什么是屈服强度和抗拉强度

合集下载

钢材的屈服强度、抗拉强度和拉伸强度

钢材的屈服强度、抗拉强度和拉伸强度

屈服强度和拉伸强度
抗拉强度:当钢材屈服到一定程度后,由于内部晶粒重新排列,其抵抗变形能力又重新提高,此时变形虽然发展很快,但却只能随着应力的提高而提高,直至应力达最大值。

此后,钢材抵抗变形的能力明显降低,并在最薄弱处发生较大的塑性变形,此处试件截面迅速缩小,出现颈缩现象,直至断裂破坏。

钢材受拉断裂前的最大应力值(b点对应值)称为强度极限或抗拉强度。

屈服强度: 当应力超过弹性极限后,变形增加较快,此时除了产生弹性变形外,还产生部分塑性变形。

当应力达到B点后,塑性应变急剧增加,曲线出现一个波动的小平台,这种现象称为屈服。

这一阶段的最大、最小应力分别称为上屈服点和下屈服点。

由于下屈服点的数值较为稳定,因此以它作为材料抗力的指标,称为屈服点或屈服强度。

有些钢材(如高碳钢)无明显的屈服现象,通常以发生微量的塑性变形(0.2%)时的应力作为该钢材的屈服强度,称为条件屈服强度。

首先解释一下材料受力变形。

材料的变形分为弹性变形(外力撤销可以恢复原来形状)和塑性变形(外力撤销不能恢复原来形状,形状发生变化)
屈服强度:当材料所受应力超过弹性极限后,变形增加较快,此时除了产生弹性变形外,还产生部分塑性变形。

当应力达到一个值后,塑性应变急剧增加,曲线出现一个波动的小平台,这种现象称为屈服。

这一阶段的最大、最小应力分别称为上屈服点和下屈服点。

由于下屈服点的数值较为稳定,因此以它作为材料抗力的指标,称为屈服点或屈服强度。

拉伸强度:拉伸强度是指材料在拉伸应力下产生最大均匀塑性变形的应力值。

关于抗拉强度和屈服强度的区别

关于抗拉强度和屈服强度的区别

关于抗拉强度和屈服强度的区别要说这两个概念,先从材料是如何被破坏的说起。

任何材料在受到不断增大或者持续恒定或者持续交变的外力作用下,最终会超过某个极限而被破坏。

对材料造成破坏的外力种类很多,比如拉力、压力、剪切力、扭力等。

屈服强度和抗拉强度这两个强度,仅仅是针对拉力而言。

这两个强度是通过拉伸试验得出的,是通过拉力试验机(一般是万能试验机,可以进行各种拉和压以及弯曲的试验),用规定的恒定的加荷速率(就是单位时间内拉力的增加量),对材料进行持续拉伸,直到断裂或达到规定的破坏程度(比如有些对接焊缝强度试验可以不拉断),这个造成材料最终破坏的力,就是该材料的抗拉极限载荷。

抗拉极限载荷是一个力的表述,单位为牛顿(N),因为牛顿是一个很小的单位,所以,大部分情况下用千牛(KN)的比较多。

因为各种材料大小不一,所以抗拉极限载荷很难评判材料的强度。

所以,用抗拉极限载荷除以实验材料的截面积,就得到单位面积的抗拉极限载荷。

单位面积上受的力,这是一个强度的表述,单位是帕斯卡(Pa),同样,帕斯卡是一个极小的单位,一般都用兆帕(MPa)来表述。

所以,抗拉极限载荷与实验材料的截面积之比,就是抗拉强度。

抗拉强度是材料单位面积上所能承受外力作用的极限。

超过这个极限,材料将被解离性破坏。

那什么是屈服强度呢?屈服强度仅针对具有弹性材料而言,无弹性的材料没有屈服强度。

比如各类金属材料、塑料、橡胶等等,都有弹性,都有屈服强度。

而玻璃、陶瓷、砖石等等,一般没有弹性,这类材料就算有弹性,也微乎其微,所以,没有屈服强度一说。

弹性材料在受到恒定持续增大的外力作用下,直到断裂。

究竟发生了怎样的变化呢?首先,材料在外力作用下,发生弹性形变,遵循胡克定律。

什么叫弹性形变呢?就是外力消除,材料会恢复原来的尺寸和形状。

当外力继续增大,到一定的数值之后,材料会进入塑性形变期。

材料一旦进入塑性形变,当外力,材料的原尺寸和形状不可恢复!而这个造成两种形变的的临界点的强度,就是材料的屈服强度!对应施加的拉力而言,这个临界点的拉力值,叫屈服点。

金属材料强度及变形性能分析

金属材料强度及变形性能分析

金属材料强度及变形性能分析简介:金属材料的强度和变形性能是决定材料使用和应用范围的重要性能指标。

强度指材料抵抗外力破坏的能力,而变形性能则表征材料在外力作用下的形变特性。

本文将重点分析金属材料的强度和变形性能,并对其影响因素进行深入探讨。

一、金属材料的强度分析:1. 抗拉强度:金属材料的抗拉强度是指材料在拉伸力作用下抵抗破坏的能力。

抗拉强度取决于材料的原子结构、晶粒尺寸、晶体缺陷等因素。

常见的金属材料如钢、铝、铜等具有不同的抗拉强度。

2. 屈服强度:屈服强度是金属材料在拉伸过程中,从线性弹性阶段到非线性弹性阶段的临界点。

屈服强度是材料首次发生可见塑性变形的应力水平。

屈服强度反映了金属材料在外力作用下的抗变形能力。

3. 延伸率和断裂伸长率:延伸率和断裂伸长率是反映材料延展性能的重要参数。

延伸率指的是材料在断裂前的拉伸程度,断裂伸长率是指材料在断裂时相对于原始长度的变化程度。

较高的延伸率和断裂伸长率意味着材料具有良好的可塑性和变形能力。

二、金属材料的变形性能分析:1. 弹性变形:弹性变形是指金属材料在外力作用下具有恢复性的形变。

弹性变形区域内,材料的形状通过去除外力而恢复到初始状态。

弹性变形的特点是应变与应力呈线性关系,且应力和应变之间的关系服从胡克定律。

2. 塑性变形:塑性变形是指金属材料在外力作用下发生的不可逆形变,形变后无法完全恢复到初始状态。

金属材料的塑性变形可以通过冷加工、热加工等方式实现。

塑性变形主要由材料内部的晶格滑移、位错等现象引起。

3. 硬化和回弹:硬化是指金属材料在塑性变形过程中变得更加坚硬和脆性的现象。

在连续塑性变形中,材料会经历晶格被位错锁定的过程,导致材料的硬度增加。

回弹是指金属材料在去除外力后,部分形变恢复到原始状态的现象。

三、影响金属材料强度和变形性能的因素:1. 材料的组成和制备工艺:不同元素的添加和不同的制备工艺会对金属材料的强度和变形性能产生重要影响。

2. 晶体结构和晶粒尺寸:晶体结构的不同会导致材料的强度和塑性发生变化,较大的晶粒尺寸能够提高材料的强度,但会降低塑性。

钢材的屈服强度、抗拉强度、延伸率、冲击功的关系

钢材的屈服强度、抗拉强度、延伸率、冲击功的关系

钢材的屈服强度、抗拉强度、延伸率、冲击功的关系什么是的屈服强度和抗拉强度。

所以,抗拉极限载荷与实验材料的截⾯积之⽐,就是抗拉强度。

抗拉强度是材料单位⾯积上所能承受外⼒作⽤的极限。

超过这个极限,材料将被解离性破坏。

弹性材料在受到恒定持续增⼤的外⼒作⽤下,直到断裂。

究竟发⽣了怎样的变化呢?⾸先,材料在外⼒作⽤下,发⽣弹性形变,遵循胡克定律。

什么叫弹性形变呢?就是外⼒消除,材料会恢复原来的尺⼨和形状。

当外⼒继续增⼤,到⼀定的数值之后,材料会进⼊塑性形变期。

材料⼀旦进⼊塑性形变,当外⼒,材料的原尺⼨和形状不可恢复!⽽这个造成两种形变的的临界点的强度,就是材料的屈服强度!对应施加的拉⼒⽽⾔,这个临界点的拉⼒值,叫屈服点。

从晶体⾓度来说,只有拉⼒超过屈服点,材料的晶体结合才开始被破坏!材料的破坏,是从屈服点就已经开始,⽽不是从断裂的时候开始的!但我要说的是不管哪个强度,只拿⼀个来说事,都不能说明这种材料安全与否或者结实与否!咱们这⾥就说钢材吧,别的不说了。

关于屈服强度和抗拉强度还有⼀个参数,可能知道的⼈不多,它究竟起什么左右,可能知道的⼈更少。

这个参数就是屈强⽐!屈强⽐就是屈服强度和抗拉强度的⽐值。

范围是0~1之间。

屈强⽐是衡量钢材脆性的指标之⼀。

屈强⽐越⼤,表明钢材屈服强度和抗拉强度的差值越⼩,钢材的塑性越差,脆性就越⼤!为什么这样说呢,这⾥要引进⼀个新的指标——延伸率。

通俗⼀点说就是钢材被拉断后,和原来⽐,伸长了多少。

这是检验钢材塑性好坏的⼀个重要指标。

这个数值越⼤,表明钢材的延展性越好。

上⾯我说了,当钢材拉伸超过屈服点之后,这个时候的钢材已经不可能恢复原来的尺⼨,⼀直到断裂,钢材都在不断的被拉长。

屈强⽐越⼤,屈服强度和抗拉强度的差值越⼩,那么在的加荷速率不变的情况下,钢材被拉长的时间就越短,那么延伸率就越低。

有点罗嗦了!下⾯进⼊正题!根据能量守恒定律,能量只能转换或者传递。

当钢材被拉伸的时候,归根结底是能量的转换吸收。

屈服强度和抗拉强度的区别

屈服强度和抗拉强度的区别

一、性质不同
1、屈服强度:是金属材料发生屈服现象时的屈服极限,也就是抵抗微量塑性变形的应力。

2、抗拉强度:是金属由均匀塑性形变向局部集中塑性变形过渡的临界值,也是金属在静拉伸条件下的最大承载能力。

二、表征不同
1、屈服强度:大于屈服强度的外力作用,将会使零件永久失效,无法恢复。

如低碳钢的屈服极限为207MPa,当大于此极限的外力作用之下,零件将会产生永久变形,小于这个的,零件还会恢复原来的样子。

2、抗拉强度:表征材料最大均匀塑性变形的抗力,拉伸试样在承受最大拉应力之前,变形是均匀一致的,但超出之后,金属开始出现缩颈现象,即产生集中变形;对于没有(或很小)均匀塑性变形的脆性材料,它反映了材料的断裂抗力。

扩展资料:
建设工程上常用的屈服标准有三种:
1、比例极限应力-应变曲线上符合线性关系的最高应力,国际上常采用σp表示,超过σp时即认为材料开始屈服。

2、弹性极限试样加载后再卸载,以不出现残留的永久变形为标准,材料能够完全弹性恢复的最高应力。

国际上通常以ReL表示。

应力超过ReL时即认为材料开始屈服。

3、屈服强度以规定发生一定的残留变形为标准,如通常以0.2%残留变形的应力作为屈服强度,符号为Rp0.2。

屈服强度抗拉强度符号

屈服强度抗拉强度符号

屈服强度抗拉强度符号
摘要:
1.抗拉强度和屈服强度的定义
2.抗拉强度和屈服强度的符号
3.抗拉强度和屈服强度在材料力学中的重要性
正文:
抗拉强度和屈服强度是材料力学的两个重要概念。

抗拉强度指的是材料在受到拉力作用时能够承受的最大应力,通常用字母σ表示。

而屈服强度则是指材料在受到拉力作用时,开始发生塑性变形的应力,通常用字母σs表示。

在材料力学中,抗拉强度和屈服强度是评估材料强度和塑性变形能力的重要指标。

抗拉强度越高,说明材料的强度越高,能够承受的拉力越大。

而屈服强度则反映了材料的塑性变形能力,屈服强度越高,材料的塑性变形能力越强。

在实际应用中,抗拉强度和屈服强度的符号经常被用来描述材料的力学性能。

例如,在金属材料中,钢的抗拉强度通常在500-1000 MPa之间,而屈服强度则通常在300-700 MPa之间。

这些数据可以帮助工程师设计和选择适合特定应用的材料。

总的来说,抗拉强度和屈服强度是材料力学中非常重要的两个概念。

抗拉强度和屈服强度

抗拉强度和屈服强度
抗拉强度和屈服强度是机械强度测试中使用最广泛的两个参量。

抗拉强度表示材料在
应力作用下能够抵抗外部力的能力,以兆帕(MPa)计算。

而屈服强度则是指材料在受力
作用后,仍能够抵抗外部力的强度,也以兆帕(MPa)面板来衡量。

抗拉强度与屈服强度是相关联但有区别的参量,前者提供材料承载能力的指标,而后
者则体现了材料的韧性,可以反映材料的延展性。

抗拉强度是由机械拉伸实验获得的参数,它表示了材料在拉伸过程中,外力作用下不
会发生断裂及损伤的能力大小。

一般情况下,塑料材料的抗拉强度约为十几兆帕(MPa),金属的抗拉强度则会更高一些,可达几百兆帕(MPa)甚至几千兆帕(MPa)。

而屈服强度指标则反映材料在受力作用下,仍能够抵抗外部力的强度。

当外力大于屈
服强度时,塑性变形就会发生,而且变形后会永久性地发生变形,从而实现材料弹性限度
的降低。

由于抗拉强度和屈服强度的差异特性,它们在机械强度测试中具有不同的应用,塑料
材料抗拉强度能够指导设备使用期间的承载性能,而屈服强度则可以反映材料的延展性指标。

因此,在各种工程领域,使用抗拉强度和屈服强度均是十分重要的误差控制参量,他
们能够深入阐发材料的强度,进而推动材料性能的改善。

铝抗拉强度和屈服强度

铝抗拉强度和屈服强度
铝是一种常见的金属材料,在工程中被广泛应用。

其抗拉强度和屈服强度是评估其力学性能的重要指标。

- 抗拉强度(Tensile Strength):指材料在拉伸过程中抵抗破坏的能力。

对铝而言,其抗拉强度一般在90 到500 MPa 之间。

这个数值会受到铝合金种类、热处理、制造方法等因素的影响。

- 屈服强度(Yield Strength):指在拉伸试验中材料开始发生塑性变形的临界点。

对铝来说,其屈服强度一般在30 到300 MPa 之间。

这也是一个重要的力学性能参数,反映了材料开始变形的阈值。

铝的力学性能会受到所处环境、材料纯度、制造工艺和加工方法等因素的影响。

铝合金可以通过掺杂其他元素、热处理和冷加工等方式来调整其力学性能,以满足不同工程需求。

屈服强度和抗拉强度的区别和符号

屈服强度和抗拉强度的区别和符号屈服强度和抗拉强度是材料力学性能的两个指标,用来衡量材料的机械性能。

下面将详细介绍屈服强度和抗拉强度的区别和符号。

1.屈服强度(yield strength):屈服强度是指材料在受到外力作用时,开始出现塑性变形的应力值。

当材料受到外部应力而产生塑性变形时,原子与原子之间的结构发生改变,使材料的形状发生变化。

当外部应力达到一定值时,材料开始发生塑性变形,此时的应力即为屈服强度。

屈服强度取决于材料的内部结构、晶界、缺陷等因素。

屈服强度用符号Fy表示,单位是通常是兆帕(MPa)。

2.抗拉强度(tensile strength):抗拉强度是指材料在受到拉伸作用时承受的最大力的大小。

当材料被外力拉伸时,材料内部原子间的键结构被拉伸破坏,材料会逐渐发生塑性变形,最终达到破坏状态。

抗拉强度是衡量材料抵抗拉伸破坏能力的指标。

抗拉强度用符号Fu表示,单位是兆帕(MPa)。

3.区别:-测试方法不同:屈服强度通常通过拉伸试验确定,试样在拉伸过程中测量载荷和伸长量,根据加载和卸载曲线的特点可以确定屈服强度。

而抗拉强度是材料在拉伸过程中的最大载荷值。

-物理意义不同:屈服强度是材料开始产生可见塑性变形的应力值,表示材料开始变形的能力。

而抗拉强度则表示材料抵抗拉伸破坏的能力,是材料的强度极限值。

-数值大小不同:在同一材料中,通常屈服强度小于抗拉强度,屈服强度是材料在拉伸前开始变形的能力,抗拉强度则是材料最大承受载荷的能力。

在实际应用中,屈服强度和抗拉强度都是重要的性能参数。

在设计中,常常会根据材料的应用要求来选择合适的屈服强度和抗拉强度的数值,以确保材料在受到外力作用时能够承受应力而不发生破坏。

什么是屈服强度和抗拉强度

什么是屈服强度和抗拉强度Document number:NOCG-YUNOO-BUYTT-UU986-1986UT什么是屈服强度和抗拉强度要说这两个概念,先从材料是如何被破坏的说起。

任何材料在受到不断增大或者持续恒定或者持续交变的外力作用下,最终会超过某个极限而被破坏。

对材料造成破坏的外力种类很多,比如拉力、压力、剪切力、扭力等。

屈服强度和抗拉强度这两个强度,仅仅是针对拉力而言。

这两个强度是通过拉伸试验得出的,是通过拉力试验机(一般是万能试验机,可以进行各种拉和压以及弯曲的试验),用规定的恒定的加荷速率(就是单位时间内拉力的增加量),对材料进行持续拉伸,直到断裂或达到规定的破坏程度(比如有些对接焊缝强度试验可以不拉断),这个造成材料最终破坏的力,就是该材料的抗拉极限载荷。

抗拉极限载荷是一个力的表述,单位为牛顿(N),因为牛顿是一个很小的单位,所以,大部分情况下用千牛(KN)的比较多。

因为各种材料大小不一,所以抗拉极限载荷很难评判材料的强度。

所以,用抗拉极限载荷除以实验材料的截面积,就得到单位面积的抗拉极限载荷。

单位面积上受的力,这是一个强度的表述,单位是(Pa),同样,帕斯卡是一个极小的单位,一般都用兆帕(MPa)来表述。

所以,抗拉极限载荷与实验材料的截面积之比,就是抗拉强度。

抗拉强度是材料单位面积上所能承受外力作用的极限。

超过这个极限,材料将被解离性破坏。

那什么是屈服强度呢屈服强度仅针对具有弹性材料而言,无弹性的材料没有屈服强度。

比如各类、塑料、橡胶等等,都有弹性,都有屈服强度。

而玻璃、陶瓷、砖石等等,一般没有弹性,这类材料就算有弹性,也微乎其微,所以,没有屈服强度一说。

弹性材料在受到恒定持续增大的外力作用下,直到断裂。

究竟发生了怎样的变化呢首先,材料在外力作用下,发生弹性形变,遵循胡克定律。

什么叫弹性形变呢就是外力消除,材料会恢复原来的尺寸和形状。

当外力继续增大,到一定的数值之后,材料会进入塑性形变期。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

什么是屈服强度和抗拉强度
要说这两个概念,先从材料是如何被破坏的说起。

任何材料在受到不断增大或者持续恒定或者持续交变的外力作用下,最终会超过某个极限而被破坏。

对材料造成破坏的外力种类很多,比如拉力、压力、剪切力、扭力等。

屈服强度和抗拉强度这两个强度,仅仅是针对拉力而言。

这两个强度是通过拉伸试验得出的,是通过拉力试验机(一般是万能试验机,可以进行各种拉和压以及弯曲的试验),用规定的恒定的加荷速率(就是单位时间内拉力的增加量),对材料进行持续拉伸,直到断裂或达到规定的破坏程度(比如有些对接焊缝强度试验可以不拉断),这个造成材料最终破坏的力,就是该材料的抗拉极限载荷。

抗拉极限载荷是一个力的表述,单位为牛顿(N),因为牛顿是一个很小的单位,所以,大部分情况下用千牛(KN)的比较多。

因为各种材料大小不一,所以抗拉极限载荷很难评判材料的强度。

所以,用抗拉极限载荷除以实验材料的截面积,就得到单位面积的抗拉极限载荷。

单位面积上受的力,这是一个强度的表述,单位是帕斯卡(Pa),同样,帕斯卡是一个极小的单位,一般都用兆帕(MPa)来表述。

所以,抗拉极限载荷与实验材料的截面积之比,就是抗拉强度。

抗拉强度是材料单位面积上所能承受外力作用的极限。

超过这个极限,材料将被解离性破坏。

那什么是屈服强度呢?屈服强度仅针对具有弹性材料而言,无弹性的材料没有屈服强度。

比如各类金属材料、塑料、橡胶等等,都有弹性,都有屈服强度。

而玻璃、陶瓷、砖石等等,一般没有弹性,这类材料就算有弹性,也微乎其微,所以,没有屈服强度一说。

弹性材料在受到恒定持续增大的外力作用下,直到断裂。

究竟发生了怎样的变化呢?
首先,材料在外力作用下,发生弹性形变,遵循胡克定律。

什么叫弹性形变呢?就是外力消除,材料会恢复原来的尺寸和形状。

当外力继续增大,到一定的数值之后,材料会进入
塑性形变期。

材料一旦进入塑性形变,当外力,材料的原尺寸和形状不可恢复!而这个造成两种形变的的临界点的强度,就是材料的屈服强度!对应施加的拉力而言,这个临界点的拉力值,叫屈服点。

从晶体角度来说,只有拉力超过屈服点,材料的晶体结合才开始被破坏!材料的破坏,是从屈服点就已经开始,而不是从断裂的时候开始的!
弄清楚这两个强度怎么来的了,所以说,屈服强度高的材料,能承受的破坏力就大,这是正确的。

但我要说的是不管哪个强度,只拿一个来说事,都不能说明这种材料安全与否或者结实与否!
咱们这里就说钢材吧,别的不说了。

关于屈服强度和抗拉强度还有一个参数,可能知道的人不多,它究竟起什么左右,可能知道的人更少。

这个参数就是屈强比!屈强比就是屈服强度和抗拉强度的比值。

范围是0~1之间。

屈强比是衡量钢材脆性的指标之一。

屈强比越大,表明钢材屈服强度和抗拉强度的差值越小,钢材的塑性越差,脆性就越大!
为什么这样说呢,这里要引进一个新的指标——延伸率。

通俗一点说就是钢材被拉断后,和原来比,伸长了多少。

这是检验钢材塑性好坏的一个重要指标。

这个数值越大,表明钢材的延展性越好。

上面我说了,当钢材拉伸超过屈服点之后,这个时候的钢材已经不可能恢复原来的尺寸,一直到断裂,钢材都在不断的被拉长。

屈强比越大,屈服强度和抗拉强度的差值越小,那么在的加荷速率不变的情况下,钢材被拉长的时间就越短,那么延伸率就越低。

有点罗嗦了!下面进入正题!
根据能量守恒定律,能量只能转换或者传递。

当钢材被拉伸的时候,归根结底是能量的转换吸收。

在屈服点之前,钢材处于弹性形变期,外部拉力几乎全部被弹力抵消(转化为弹性势能),外来能量并没有多少被吸收或者转化,只有少量转化为热能。

当过屈服点之后,
外力部分被弹力抵消(转化为弹性势能),而部分则被转化为热能,外力的作用于钢材上的能量,主要是在塑性形变期被吸收的!
我上面提到,材料的破坏是从屈服点开始的。

屈强比越低,那么材料从开始破坏到断裂的时间越长,屈强比越高,材料从开始破坏到断裂的时间越短。

能量在屈服点到断裂点之间被大量转化为热能。

所以,单纯说屈服强度高或者抗拉强度高,那么这种材料就一定好或者更安全。

未必!只有屈服强度高,同时屈强比低的钢材,才更安全一些!可惜,这样的钢材成本太高,都不大可能被用于民用车辆上。

现在钢材除强度,还有一个重要的指标就是韧性!到目前为止,我还没有看到那一家车企对所用钢材的韧性如何做一个描述!基本上都是对钢材的强度大肆渲染!恰恰相反的是,在绝大多数情况下,提高钢材的强度,往往会降低钢材的韧性!降低韧性,就是增加脆性!而钢材的韧性,是关系到钢材安全的一个重要指标
有一个指标可能被车企有意无意的遗忘了——冲击韧性或冲击功。

用相同的力,推你一下或者猛击你一下,哪个对你的伤害大?答案很明显!钢材的抗冲击能力高低,才是关系的安全的重要因素!没见过那次车祸是慢慢加力直到把车拉断的吧?都是瞬间撞击!如果你扛不住瞬间作用力,你抗拉强度再大有毛用?
从现在已经直到的钢材来看,凡是大于1000Mpa的强度,大多是抗拉强度,屈服强度超过800Mpa也不是什么困难的事情,比如40Cr这种常见的“万能钢”(基本上属于干啥都行的),一般的调制工艺屈服强度也能接近800Mpa,抗拉强度900MPa以上。

但是三者兼顾,高屈服、高延伸、有良好抗冲击能力就比较难了!几乎所有的钢材都存在同样的问题,那就是在提高钢材强度的同时,降低钢材的抗冲击能力!比如10.9级的高强螺栓,抗拉强度在1040-1240MPa为合格,屈服强度大于940Mpa,延伸率大于10%,
冲击韧性59J/CM2;而同材质8.8级高强螺栓(低一个级别),抗拉强度在830-1030MPa 为合格,屈服强度大于660Mpa,延伸率大于12%,冲击韧性78J/CM2。

所以,对于绝大多数金属材料而言,在提升某些技术指标性能的同时,是以降低某些技术性能指标为代价来实现的。

是不能兼顾的。

钢铁工业是人类最成熟的工业技术之一,没有什么太多的秘密。

钢铁材料的各项技术指标,并非是越高越好,或者越低越好,而是根据需要,将各项指标调整到一个能够兼顾的范围内。

对于我们行业的人而言,钢材除了结构上有问题外(指的产品缺陷),各项技术指标没有好坏之分,要看你在哪里用。

只有用错地方,而没有用错东西一说。

相关文档
最新文档