k λ=⎧⎨=⎩A 2222||10||6210,26,a b a b a b a b a b a b +=-=∴++⋅=+-⋅=,两式相减得:1a b ⋅=.解析:以AB 所在直线为x 轴,AD 所在直线为y 轴建立平面直角坐标系,则点A 的坐标为(0,0),点B 的坐标为(2,0),点D 的坐标为(0,2),点E 的坐标为(1,2),则AE =(1,2),BD =(-2, 2),所以=2AE BD ⋅.【答案】9详解:作可行域,则直线z =x +y 过点A(5,4)时取最大值9.2、【2017,5】设x ,y 满足约束条件2330233030x y x y y +-≤⎧⎪-+≥⎨⎪+≥⎩,则2z x y =+的最小值是( )A .15-B .9-C .1D .93、【2015,14】若x ,y 满足约束条件1020+220x y x y x y -+≥⎧⎪-≤⎨⎪-≤⎩,则z x y =+的最大值为_______.4、(2014·9)设x ,y 满足约束条件70310350x y x y x y +-≤⎧⎪-+≤⎨⎪--≥⎩,则2z x y =-的最大值为( )A .10B .8C .3D .2A 【解析】根据约束条件2330233030x y x y y +-≤⎧⎪-+≥⎨⎪+≥⎩画出可行域(图中阴影部分), 作直线:20l x y +=,平移直线l , 将直线平移到点A 处Z 最小, 点A 的坐标为()6,3--,将点A 的坐标代到目标函数2Z x y =+,可得15Z =-,即min 15Z =-.解析:画出可行域,如图所示,将目标函数变形 为y =-x +z ,当z 取到最大时,直线y = -x + z 的纵截距最大,故将直线尽可能地向上平移到1(1,)2D ,则z =x +y 的最大值为32.32xy–1–2–3–41234–1–2–3–41234DCBOlAy = -32x +3y -3=02x -3y +3xOyCB5、(2014·14)设x ,y 满足约束条件⎪⎪⎩⎪⎪⎨⎧≥≥≤+-≥-0031y x y x y x ,则2z x y =-的取值范围为 .6、(2013·9)已知0a >,x ,y 满足约束条件13(3)x x y y a x ≥⎧⎪+≤⎨⎪≥-⎩,若2z x y =+的最小值为1,则a =( )A .14B .12C .1D .2六、二项式定理1、【2015,15】4()(1)a x x ++的展开式中x 的奇数次幂项的系数之和为32,则a =_______.2、【2014,13】10()x a +的展开式中,7x 的系数为15,则a =________.3、【2013,5】已知5(1)(1)ax x ++的展开式中2x 的系数为5,则a =( )A .4-B .3-C .2-D .1-B 解析:作出x ,y 满足约束条件70310350x y x y x y +-≤⎧⎪-+≤⎨⎪--≥⎩所表示的平面区域为如图阴影部分,做出目标函数l 0:y =2x , ∵y =2x -z ,∴当y =2x -z 的截距最小时,z 取最大值.当y =2x -z 经过C 点时,z 取最大值.由31070x y x y -+=⎧⎨+-=⎩得C (5,2), 此时z 取最大值为2×5-2=8.[3,3]- 解析:画出可行域,易知当直线2Z x y =-经过点(1,2)时,Z 取最小值-3;当直线2Z x y =-经过点(3,0)时,Z 取最大值3. 故2Z x y =-的取值范围为[3,3]-.B 解析:由题意作出所表13(3)x x y y a x ≥⎧⎪+≤⎨⎪≥-⎩示的区域如图阴影部分所示,当目标函数表示的直线经过点A 时,取得最小值, 而点A 的坐标为(1, -2a ),所以2-2a =1,解得12a =. 故选B.3解析:由已知得,故的展开式中x 的奇数次幂项分别为,,,,,其系数之和为,解得. 4234(1)1464x x x x x +=++++4()(1)a x x ++4ax 34ax x 36x 5x 441+6+1=32a a ++3a =12解析:∵10110r r r r T C x a -+=,∴107r -=,即3r =,∴373741015T C x a x ==,解得12a =. l 0l 13x-y-5=yx12 x-3y+1=l 2x+y-7=05CABA (1, -2a )七、函数及其性质1、【2018,3】函数f(x)=e x−e−xx2的图像大致为A. AB. BC. CD. D2、【2018,11】已知f(x)是定义域为(−∞, + ∞)的奇函数,满足f(1−x)=f(1+x).若f(1)=2,则f(1)+f(2)+ f(3)+⋯+f(50)= A. −50 B. 0 C. 2 D. 503、【2018,13】曲线y=2ln(x+1)在点(0, 0)处的切线方程为__________,4、【2017,11】若2x=-是函数21`()(1)xf x x ax e-=+-的极值点,则()f x的极小值为()A.1-B.32e-- C.35e- D.15、【2016,12】已知函数()()f x x ∈R 满足()2()f x f x -=-,若函数1x y x+=与()y f x =图像的交点为11(,)x y ,22(,)x y ,…,(,)m m x y ,则1()mi i i x y =+=∑ ( )A .0B .mC .2mD .4m6、【2016,16】若直线y = kx +b 是曲线y = ln x +2的切线,也是曲线y = ln(x +1)的切线,则b = .7、【2015,5】设函数211log (2)(1)()2(1)x xx f x x -+-<⎧=⎨≥⎩,则2(2)(l og 12)f f -+=( )8、【2015,10】如图,长方形ABCD 的边AB =2,BC =1,O 是AB 的中点,点P 沿着边BC ,CD 与DA 运动,记∠BOP =x. 将动点P 到A ,B 两点距离之和表示为x 的函数f (x ),则f (x )的图像大致为 ( ) A .B .C .D .9、【2015,12】设函数()f x '是奇函数()()f x x R ∈的导函数,(1)0f -=,当x >0时,()()0xf x f x '-<,则使得f (x ) >0成立的x 的取值范围是( ) A .(,1)(0,1)-∞- B .(1,0)(1,)-+∞ C .(,1)(1,0)-∞--D .(0,1)(1,)+∞10、【2014,8】设曲线y =ax -ln(x +1)在点(0,0)处的切线方程为y =2x ,则a =( )A .0B .1C .2D .311、【2014,12】设函数()x f x mπ=,若存在()f x 的极值点0x 满足22200[()]x f x m +<,则m 的取值范围是( )A .(,6)(6,+)-∞-∞B .(,4)(4,+)-∞-∞C .(,2)(2,+)-∞-∞D .(,1)(4,+)-∞-∞12、【2014,15】已知偶函数f (x )在[0, +∞)单调递减,f (2)=0. 若f (x -1)>0,则x 的取值范围是_________.13、【2013,8】设3log 6a =,5log 10b =,7log 14c =,则( )A .c b a >>B .b c a >>C .a c b >>D .a b c >>14、【2013,10】已知函数32()f x x ax bx c =+++,下列结论中错误的是()A .00,()0x f x ∃∈=RB .函数()y f x =的图像是中心对称图形C .若0x 是()f x 的极小值点,则()f x 在区间0(,)x -∞单调递减D .若0x 是()f x 的极值点,则0()0f x '=解答题1、【2018,21】 已知函数f(x)=e x −ax 2.(1)若a =1,证明:当x ≥0时,f(x)≥1,(2)若f(x)在(0, + ∞)只有一个零点,求,,20[(x f x +1)0->⇔2、【2017,21】已知函数2()ln ,f x ax ax x x =--且()0f x ≥.(1)求a ;(2)证明:()f x 存在唯一的极大值点0x ,且220()2e f x --<<.3、【2016,21】(Ⅰ)讨论函数2()2x x f x e x -=+ 的单调性,并证明当x >0时,(2)20xx e x -++>; (Ⅱ)证明:当[0,1)a ∈时,函数2()=(0)x e ax ag x x x-->有最小值.设g (x )的最小值为()h a ,求函数()h a 的值域.4、【2015,21】设函数2()mx f x e x mx =+-.(1)证明:f (x )在(-∞,0)单调递减,在(0,+∞)单调递增;(2)若对于任意x 1,,x 2∈[-1,1],都有|f (x 1)- f (x 2)|≤ e -1,求m 的取值范围.)(2,-+∞()e 0=xf >322)(2x x -++5、【2014,21】已知函数()2x x f x e e x -=--. (Ⅰ)讨论()f x 的单调性;(Ⅱ)设()(2)4()g x f x bf x =-,当0x >时,()0g x >,求b 的最大值; (Ⅲ)已知1.4142 1.4143<<,估计ln2的近似值(精确到0.001).)()f x e ==0时等号成立,所以函数(Ⅱ)()(2)g x f x =∴当x >0时,2x e 222[2x x e e -=+-,x x e e -+≥2)0x e -+-≥2b ≤时,g 上单调递增,而所以对任意x >0,有时,()0g x '<6、【2013,21】已知函数()ln()xf x e x m=-+.(Ⅰ)设0x=是()f x的极值点,求m,并讨论()f x的单调性;(Ⅱ)当2m≤时,证明()0f x>.八、三角函数与解三角形1、【2018,6】在△ABC中,cos C2=√55,BC=1,AC=5,则AB=A. 4√2B. √30C. √29D. 2√52、【2018,10】若f(x)=cosx−sinx在[−a, a]是减函数,则的最大值是A. π4B. π2C. 3π4 D. π3、【2018,15】已知sinα+cosβ=1,cosα+sinβ=0,则sin(α+β)=__________,4、【2017,14】函数()23sin 4f x x x =+-(0,2x π⎡⎤∈⎢⎥⎣⎦)的最大值是 .5、【2016,7】若将函数y =2sin 2x 的图像向左平移12π个单位长度,则平移后图象的对称轴为( )A .()26k x k Z ππ=-∈B .()26k x k Z ππ=+∈C.()212k x k Z ππ=-∈D .()212k x k Z ππ=+∈6、【2016,9】若3cos()45πα-=,则sin 2α =( )A .725B .15C .15-D .725-7、【2016,13】△ABC 的内角A 、B 、C 的对边分别为a 、b 、c ,若cos 45A =,1cos 53C =,a = 1,则b = .8、【2014,4】钝角三角形ABC 的面积是12,AB =1,BC AC =( )A .5BC .2D .19、【2014,14】函数()sin(2)2sin cos()f x x x ϕϕϕ=+-+的最大值为_________. 10、【2013,15】设为第二象限角,若,则_________.解答题1、【2017,17】ABC ∆的内角,,A B C 的对边分别为,,a b c ,已知2sin()8sin 2BA C +=. (1)求cosB ; (2)若6a c += , ABC ∆面积为2,求.b .θ1tan()42πθ+=sin cos θθ+=45或135. 2|||AB BC -⋅为钝角三角形,∴2||5AC =2、【2015,17】在∆ABC 中,D 是BC 上的点,AD 平分∠BAC ,∆ABD 面积是∆ADC 面积的2倍.(Ⅰ)求 sinB ∠;(Ⅱ) 若AD =1,DC = ,求BD 和AC 的长.3、【2013,17】在△ABC 内角A 、B 、C 的对边分别为a ,b ,c ,已知a=bcosC+csinB . (Ⅰ)求B ;(Ⅱ)若b=2,求△ABC 面积的最大值.九、数列1、【2017,3】我国古代数学名著《算法统宗》中有如下问题:“远望巍巍塔七层,红光点点倍加增,共灯三百八十一,请问尖头几盏灯?”意思是:一座7层塔共挂了381盏灯,且相邻两层中的下一层灯数是上一层灯数的2倍,则塔的顶层共有灯( )A .1盏B .3盏C .5盏D .9盏2、【2017,15】等差数列{}n a 的前n 项和为n S ,33a =,410S =,则11nk kS ==∑ .3、【2015,4】已知等比数列{a n }满足a 1=3,a 1+ a3+ a 5=21,则a 3+ a 5+ a 7 =( )A .21B .42C .63D .844、【2015,16】设S n 是数列{a n }的前项和,且11a =-,11n n n a S S ++=,则S n =________________.5、【2013,3】等比数列{}n a 的前n 项和为n S ,已知32110S a a =+,59a =,则1a =( )A .13B .13-C .19D .19-6、【2013,16】等差数列的前项和为,已知,,则的最小值为____.{}n a n n S 100S =1525S =n nS解答题1、【2018,17】记S n 为等差数列{a n }的前n 项和,已知a 1=−7,S 3=−15,,1)求{a n }的通项公式;,2)求S n ,并求S n 的最小值.2、【2016,17】S n 为等差数列{a n }的前n 项和,且a 1=1,S 7=28. 记b n =[lg a n ],其中[x ]表示不超过x的最大整数,如[0.9]=0,[lg99]=1.(Ⅰ)求b 1,b 11,b 101;(Ⅱ)求数列{b n }的前1 000项和.3、【2014,17】已知数列{a n }满足a 1 =1,a n +1 =3 a n +1. (Ⅰ)证明1{}2n a +是等比数列,并求{a n }的通项公式;(Ⅱ)证明:123111 (2)na a a +++<.十、立体几何1、【2018,9】在长方体ABCD −A 1B 1C 1D 1中,AB =BC =1,AA 1=√3,则异面直线AD 1与DB 1所成角的余弦值为( ) A. 15 B. √56C. √55D. √222、【2018,16】已知圆锥的顶点为S ,母线SA ,SB 所成角的余弦值为78,SA 与圆锥底面所成角为45°,若△SAB 的面积为5√15,则该圆锥的侧面积为__________, 3、【2017,4】如图,该几何体由一平面将一圆柱截去一部分所得,则该几何体的体积为( )A 、90πB 、63πC 、42πD 、36π解析:(Ⅰ)证明:∵131n n a a +=+,∴1113()22n n a a ++=+,即:112312n n a a ++=+,又11322a +=,∴1{}2n a +是以32为首项,3为公比的等比数列.∴113322n n a -+=⋅,即312n n a -=.(Ⅱ)证明:由(Ⅰ)知312n n a -=,∴11231()3133nn n n n a -=≤=∈-N*, ∴21211()11111131331[1()]133323213nn n n a a a -++⋅⋅⋅+≤+++⋅⋅⋅+==-<- 故:1211132n a a a ++⋅⋅⋅+<【答案】C 详解:以D 为坐标原点,DA,DC,DD 1为x,y,z 轴建立空间直角坐标系,则D(0,0,0),A(1,0,0),B 1(1,1,√3),D 1(0,0,√3),所以AD 1⃑⃑⃑⃑⃑⃑⃑⃑=(−1,0,√3),DB 1⃑⃑⃑⃑⃑⃑⃑⃑⃑=(1,1,√3), 因为cos <AD 1⃑⃑⃑⃑⃑⃑⃑⃑,DB 1⃑⃑⃑⃑⃑⃑⃑⃑⃑>=AD 1⃑⃑⃑⃑⃑⃑⃑⃑⃑⋅DB 1⃑⃑⃑⃑⃑⃑⃑⃑⃑|AD 1⃑⃑⃑⃑⃑⃑⃑⃑⃑||DB 1⃑⃑⃑⃑⃑⃑⃑⃑⃑|=−1+32×√5=√55,异面直线AD 1与DB 1所成角的余弦值为√55,选C.【答案】40√2π因为SA 与圆锥底面所成角为45°,所以底面半径为lcos π4=√22l,因此圆锥的侧面积为πrl =√22πl 2=40√2π.4、【2017,10】已知直三棱柱111C C AB -A B 中,C 120∠AB =,2AB =,1C CC 1B ==,则异面 直线1AB 与1C B 所成角的余弦值为( ) A.2 D.3 5、【2016,6】右图是由圆柱与圆锥组合而成的几何体的三视图,则该几何体的 表面积为( ) A .20π B .24π C .28πD .32π【解析】从三视图可知:一个圆柱被一截面截取一部分而剩余的部分, 剩下的体积分上下两部分阴影的体积,下面阴影的体积为V Sh =,3r =,4h =, ∴ 136V π=;上面阴影的体积2V 是上面部分体积3V 的一半,即2312V V =,3V 与1V 的比为 高的比(同底),即3132V V =,213274V V π==,故总体积02163V V V π=+=.BB 【解析】解法一:在边1BB ﹑11BC ﹑11A B ﹑AB 上分别取中点E ﹑F ﹑G ﹑H , 并相互连接.由三角形中位线定理和平行线平移功能,异面直线1AB 和1BC 所成的 夹角为FEG ∠或其补角,通过几何关系求得22EF =,52FG =,112FH =,利用余弦定理可求得异面直线1AB 和1BC 所成的夹角余弦值为105.解法二:补形通过补形之后可知:1BC D ∠或其补角为异面直线1AB 和1BC 所成的角, 通过几何关系可知:12BC =,15C D =,3BD =,由勾股定理或余弦定理可得 异面直线1AB 和1BC 所成的夹角余弦值为105. 解法三:建系建立如左图的空间直角坐标系,()0,2,1A ,()10,0,0B ,()0,0,1B ,131,,022C ⎛⎫- ⎪ ⎪⎝⎭,∴ 131,,122BC ⎛⎫=-- ⎪ ⎪⎝⎭,()10,2,1B A =,∴ 1111210cos 552B A BC B A BC θ⋅===⨯⋅6、【2016,14】α、β是两个平面,m 、n 是两条直线,有下列四个命题: (1)如果m ⊥n ,m⊥α,n ∥β,那么α⊥β. (2)如果m ⊥α,n ∥α,那么m ⊥n . (3)如果α∥β,m ⊂α,那么m ∥β.(4)如果m ∥n ,α∥β,那么m 与α所成的角和n 与β所成的角相等. 其中正确的命题有 . (填写所有正确命题的编号.) 7、【2015,6】一个正方体被一个平面截去一部分后,剩余部分的三视图如右图, 则截去部分体积与剩余部分体积的比值为( )A .81B .71C .61D .518、【2015,9】已知A ,B 是球O 的球面上两点,∠AOB =90º,C 为该球面上的动点,若三棱锥O -ABC 体积的最大值为36,则球O 的表面积为( ) A .36πB .64πC .144πD .256π9、【2014,6】如图,网格纸上正方形小格的边长为1(表示1cm ),图中 粗线画出的是某零件的三视图,该零件由一个底面半径为3cm ,高为6cm 的 圆柱体毛坯切削得到,则切削掉部分的体积与原来毛坯体积的比值为( )A .1727B .59C .1027D .1310、【2014,11】直三棱柱ABC -A 1B 1C 1中,∠BCA =90º,M ,N 分别是A 1B 1,A 1C 1的中点,BC =CA =CC 1,则BM 与AN 所成的角的余弦值为( )A .110B .25C .3010D .2211、【2013,4】已知,m n 为异面直线,m ⊥平面α,n ⊥平面β.直线l 满足l m ⊥,l n ⊥,l α⊄,l β⊄,则( ) A .α // β且l // αB .αβ⊥且l β⊥C .α与β相交,且交线垂直于lD .α与β相交,且交线平行于lC 解析:原来毛坯体积为π·32·6=54π (cm 2),由三视图得,该零件由左侧底面半径为2cm ,高为4cm 的圆柱和右侧底面半径为3cm ,高为2cm 的圆柱构成,所以该零件的体积为:π·32·2+π·22·4=34π (cm 2),则切削掉部分的体积为54π-34π =20π(cm 2),所以切削掉部分的体积与原来毛坯体积的比值为20105427ππ=.C 解析:取BC 的中点P ,连结NP 、AP , ∵M ,N 分别是A 1B 1,A 1C 1的中点,∴四边形NMBP 为平行四边形,∴BM //PN ,∴所求角的余弦值 等于∠ANP 的余弦值,不妨令BC =CA =CC 1=2, 则AN =AP =5,NP =MB=6,∴222222||||||(5)(6)(5)cos 2||||256AN NP AP ANP AN NP +-+-∠==⨯⋅⨯⨯ 3010=.【另解】如图建立坐标系,令AC =BC =C 1C =2, 则A (0, 2, 2),B (2, 0, 2),M (1, 1, 0),N (0, 1, 0),(1,1,2)(0,1,2),BM AN ∴=--=--,01430cos .10||||65BM ANθBM AN ⋅-+===⋅12、【2013,7】一个四面体的顶点在空间直角坐标系O xyz -中的坐标分别是(1,0,1),(1,1,0),(0,1,1),(0,0,0),画该四面体三视图中的正视图时,以zOx 平面为投影面,则得到正视图可以为( )解答题13、【2018,20】如图,在三棱锥P −ABC 中,AB =BC =2√2,PA =PB =PC =AC =4,O 为AC 的中点.(1)证明:PO ⊥平面ABC ,(2)若点M 在棱BC 上,且二面角M −PA −C 为30°,求PC 与平面PAM 所成角的正弦值解析:因为m ⊥α,l ⊥m ,l ⊄α,所以l ∥α. 同理可得l ∥β. 又因为m ,n 为异面直线,所以α与β相交,且l 平行于它们的交线.故选D.A. B. C. D. A 解析:如图所示,该四面体在空间直角坐标系O -xyz 的图像为右图,则它在平面zOx上的投影即正视图为右图,故选A.14、【2017,19】如图,四棱锥P -ABCD 中,侧面PAD 为等比三角形且垂直于底面ABCD,12AB BC AD ==,o 90BAD ABC ∠=∠=, E 是PD 的中点.(1)证明:直线//CE 平面PAB ;(2)点M 在棱PC 上,且直线BM 与底面ABCD 所成锐角为o 45 ,求二面角M -AB -D 的余弦值详解:(1)因为AP =CP =AC =4,O 为AC 的中点,所以OP ⊥AC ,且OP =2√3.连结OB .因为AB =BC =√22AC ,所以△ABC 为等腰直角三角形,且OB ⊥AC ,OB =12AC =2.由OP 2+OB 2=PB 2知PO ⊥OB ,由OP ⊥OB,OP ⊥AC 知PO ⊥平面ABC .(2)如图,以O 为坐标原点,OB⃑⃑⃑⃑⃑⃑的方向为x 轴正方向,建立空间直角坐标系O −xyz . 由已知得O(0,0,0),B(2,0,0),A(0,−2,0),C(0,2,0),P(0,0,2√3),AP⃑⃑⃑⃑⃑⃑=(0,2,2√3),取平面PAC 的法向量OB ⃑⃑⃑⃑⃑⃑=(2,0,0).设M(a,2−a,0)(0<a ≤2),则AM ⃑⃑⃑⃑⃑⃑⃑=(a,4−a,0).设平面PAM 的法向量为n =(x,y,z). 由AP⃑⃑⃑⃑⃑⃑⋅n =0,AM ⃑⃑⃑⃑⃑⃑⃑⋅n =0得{2y +2√3z =0ax +(4−a)y =0 ,可取n =(√3(a −4),√3a,−a), 所以cos⟨OB ⃑⃑⃑⃑⃑⃑,n⟩=2√3(a−4)2√3(a−4)2+3a 2+a 2.由已知得|cos⟨OB⃑⃑⃑⃑⃑⃑,n⟩|=√32. 所以2√3|a−4|2√3(a−4)2+3a 2+a 2=√32.解得a=−4(舍去),a =43.所以n =(−8√33,4√33,−43).又PC ⃑⃑⃑⃑⃑⃑=(0,2,−2√3),所以cos⟨PC ⃑⃑⃑⃑⃑⃑,n⟩=√34. 所以PC 与平面PAM 所成角的正弦值为√34.15、【2016,19】如图,菱形ABCD 的对角线AC 与BD 交于点O ,AB =5,AC =6,点E ,F 分别在AD ,CD 上,AE =CF =54,EF 交BD 于点H . 将△DEF 沿EF 折到△D ´EF 的位置,OD '=(Ⅰ)证明:D H '⊥平面ABCD ; (Ⅱ)求二面角B D A C '--的正弦值.(1)证明:取PA 中点为F ,连接EF 、AF ,因为90BAD ABC ∠=∠=︒,12BC AD =所以BC 12AD ,因为E 是PD 的中点,所以EF 12AD ,所以EF BC ,所以四边形EFBC 为平行四边形,所以//EC BF ,因为BF ⊂平面PAB ,EC ⊄平面PAB ,所以直线//CE 平面PAB ,(2)取AD 中点为O ,连接OC OP 、,因为△PAD 为等边三角形,所以PO AD , 因为平面PAD ⊥平面ABCD ,平面PAD 平面ABCD AD =,PO ⊂平面PAD ,所以PO ⊥平面ABCD ,因为AO BC ,所以四边形OABC 为平行四边形,所以//AB OC , 所以OC AD ⊥,以,,OC OD OP 分别为,,x y z 轴建立空间直角坐标系,如图设1BC =,则(0,0,3),(0,1,0),(1,1,0),(1,0,0)P A B C --,所以(1,0,3)PC =-, 设(,,)M x y z ,则(,,3)PM x y z =-,(1,0,0)AB =,因为点M 在棱PC 上,所以(01)PM PC λλ=≤≤,即(,,3)(1,0,3)x y z λ-=-, 所以(,0,33)M λλ-,所以(1,1,33)BM λλ=--, 平面ABCD 的法向量为(0,0,1)n =,因为直线BM 与底面ABCD 所成角为45︒, 所以222|||33|2|sin 45||cos ,|2||||(1)1(33)1BM n BM n BM n λλλ⋅-︒=<>===-++-⨯, 解得212λ=-,所以26(,1,)22BM =--,设平面MAB 的法向量为(,,)m x y z =,则026022AB m x BM m x y z ⎧⋅==⎪⎨⋅=-+-=⎪⎩,令1z =,则6(0,,1)2m =,所以22110cos ,5||||6()12m nm n m n ⋅<>==⋅+,所以求二面角M AB D --的余弦值105.OBACFDHE D '16、【2015,19】如图,长方体ABCD -A 1B 1C 1D 1中AB =16,BC =10,AA 1=8,点E ,F 分别在A 1B 1,D 1C 1上,A 1E =D 1F =4,过点E ,F 的平面α与此长方体的面相交,交线围成一个正方形.(Ⅰ)在图中画出这个正方形(不必说出画法和理由); (Ⅱ)求直线AF 与平面α所成角的正弦值.解析:⑴证明:∵54AE CF ==,∴AE CF AD CD=,∴EF AC ∥.∵四边形ABCD 为菱形, ∴AC BD ⊥,∴EF BD ⊥,∴EF DH ⊥,∴EF DH '⊥.∵6AC =,∴3AO =; 又5AB =,AO OB ⊥,∴4OB =,∴1AEOH OD AO=⋅=,∴3DH D H '==,∴222'OD OH D H '=+,∴'D H OH ⊥.又∵OH EF H =,∴'D H ⊥面ABCD .⑵建立如图坐标系H xyz -.()500B ,,,()130C ,,,()'003D ,,,()130A -,,,()430AB =,,,()'133AD =-,,,()060AC =,,,设面'ABD 法向量()1n x y z =,,,由1100n AB n AD ⎧⋅=⎪⎨'⋅=⎪⎩得430330x y x y z +=⎧⎨-++=⎩,取345x y z =⎧⎪=-⎨⎪=⎩, ∴()1345n =-,,.同理可得面'AD C 的法向量()2301n =,,, ∴12129575cos 255210n n n n θ⋅+===⋅,∴295sin 25θ=.解析:(Ⅰ)交线围成的正方形EHGF 如图:(Ⅱ)作EM AB ⊥,垂足为M ,则14AM A E ==,18EM AA ==因为EHGF为正方形,所以EH EF =10BC ==,于是226MH EH EM =-=,所以10AH =,以D 为坐标原点,DA 的方向为x 轴正方向,建立如图所以的空间直角坐标系D xyz -, 则(10,0,0)A ,(10,10,0)H ,(10,4,8)E ,(0,4,8)F ,(10,0,0)FE =,(0,6,8)HE =-,设(,,)n x y z =是平面EHGF 的法向量,则0n FE n HE ⎧⋅=⎪⎨⋅=⎪⎩,即100680x y z =⎧⎨-+=⎩,所以可取(0,4,3)n =,又(10,4,8)AF =-,故||45|cos ,|15||||n AF n AF n AF ⋅<>==,所以AF 与平面EHGF 所成角的正弦值为4151517、【2014,18】如图,四棱锥P -ABCD 中,底面ABCD 为矩形,PA ⊥平面ABCD ,E 为PD 的中点. (Ⅰ)证明:PB // 平面AEC ;(Ⅱ)设二面角D -AE -C 为60º,AP =1,AD =3,求三棱锥E -ACD 的体积.18、【2013,18】如图,直三棱柱中,D ,E 分别是AB ,1BB 的中点,122AA AC CB AB ===. (Ⅰ)证明://平面1ACD ; (Ⅱ)求二面角1D ACE --的正弦值.111ABC A B C -1BC 解析:(Ⅰ)证明:连结BD 交AC 于点O ,连结OE .∵底面ABCD 为矩形,∴点O 为BD 的中点,又E 为PD 的中点,∴//OE PB ,∵OE ⊂平面AEC ,PB ⊄平面AEC ,∴PB //平面AEC .(Ⅱ)以A 为原点,直线AB 、AD 、AP 分别为x 、y 、z 轴建立空间直角坐标系,设AB a =,则(0,3,0)D ,(0,0,0)A ,31(0,,)22E ,(,3,0)C a , ∴31(0,,)22AE =,(,3,0)AC a =,设(,,)n x y z =是平面AEC 的法向量,则3102230n AE y z n AC ax y ⎧⋅=+=⎪⎨⎪⋅=+=⎩,解得:33a y x z y ⎧=-⎪⎨⎪=-⎩,令3x =,得(3,,3)n a a =-- 又∵(,0,0)AB a =是平面AED 的一个法向量, ∴231|cos ,|cos60234aAB n a a <>===⋅+, 解得32a =,∴111||||||322E ACD V AD CD AP -=⨯⨯⨯⨯11313332228=⨯⨯⨯⨯=.解析:(Ⅰ)连结AC 1交A 1C 于点F ,则F 为AC 1中点.又D 是AB 中点,连结DF ,则BC 1∥DF . 因为DF ⊂平面A 1CD ,BC 1⊄平面A 1CD ,所以BC 1 // 平面A 1CD . (Ⅱ)由AC =CB =22AB 得,AC ⊥BC . 以C 为坐标原点,CA 的方向为x 轴正方向,建立如图所示的空间直角坐标系C -xyz . 设CA =2,则D (1,1,0),E (0,2,1),A 1(2,0,2),CD =(1,1,0),CE =(0,2,1),1CA =(2,0,2).十一、解析几何1、【2018,5】双曲线x 2a 2−y2b2=1 (a >0, b >0)的离心率为√3,则其渐近线方程为 A. y =±√2x B. y =±√3x C. y =±√22x D. y =±√32x2、【2018,12】已知F 1,F 2是椭圆C : x 2a 2+y 2b 2=1 (a >b >0)的左,右焦点,A 是C 的左顶点,点P 在过A 且斜率为√36的直线上,△PF 1F 2为等腰三角形,∠F 1F 2P =120°,则C 的离心率为A. 23B. 12C. 13D. 143、【2017,9】若双曲线C:22221x y a b-=(0a >,0b >)的一条渐近线被圆()2224x y -+=所截得的弦长为2,则C 的离心率为( ) A .2 B C D .3100CD CA ⋅=⋅=⎪⎩n ,即100CE CA ⋅=⋅=,可取〉=63. .4、【2017,16】已知F是抛物线C:28y x=的焦点,M是C上一点,F M的延长线交y轴于点N.若M为F N的中点,则F N=.5、【2016,4】圆2228130x y x y+--+=的圆心到直线10ax y+-=的距离为1,则a =()A.43-B.34-C D.26、【2016,11】已知F1,F2是双曲线E:22221x ya b-=的左,右焦点,点M在E上,M F1与x轴垂直,211sin3MF F∠=,则E的离心率为()A B.32C D.27、【2015,7】过三点A(1, 3),B(4, 2),C(1, -7)的圆交于y轴于M、N两点,则MN=()A.B.8 C.D.108、【2015,11】已知A,B为双曲线E的左,右顶点,点M在E上,∆ABM为等腰三角形,且顶角为120°,则E的离心率为()A B.2 C D9、【2014,6】设点M (0x ,1),若在圆O :221x y +=上存在点N ,使得∠OMN =45º,则0x 的取值范围是____.10、【2014,10】设F 为抛物线C :23y x =的焦点,过F 且倾斜角为30º的直线交C 于A , B 两点,O 为坐标原点,则△OAB 的面积为( ) A .334B .938C .6332D .94解析:设双曲线方程为22221(0,0)x y a b a b-=>>,如图所示,|AB |=|BM |,∠ABM =120º,过点M 作MN ⊥x 轴,垂足为N ,在Rt △BMN 中, |BN |=a ,||3MN a =,故点M 的坐标为(2,3)M a a ,代入双曲线方程得a 2 =b 2 =c 2 -a 2,即c 2 = 2a 2,所以2e =,故选D.[1,1]-解析:由图可知点M 所在直线1y =与圆O 相切,又1ON =, 由正弦定理得sin sin ON OM OMN ONM =∠∠,∴1sin 22OMONM=∠, 即2sin OM ONM =∠,∵0ONM π≤∠≤,∴2OM ≤,即2012x +≤,解得:011x -≤≤.【另解】过OA ⊥MN ,垂足为A ,因为在Rt △OMA 中,|OA|≤1,∠OMN =45º,所以||||sin 45OA OM ==2||12OM ≤,解得||2OM ≤,因为点M (x 0, 1),所以20||12OM x =+≤,解得011x -≤≤,故0x 的取值范围是[1,1]-.D 解析:∵3(,0)4F ,∴设直线AB 的方程为33()34y x =-,代入抛物线方程得:22190216x x -+=,设11(,)A x y 、22(,)B x y ,∴12212x x +=,12916x x ⋅=,由弦长公式得221212||(1)[()4]12AB k x x x x =++-=,由点到直线的距离公式得:O 到直线AB 的距离2233|00|33483()(1)3d ⨯--==+-,∴13912284OAB S ∆=⨯⨯=. 【另解】直线AB 的方程33()34y x =-代入抛物线方程得:2412390y y --=, ∴1233y y +=,1294y y ⋅=-,∴21212139()4244OAB S y y y y ∆=⨯⨯+-=11、【2013,11】设抛物线2:2(0)C y px p =>的焦点为F ,点M 在C 上,||5MF =,若以MF 为直径的园过点(0,2),则C 的方程为( ) A. 24y x =或28y x =B .22y x =或28y x =C .24y x =或216y x =D .22y x =或216y x =12、【2013,12】已知点(1,0)A -,,(0,1)C ,直线(0)y ax b a =+>将ABC △分割为面积相等的两部分,则b 的取值范围是( ) A .(0,1)B .1(1)2-C .D .解答题13、【2018,19】设抛物线C : y 2=4x 的焦点为F ,过F 且斜率为k(k >0)的直线与C 交于A ,B 两点,|AB| =8,(1)求的方程;(2)求过点A ,B 且与C 的准线相切的圆的方程.(1,0)B 1(1]311[,)3214、【2017,20】设O 为坐标原点,动点M 在椭圆C :2212x y +=上,过M 做x 轴的垂线,垂足为N ,点P 满足2NP NM =. (1)点P 的轨迹方程;(2)设点Q 在直线x =-3上,且1OP PQ ⋅=.证明:过点P 且垂直于OQ 的直线l 过C 的左焦点F . 15、【2016,20】已知椭圆E :2213x y t +=的焦点在x 轴上,A 是E 的左顶点,斜率为k (k >0)的直线交E于A ,M 两点,点N 在E 上,MA ⊥NA .(Ⅰ)当t =4,|AM|=|AN|时,求△AMN 的面积; (Ⅱ)当2|AM|=|AN|时,求k 的取值范围.,则:(NP x =-(0,NM y =又2NP NM =,所以:椭圆C 上,所以:220012x y +=,所以:(Ⅱ)解法一:设(2cos ,2sin Pθ)1(则(2OP =(3,OQ =-,(3PQ =-,(1cos ,2PF θ=---又1OP PQ ⋅=,所以:()(22cos ,2sin 332cos 2y θθθθ⋅--+132cos 2sin y θθ-=-那么:(1PF OQ ⋅=-所以:PF OQ ⊥. l 解法二:设()11,P x y ,则(1,OP x =,(3,OQ =-,(3PQ =--()111,PF x y =---.又1OP PQ ⋅=,所以:21213x x y y =---=又()11,P x y 在x 3=-. 又(11PF OQ ⋅=-所以:PF OQ ⊥,即过16、【2015,20】已知椭圆C :2229x y m +=(m >0),直线l 不过原点O 且不平行于坐标轴,l 与C 有两个交点A ,B ,线段AB 的中点为M .(Ⅰ)证明:直线OM 的斜率与l 的斜率的乘积为定值;(Ⅱ)若l 过点(,)3mm ,延长线段OM 与C 交于点P ,四边形OAPB 能否平行四边形?若能,求此时l 的斜率;若不能,说明理由.17、【2014,20】设F 1,F 2分别是椭圆()222210y x a b a b+=>>的左右焦点,M 是C 上一点且MF 2与x 轴垂直,直线MF 1与C 的另一个交点为N .(Ⅰ)若直线MN 的斜率为34,求C 的离心率;(Ⅱ)若直线MN 在y 轴上的截距为2,且15MN F N =,求a, b . 18、【2013,20】平面直角坐标系xOy 中,过椭圆2222:1(0)x y M a b a b+=>>右焦点F 的直线0x y +-=交M 于,A B 两点,P 为AB 的中点,且OP 的斜率为12. (Ⅰ)求M 的方程;(Ⅱ),C D 为M 上的两点,若四边形ACBD 的对角线CD AB ⊥,求四边形ACBD 面积的最大值.,且1(2MF c =-,∴1(2c F N =-422161b a b =……②,联立①、②解得:十二、概率、统计1、【2018,8】我国数学家陈景润在哥德巴赫猜想的研究中取得了世界领先的成果.哥德巴赫猜想是“每个大于2的偶数可以表示为两个素数的和”,如30=7+23.在不超过30的素数中,随机选取两个不同的数,其和等于30的概率是A. 112 B. 114 C. 115 D. 1182、【2017,6】安排3名志愿者完成4项工作,每人至少完成1项,每项工作由1人完成,则不同的安排方式共有( )A .12种B .18种C .24种D .36种 3、【2017,13】一批产品的二等品率为0.02,从这批产品中每次随机取一件,有放回地抽取100次,X 表示抽到的二等品件数,则D X = .4、【2016,5】如图,小明从街道的E处出发,先到F处与小红会合,再一起到位于G处的老年公寓参加志愿者活动,则小明到老年公寓可以选择的最短路径条数为()A.24 B.18 C.12 D.95、【2016,10】从区间[0,1]随机抽取2n个数x1,x2,…,x n,y1,y2,…,y n,构成n个数对11(,)x y,22(,)x y,…,(,)n nx y,其中两数的平方和小于1的数对共有m个,则用随机模拟的方法得到的圆周率π的近似值为()A.4nmB.2nmC.4mnD.2mn6、【2016,15】有三张卡片,分别写有1和2,1和3,2和3. 甲,乙,丙三人各取走一张卡片,甲看了乙的卡片后说:“我与乙的卡片上相同的数字不是2”,乙看了丙的卡片后说:“我与丙的卡片上相同的数字不是1”,丙说:“我的卡片上的数字之和不是5”,则甲的卡片上的数字是.7、【2015,3】根据下面给出的2004年至2013年我国二氧化硫年排放量(单位:万吨)柱形图,以下结论中不正确的是()A.逐年比较,2008年减少二氧化硫排放量的效果最显著.B.2007年我国治理二氧化硫排放显现成效.C.2006年以来我国二氧化硫年排放量呈减少趋势.D.2006年以来我国二氧化硫年排放量与年份正相关.1.96【解析】随机变量()100,0.02∽BX,()()1 1.96D X np p=-=.解析:E F→有6种走法,F G→有3种走法,由乘法原理知,共6318⨯=种走法,故选B.C解析:由题意得:()()12i ix y i n=⋅⋅⋅,,,,在如图所示方格中,而平方和小于1的点均在如图所示的阴影中,由几何概型概率计算公式知π41mn=,∴4πmn=,故选C.(1,3)解析:由题意得:丙不拿(2,3),若丙(1,2),则乙(2,3),甲(1,3)满足;若丙(1,3),则乙(2,3),甲(1,2)不满足,故甲(1,3).解析:由柱形图可知,从2006年以来,我国二氧化硫排放量呈下降趋势,所以二氧化硫排放量与年份负相关,故选D.8、【2014,5】某地区空气质量监测资料表明,一天的空气质量为优良的概率是0.75,连续两天为优良的概率是0.6,已知某天的空气质量为优良,则随后一天的空气质量为优良的概率是()A.0.8 B.0.75 C.0.6 D.0.459、【2013,14】从个正整数1,2,…,n中任意取出两个不同的数,若取出的两数之和等于5的概率为114,则n=______.解答题10、【2018,18】下图是某地区2000年至2016年环境基础设施投资额y(单位:亿元)的折线图.为了预测该地区2018年的环境基础设施投资额,建立了y与时间变量的两个线性回归模型.根据2000年至2016年的数据(时间变量的值依次为1, 2, ⋯, 17)建立模型①,ŷ=−30.4+13.5t;根据2010年至2016年的数据(时间变量的值依次为1, 2, ⋯, 7)建立模型②,ŷ=99+17.5t,,1)分别利用这两个模型,求该地区2018年的环境基础设施投资额的预测值;,2)你认为用哪个模型得到的预测值更可靠?并说明理由n11、【2017,18】淡水养殖场进行某水产品的新、旧网箱养殖方法的产量对比学|科网,收获时各随机抽取了100 个网箱,测量各箱水产品的产量(单位:kg )某频率直方图如下:(1)设两种养殖方法的箱产量相互独立,记A 表示事件:旧养殖法的箱产量低于50kg, 新养殖法的箱产量不低于50kg,估计A 的概率;22()()()()()n ad bc K a b c d a c b d -=++++12、【2016,18】某险种的基本保费为a(单位:元),继续购买该险种的投保人称为续保人,续保人的本年度的保费与其上年度的出险次数的关联如下:(Ⅱ)若一续保人本年度的保费高于基本保费,求其保费比基本保费高出60%的概率;(Ⅲ)求续保人本年度的平均保费与基本保费的比值.13、【2015,18】某公司为了解用户对其产品的满意度,从A,B两地区分别随机调查了20个用户,得到用户对产品的满意度评分如下:(Ⅰ)根据两组数据完成两地区用户满意度评分的茎叶图,并通过茎叶图比较两地区满意度评分的平均值及分散程度(不要求计算出具体值,得出结论即可);(Ⅱ)根据用户满意度评分,将用户的满意度从低到高分为三个等级:记事件C:“A地区用户的满意度等级高于B地区用户的满意度等级”,假设两地区用户的评价结果相互独立,根据所给数据,以事件发生的频率作为相应事件发生的概率,求C的概率.14、【2014,19】某地区2007年至2013年农村居民家庭纯收入y (单位:千元)的数据如下表:年份2007 2008 2009 2010 2011 2012 2013 年份代号t 1 2 3 4 5 6 7 人均纯收入y2.93.33.64.44.85.25.9(Ⅰ)求y 关于t 的线性回归方程;(Ⅱ)利用(Ⅰ)中的回归方程,分析2007年至2013年该地区农村居民家庭人均纯收入的变化情况,并预测该地区2015年农村居民家庭人均纯收入. 附:回归直线的斜率和截距的最小二乘法估计公式分别为:()()()121ˆnii i nii tty y b tt==--=-∑∑,ˆˆa y bt=-.15、【2014,19】经销商经销某种农产品,在一个销售季度内,每售出1t 该产品获利润500元,未售出的产品,每1t 亏损300元.根据历史资料,得到销售季度内市场需求量的频率分布直方图,如有图所示.经销商为下一个销售季度购进了130t 该农产品.以x (单位:t ,100≤x ≤150)表示下一个销售季度内的市场需求量,T (单位:元)表示下一个销售季度内经销该农产品的利润.(Ⅰ)将T 表示为x 的函数;(Ⅱ)根据直方图估计利润T 不少于57000元的概率;通过茎叶图可以看出,A 地区用户满意度评分的平均值高于B 地区用户满意度评分的平均值;A 地区用户满意度评分比较集中,B 地区用户满意度评分比较分散。

2013高考语文试题汇编(答案)

2013年普通高等学校招生全国统一考试(新课标Ⅰ) (1)2013年普通高等学校招生全国统一考试(大纲卷) (2)2013年普通高等学校招生全国统一考试(新课标Ⅱ卷) (3)2013年北京市高考语文试题解析 (5)2013年普通高等学校招生全国统一考试(天津卷) (8)2013年普通高等学校招生全国统一考试(天津卷) ........................................................................................................... 错误!未定义书签。

2013年普通高等学校招生全国统一考试(安徽卷) (9)2013年普通高等学校招生全国统一考试(安徽卷) (10)2013年普通高等学校招生全国统一考试(福建卷) (11)2013年普通高等学校招生全国统一考试(广东卷) (12)2013年湖北省高考语文试卷及答案 (14)2013年湖南高考语文试卷及答案 (15)2013年普通高等学校招生全国统一考试(江苏) (16)2013高考语文江西卷(详解版) (18)2013年普通高等学校招生全国统一考试(辽宁卷) (20)2013高考语文山东卷(详解版) (22)2013年高考语文试题(四川卷)及答案 (24)2013年普通高等学校招生全国统一考试(浙江卷) (25)2013年普通高等学校招生全国统一考试(重庆卷) ...................................................................................................... 错误!未定义书签。

2013年普通高等学校招生全国统一考试(新课标Ⅰ)一、现代文阅读(9分,每小题3分)B 2. D 3.C二、古诗文阅读。

(36分)(一)文言文阅读(19分)4.A5.B6. D7.(1)在朝廷官员中最是年高德劭,皇上也诚心诚意任用他,诸位大臣没有敢望其项背的。

专题13 概率统计解答题-【2023高考必备】2013-2022十年全国高考数学真题分类汇编

(1)求X的分布列;
(2)若甲药、乙药在试验开始时都赋予4分, 表示“甲药的累计得分为 时,最终认为甲药比乙药更有效”的概率,则 ( ),
其中 , , .假设 , .
(i)证明: 为等比数列;
(ii)求 ,并根据 的值解释这种试验方案的合理性.
17.(2018年高考数学课标Ⅲ卷(理)·第18题)(12分)某工厂为提高生产效率,开展技术创新活动,提出了完成某项生产任务的两种生产方式,为比较两咱生产方式的效率,选取 名工人,将他们随机分成两组,每组 人,第一组工人用第一种生产方式,第二组工人用第二种生产方式.根据工人完成生产任务的工作时间(单位: )绘制了如下茎叶图:
附:相关系数r= , ≈1.414.
13.(2020年高考数学课标Ⅲ卷理科·第18题)某学生兴趣小组随机调查了某市100天中每天的空气质量等级和当天到某公园锻炼的人次,整理数据得到下表(单位:天):
锻炼人次
空气质量等级
[0,200]
(200,400]
(400,600]
1(优)
2
16
25
2(良)
5
10
第一种生产方式
第二种生产方式
8
6
5
5
6
8
9
9
7
6
2
7
0
1
2
2
3
4
5
6
6
8
9
8
7
7
6
5
4
3
3
2
8
1
4
4
5
2
1
1
0
0
9
0
(1)根据茎叶图判断哪种生产方式的效率更高?并说明理由;

2013年高考真题解析分类汇编(理科数学)13:常用逻辑用语(含答案)

2013高考试题解析分类汇编(理数)13:常用逻辑用语(含答案)一、选择题1 .(2013年高考福建数学(理))已知集合{}1,A a =,{}1,2,3B =,则“3a =”是“A B ⊆”的 ( )A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件2 .(2013年高考重庆数学(理))命题“对任意x R ∈,都有20x ≥”的否定为( )A .对任意x R ∈,都有20x < B .不存在x R ∈,都有20x < C .存在0x R ∈,使得200x ≥D .存在0x R ∈,使得200x <3 .(2013年高考四川卷(理))设x Z ∈,集合A 是奇数集,集合B 是偶数集.若命题:,2p x A x B ∀∈∈,则( )A .:,2p x A xB ⌝∀∃∈∉ B .:,2p x A x B ⌝∀∉∉C .:,2p x A x B ⌝∃∉∈D .:,2p x A x B ⌝∃∈∈4 .(2013年高考湖北卷(理))在一次跳伞训练中,甲.乙两位学员各跳一次,设命题p 是“甲降落在指定范围”,q 是“乙降落在指定范围”,则命题“至少有一位学员没有降落在指定范围”可表示为( )A .()()p q ⌝∨⌝B .()p q ∨⌝C .()()p q ⌝∧⌝D .p q ∨5 .(2013年高考上海卷(理))钱大姐常说“便宜没好货”,她这句话的意思是:“不便宜”是“好货”的( ) A .充分条件 B .必要条件 C .充分必要条件 D .既非充分也非必要条件 6 .(2013年高考天津数学(理))已知下列三个命题:①若一个球的半径缩小到原来的12, 则其体积缩小到原来的18; ②若两组数据的平均数相等, 则它们的标准差也相等; ③直线x + y + 1 = 0与圆2212x y +=相切. 其中真命题的序号是: ( ) A .①②③ B .①② C .②③ D .②③ 7 .(2013年高考陕西卷(理))设z 1, z 2是复数, 则下列命题中的假命题是( )A .若12||0z z -=, 则12z z =B .若12z z =, 则12z z =C .若||||21z z =, 则2112··z z z z = D .若12||||z z =, 则2122z z =8 .(2013年高考山东数学(理))给定两个命题p ,q .若p ⌝是q 的必要而不充分条件,则p是q ⌝的( )A .充分而不必要条件B .必要而不充分条件C .充要条件 (D ) 既不充分也不必要条件 9 .(2013年高考陕西卷(理))设a , b 为向量, 则“||||||=a a b b ·”是“a //b ”的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件10.(2013年高考浙江数学(理))已知函数),0,0)(cos()(R A x A x f ∈>>+=ϕωϕω,则“)(x f 是奇函数”是2πϕ=的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件11.(2013年高考安徽数学(理))"0"a ≤“是函数()=(-1)f x ax x 在区间(0,+)∞内单调递增”的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件12.(2013年高考北京卷(理))“φ=π”是“曲线y=sin(2x +φ)过坐标原点的”( )A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件二、填空题13.(2013年高考山东数学(理))定义“正对数”:0,01,ln ln ,1,x x x x +<<⎧=⎨≥⎩现有四个命题:①若0,0a b >>,则ln ()ln b a b a ++=; ②若0,0a b >>,则ln ()ln ln ab a b +++=+ ③若0,0a b >>,则ln ()ln ln aa b b+++≥-④若0,0a b >>,则ln ()ln ln ln 2a b a b ++++≤++其中的真命题有__________________.(写出所有真命题的编号)2013高考试题解析分类汇编(理数)13:常用逻辑用语(含答案)一、选择题14 .(2013年高考福建数学(理))已知集合{}1,A a =,{}1,2,3B =,则“3a =”是“A B ⊆”的 ( )A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件A 3,a AB =⇒⊆2A B a ⊆⇒=,或3.因此是充分不必要条件.15 .(2013年高考重庆数学(理))命题“对任意x R ∈,都有20x ≥”的否定为( )A .对任意x R ∈,都有20x < B .不存在x R ∈,都有20x < C .存在0x R ∈,使得200x ≥D .存在0x R ∈,使得200x <D 【命题立意】本题考查全称命题的否定。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

六年高考题荟萃议论类2010年高考题Passage 1(10·江苏)Another person‘s enthusiasm was what set me moving toward the success I have achieved.That person was my stepmother.I was nine years old when she enterd our home in rural Virginia. My father__36__me to her with the se words:―I would like you to meet the fellow who is___37 for being the worst boy in this county and will probably start throwing rocks at you no ___38 than tomorrow morning.‖My stepmother walked over to me, ___39 my head slightly upward,and looked me right in the eye.Then she looked at my father and replied,―You are ___40 .This is not the worst boy at all, ___41 the smartest one who hasn‘t yet found an outlet(释放的途径)for his enthusiasm.‖That statement began a(n) ___42 between us.No one had ever called me smart,My family and neighbors had built me up in my ___43 as a bad boy . My stepmother changed all that.She changed many things.She ___44 my father to go to a dental school,from which he graduated with honors.She moved our family into the count y srat,where my father‘s career could be more ___45 and my brother and I could be better___46 .When I turned fourteen,she bought me a secondhand___47 and told me that she believed that I could become a writer.I knew her ernthusiasm,I___48it had alreadly improved our lives.I accepted her ___49 and began to write for local newspapers.I was doing the same kind of___50 that great day I went to interview Andrew Carnegie and received the task which became my life‘s work later.I wasn‘t the ___51 beneficiary (受益者).My father became the ___52 man in town.My brother and stepbrthers became a physician,a dentist,a lawyer,and a college president.What power __53 has!When that power is released to support the certainty of one‘s purpose and is ___54 strengthened by faith,it becomes an irresistible(不可抗拒的)force which poverty and temporary defeat can never ___55 .You can communicate that power to anyone who needs it.This is probably the greatest work you can do with your enthusiasm.36.A.rushed B.sent C.carried D.introduced37.A.distinguishedB.favoredC.mistakenD.rewarded38. A.sooner ter C.longer D.earlier39. A.dragged B.shook C.raised D.bent40. A.perfect B.right C.wrong D.impolite41. A.but B.so C.and D.or42. A.ageement B.friendship C.gap D.relationship43. A.opinion B.image C.espectation D.mind44. A.begged B.persuaded C.ordered D.invited45. A.successful B.meaningful C.helpful eful46. A.treared B.entertained cated D.respected47. A.cemera B.radio C.bicycle D.typewriter48. A.considered B.suspected C.ignored D.appreciated49. A.belief B.request C.criticism D.description50. A.teahing B.writing C.studying D.reading51. A.next B.same C.only D.real52. A.cleverest B.wealthiest C.strongest D.bealthiest53. A.ebthusiasm B.sympathy C.fortune D.confidence54. A.deliberately B.happily C.traditionally D.constantly55. A.win B.match C.reach D.doubt本文讲述了一个继母对作者的肯定,从而激发了孩子心中的对成功的渴望,继母心中的热情,终于促使作者成功了。

36选D爸爸把我介绍给了她37选A因为是最坏的孩子而著名38.选B no later than 表示不迟于39.选C 表示微微地抬了一下我的头40.选C 你错了41.选A 前面有not 后面用but,不是最坏的而是最聪明的42.选B 这句话开始了我们之间的友谊,用友谊说明关系的亲密43.选D在我心目中我一直是一个坏男孩44.选B继母把我父亲说服了去上一个牙科学校45.选A在那儿我父亲的事业将更加成功46.选C而在那,我们弟兄们可以得到更好的教育47.选D给我买了二手的打字机,让我开始写作48.选D 我非常感激她的热心49.选A我接受了她的信念50.选B我从事的写作,因此用writing51.选C 我不是唯一的受益者52.选B我爸爸成了我们镇上最富裕的人53.选A热情有着多强大的力量呀54.选D 不断得到增强55.选B这种力量是贫穷和暂时的挫折所不能相比的Passage 2(10·北京)I met Mrs. Neidl in the ninth grade on a stage-design team for a play and she was one ofthe directors. Almost instantly I loved her. She had an Unpleasant voice and a direct way of speaking, 36 she was encouraging and inspiring. For some reason, she was impressed with my work and me.Mrs. Neidl would ask me for my 37 . She wanted to know how I thought we should 38 things. At first I had no idea how to answer because I knew 39 about stage design!But I slowly began to respond to her 40 . It was cause and effect: She believed I had opinions, so I began to 41 them. She trusted me to complete things,so I completed them perfectly. She loved how 42 I was, so I began to show up to paint more and more. She believed in me, so I began to believe in myself.Mrs. Neidl's 43 that year was, "Try it. We can always paint over it 44 !"I began to take 45 . I had been so afraid of failing but suddenly there was no failing--only things to be 46 upon. I learned to dip my brush into the paint and 47 create something.The shy, quiet freshman achieved success that year. I was 48 in the programas "Student Art Assistant" because of the time and effort I'd put in. It was that year that I 49 I wanted to spend the rest of my life doing stage design.Being on that stage-design team 50 Mrs. Neidl changed me completely. Not only was I stronger and more competent than I had thought, but I also 51 a strong interest and a world I hadn't known existed. She taught me not to 52 what people think I should do: She taught me to take chances and not be 53 . Mrs. Neidl was my comforter when I was upset. Her 54 in me has inspired me to do things that I never imagined 55 .36. A. and B. yet C. so D. for37. A. opinion B. impression C. information D. intention38. A. make B. keep C. handle D. change39. A. anything B. something C. everything D. nothing40. A. questions B. comments C. explanations D. remarks41. A. hold B. follow C. evaluate D. form42. A. happy B. lively C. reliable D. punctual43. A. message B. motto C. saying D. suggestion44. A. again B. more C. instead D. later45. A. steps B. control C. charge D. risks46. A. improved B. acted C. looked D. reflected47. A. easily B. carefully C. confidently D. proudly48. A. introduced B. recognized C. identified D. considered49. A. confirmed B. decided C. realized D. acknowledged50. A. with B. below C. of D. by51. A. developed B. discovered C. took D. fostered52. A. accept B. care C. judge D. wonder53. A. bored B. lazy C. sad D. afraid54. A. trust B. patience C. curiosity Do interest55. A. accessible B. enjoyable C. possible D. favorable36.B考察连词及句子理解。

相关文档
最新文档