选做题全国高考文科数学历年试题分类汇编

合集下载

近五年高考文科数学试卷及答案解析(1卷)(含全国1卷共5套)

近五年高考文科数学试卷及答案解析(1卷)(含全国1卷共5套)

近五年高考文科数学试卷及答案解析(全国1卷)(2016年—2020年)说明:含有2016年—2020年的全国1卷高考文科数学试题以及答案详细解析(客观题也有答案详解)目录2020年普通高等学校招生全国统一考试文科数学(I卷)答案详解 (3)2020年普通高等学校招生全国统一考试文科数学(I卷) (19)2019年普通高等学校招生全国统一考试文科数学1卷 (29)2019年普通高等学校招生全国统一考试文科数学1卷答案详解 (39)2018年普通高等学校招生全国统一考试文科数学1卷 (50)2018年普通高等学校招生全国统一考试文科数学1卷答案详解 (60)2017年普通高等学校招生全国统一考试文科数学1卷 (71)2017年普通高等学校招生全国统一考试文科数学I卷答案详解 (81)2016年普通高等学校招生全国统一考试文科数学1卷 (93)2016年普通高等学校招生全国统一考试文科数学1卷答案详解 (103)2020年普通高等学校招生全国统一考试文科数学(I 卷)答案详解一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.(集合)已知合集{}2340A x x x =--<,{}4,1,3,5B =-,则A B = A.{}4,1- B.{}1,5C.{}3,5 D.{}1,3【解析】∵{}14A x x =-<<,∴{1,3}A B = .【答案】D2.(复数)若312z i i =++,则z =A.0 B.1C. D.2【解析】∵3i i =-,∴1z i =+,∴z 【答案】C3.(立体几何)埃及胡夫金字塔是古代世界建筑奇迹之一,它的形状可视为一个正四棱锥,以该四棱锥的高为边长的正方形面积等于该四棱锥一个侧面三角形的面积,则其侧面三角形底边上的高与底面正方形的边长的比值为A.514- B.512C.514+ D.512【解析】如图A3所示,设正四棱锥底面的边长为a ,则有22221212h am a h m ⎧=⎪⎪⎨⎛⎫⎪+= ⎪⎪⎝⎭⎩整理得22420m am a --=,令mt a=,则有24210t t --=,∴114t +=,214t -=(舍去),即14m a +=.图A3【答案】C4.(概率统计)设O 为正方形ABCD 的中心,在O,A ,B,C,D 中任取3点,则取到的3点共线的概率为A.15B.25C.12D.45【解析】如图A4所示,从O,A ,B,C,D 中任取3点的所有情况数为35C =10,取到的3点共线的情况有:AOC 、BOD ,共2种情况,所以所求的概率为51102==P.图A4【答案】A5.(概率统计)某校一个课外学习小组为研究某作物种子的发芽率y 和温度x (单位:C )的关系,在20个不同的温度条件下进行种子的发芽实验,由实验数据,)(i i x y i =(1,2,…,20)得到下面的散点图:由此散点图,在10C 至40C 之间,下面四个回归方程类型中最适宜作为发芽率y 和温度x 的回归方程类型的是A.y a bx=+ B.2y a bx =+ C.xy a be =+ D.ln y a b x=+【解析】根据散点图的趋势和已学函数图象可知,本题的回归方程类型为对数函数,故选D选项.【答案】D6.(解析几何)已知圆2260x y x +-=,过点(1,2)的直线被该圆所截得的弦的长度的最小值为A.1B.2C.3D.4【解析】222(3)3x y -+=,设直线方程为2(1)y k x -=-,∴20kx y k -+-=,∴圆心(3,0)到该直线的距离为d ==,∴2max 8d =,故弦的长度的最小值为2==.【答案】B7.(三角函数)设函数()cos()6f x x πω=+在[]ππ-,的图像大致如下图,则()f x 的最小正周期为A.109π B.76π C.43π D.32π【解析】∵函数过点4π,09⎛⎫- ⎪⎝⎭,∴4ππcos()=096x ω-+,∴4πππ=962x ω-+-,解得23=ω,∴()f x 的最小正周期为3π4π2==ωT .【答案】C8.(函数)设3log 42a =,则4a -A.116B.19C.18D.16【解析】∵33log 4log 42a a ==,∴2439a ==,∴11449a a -==.【答案】B9.(算法框图)执行右面的程序框图,则输出的n =A.17B.19C.21D.23【解析】①输入10n S ==,,得1S S n =+=,100S ≤成立,继续;②输入31n S ==,,得4S S n =+=,100S ≤成立,继续;③输入54n S ==,,得9S S n =+=,100S ≤成立,继续;……由上述规律可以看出,S 是一个以a 1=1为首项,d =2为公差的等差数列的前m 项和,且21n m =-,故有21(1)2m m m S ma d m -=+=.当2100m S m =>,即11n >时,程序退出循环,此时2121n m =-=.【答案】C10.(数列)设{}n a 是等比数列,且123+1a a a +=,2342a a a ++=,则678+a a a +=A.12B.24C.30D.32【解析】设{}n a 的公比为q ,∵234123(+)2a a a q a a a ++=+=,∴2q =,∴55678123+(+)232a a a q a a a +=+==.【答案】D11.(解析几何)设1F ,2F 是双曲线22:13y C x -=的两个焦点,O 为坐标原点,点P 在C 上且|OP |=2,则∆12PF F 的面积为A.72B.3C.52D.2【解析】由题可知1,2a b c ===,12(2,0),(2,0)F F -,解法一:设(,)P m n ,∵||2OP =,故有224m n +=,又∵点P 在C 上,故有2213n m -=,联立方程2222413m n n m ⎧+=⎪⎨-=⎪⎩,解得3||2n =,故∆12PF F 的面积为12113||||43222n F F ⋅=⨯⨯=.解法二:∵||2OP =,故点P 在以F 1、F 2为直径的圆上,故PF 1⊥PF 2,则22212||||(2)16PF PF c +==,又∵12||||22PF PF a -==,即222121212||||||||2||||4PF PF PF PF PF PF -=+-=,∴12||||6PF PF =,∴∆12PF F 的面积为1211||||6322PF PF =⨯=.图A11【答案】B12.(立体几何)已知A ,B ,C 为球O 的球面上的三个点, 1O 为△ABC 的外接圆.若 1O 的面积为4π,1AB BC AC OO ===,则球O 的表面积为A .64πB .48πC .36πD .32π【解析】由题意可知, 1O 为的半径r =2,由正弦定理可知,2sin =ABr C,则12sin 2sin 6023==== OO AB r C r O 的半径2214R r OO =+=,∴球O 的表面积为24π64πR =.图A12【答案】A二、填空题:本题共4小题,每小题5分,共20分。

全国高考文科数学历年试题分类汇编

全国高考文科数学历年试题分类汇编

全国高考文科数学历年试题分类汇编〔一〕小题分类1.集合〔2021 卷1〕集合{32,},{6,8,10,12,14}A x x n n N B ==+∈=,那么集合A B 中的元素个数为〔 〕〔A 〕 5 〔B 〕4 〔C 〕3 〔D 〕2 〔2021 卷2〕集合A={}{}=<<=<<-B A x x B x x 则,30,21A.(-1,3)B.(-1,0 )C.(0,2)D.(2,3) 〔2021卷1〕集合{}{}12|,31|≤≤-=≤≤-=x x B x x M ,那么M B =〔 〕A. )1,2(-B. )1,1(-C. )3,1(D. )3,2(-〔2021卷2〕集合A=﹛-2,0,2﹜,B=﹛x |2x-x -20=﹜,那么A B ⋂=〔 〕 (A) ∅ 〔B 〕{}2 〔C 〕{}0 (D) {}2-〔2021卷1〕集合{1,2,3,4}A =,2{|,}B x x n n A ==∈,那么A B =〔 〕 〔A 〕{0} 〔B 〕{-1,,0} 〔C 〕{0,1} 〔D 〕{-1,,0,1}〔2021卷2〕集合M ={x |-3<x <1},N ={-3,-2,-1,0,1},那么M ∩N =( ).A .{-2,-1,0,1}B .{-3,-2,-1,0}C .{-2,-1,0}D .{-3,-2,-1}〔2021卷1〕集合A={x |x 2-x -2<0},B={x |-1<x <1},那么 〔A 〕A B 〔B 〕B A 〔C 〕A=B 〔D 〕A ∩B=〔2021卷2〕☆集合{|A x x =是平行四边形},{|B x x =是矩形},{|C x x =是正方形},{|D x x =是菱形},那么〔A 〕A B ⊆ 〔B 〕C B ⊆ 〔C 〕D C ⊆ 〔D 〕A D ⊆〔2021卷1〕集合M={0,1,2,3,4},N={1,3,5},P=M N ,那么P 的子集共有A .2个B .4个C .6个D .8个〔2021卷1〕集合A ={x ||x |≤2,x ∈R},B ={x |x ≤4,x ∈Z},那么A ∩B =( )A .(0,2)B .[0,2]C .{0,2}D .{0,1,2}〔2021卷1〕集合}{{}1,3,5,7,9,0,3,6,9,12A B ==,那么A B =A .{3,5}B .{3,6}C .{3,7}D .{3,9}〔2021卷1〕集合M ={ x|(x + 2)(x -1) < 0 },N ={ x| x + 1 < 0 },那么M ∩N =〔 〕A. (-1,1)B. (-2,1)C. (-2,-1)D.(1,2)〔2021 卷1〕复数z 满足(1)1z i i -=+,那么z =〔 〕〔A 〕 2i -- 〔B 〕2i -+ 〔C 〕2i - 〔D 〕2i + 〔2021 卷2〕假设a 实数,且〔 〕A.-4B. -3C. 3D. 4〔2021卷1〕设,那么=||z 〔 〕 A. 21 B. 22 C. 23 D. 2〔2021卷2〕〔 〕〔A 〕12i + 〔B 〕12i -+ 〔C 〕1-2i (D) 1-2i -〔2021卷1〕〔 〕〔A 〕 〔B 〕 〔C 〕 〔D 〕〔2021卷2〕21i +=( ). A .22 B .2 C .2 D ..1〔2021卷1〕复数z =-3+i 2+i的共轭复数是 〔A 〕2+i 〔B 〕2-i 〔C 〕-1+i 〔D 〕-1-i〔2021卷1〕复数( )A .2i -B .12i -C . 2i -+D .12i -+〔2021卷1〕复数z =3+i1-3i 2,z 是z 的共轭复数,那么z ·z =( )A.14B.12 C .1 D .2〔2021卷1〕复数A .1B .1-C .i (D)i -〔2021卷1〕复数1z i =-,那么〔 〕A. 2B. -2C. 2iD. -2i〔2021 卷1〕点(0,1),(3,2)A B ,向量(4,3)AC =--,那么向量BC = ( )〔A 〕 (7,4)-- 〔B 〕(7,4) 〔C 〕(1,4)- 〔D 〕(1,4)〔2021 卷2〕向量=•+-=-=a b a b a )则(2),2,1(),1,0(( )A. -1B. 0C. 1D. 2〔2021卷1〕设F E D ,,分别为ABC ∆的三边AB CA BC ,,的中点,那么=+FC EB ( ) A. AD B. C. D. BC〔2021卷2〕设向量a ,b 满足那么a b 〔 〕〔A 〕1 〔B 〕 2 〔C 〕3 (D) 5〔2021卷1〕两个单位向量a ,b 的夹角为60,(1)=+-c ta t b ,假设0⋅=b c ,那么t =_____。

完整版)近几年全国卷高考文科数列高考题汇总

完整版)近几年全国卷高考文科数列高考题汇总

完整版)近几年全国卷高考文科数列高考题汇总近几年全国高考文科数学数列部分考题统计及所占分值如下:2016年:I卷17题,12分;II卷17题,12分;III卷17题,12分。

2015年:I卷无数列题;II卷5题,共计15分。

2014年:I卷17题,12分;II卷无数列题。

2013年:I卷12、14、17题,共计10分+12分+12分=34分;II卷17题,12分。

2012年、2011年、2010年:I卷7、13、5题,共计10分+10分+17分=37分;II卷5、16、17题,共计10分+17分+12分=39分。

一.选择题:1.已知公差为1的等差数列{an}的前8项和为4倍的前4项和,求a10.改写:设公差为1的等差数列{an}的前n项和为Sn,已知S8=4S4,求a10.答案:D。

2.设Sn为等差数列{an}的前n项和,已知a1+a3+a5=3,求S5.答案:C。

3.已知等比数列{an}满足a1=1,a3a5=4(a4-1),求a2.答案:B。

4.已知等差数列{an}的公差为2,且a2,a4,a8成等比数列,求前n项和Sn。

答案:D。

5.设首项为1,公比为2的等比数列{an}的前n项和为Sn,求Sn的表达式。

答案:C。

6.数列{an}满足an+1+(-1)^nan=2n-1,求前60项和。

答案:B。

二.填空题:7.在数列{an}中,a1=2,an+1=2an,Sn为{an}的前n项和。

若-Sn=126,则n=6.8.数列{an}满足an+1=1/an,a2=2,求a1.答案:-1.9.等比数列{an}满足a2+a4=20,a3+a5=80,求a1.答案:4.10.等比数列 $\{a_n\}$ 的前 $n$ 项和为 $S_n$,若$S_3+3S_2=S_1$,则公比 $q=$______;前 $n$ 项和$S_n=$______。

改写:已知等比数列 $\{a_n\}$,前 $n$ 项和为 $S_n$。

2012-2021十年全国高考数学真题分类汇编(文科) 函数(原卷版)

2012-2021十年全国高考数学真题分类汇编(文科) 函数(原卷版)
19.(2018年高考数学课标Ⅱ卷文科)已知 是定义域为 的奇函数,满足 .若 ,则 ( )
A. B.0C.2D.50
20.(2018年高考数学课标Ⅱ卷文科)函数 的图像大致为( )
21.(2018年高考数学课标Ⅰ卷文科)设函数 则满足 的 的取值范围是( )
A. B. C. D.
22.(2017年高考数学课标Ⅲ卷文科)已知函数 有唯一零点,则 ( )
A. B. C. D.
32.(2016年高考数学课标Ⅰ卷文科)函数 在[–2,2]的图像大致为( )
33.(2016年高考数学课标Ⅰ卷文科)若 ,则( )
A. B. C. D.
34.(2015年高考数学课标Ⅱ卷文科)设函数 ,则使得 成立的 的取值范围是( )
A. B. C. D.
C.是偶函数,且在(0,+∞)单调递增D.是偶函数,且在(0,+∞)单调递减
10.(2020年高考数学课标Ⅱ卷文科)在新冠肺炎疫情防控期间,某超市开通网上销售业务,每天能完成1200份订单 配货,由于订单量大幅增加,导致订单积压.为解决困难,许多志愿者踊跃报名参加配货工作.已知该超市某日积压500份订单未配货,预计第二天的新订单超过1600份的概率为0.05,志愿者每人每天能完成50份订单的配货,为使第二天完成积压订单及当日订单的配货的概率不小于0.95,则至少需要志愿者( )
A.1.5B.1.2C.0.8D.0.6
4.(2021年全国高考乙卷文科)设函数 ,则下列函数中为奇函数的是( )
A. B. C. D.
5.(2021年全国高考乙卷文科)下列函数中最小值为4的是( )
A. B. C. D.
6.(2020年高考数学课标Ⅰ卷文科)设 ,则 ( )

高考数学真题2011年—2018年新课标全国卷(1、2、3卷)文科数学试题分类汇编—11.解析几何

高考数学真题2011年—2018年新课标全国卷(1、2、3卷)文科数学试题分类汇编—11.解析几何

2011年—2018年新课标全国卷文科数学分类汇编11.解析几何一、选择题(2018·新课标Ⅰ,文4)已知椭圆C :22214x y a +=的一个焦点为(20),,则C 的离心率为()A .13B .12C .22D .223(2018·新课标Ⅱ,文6)双曲线22221(0,0)x y a b a b-=>>的离心率为)A .y =B .y =C .y x =D .y =(2018·新课标Ⅱ,文11)已知1F ,2F 是椭圆C 的两个焦点,P 是C 上的一点,若12PF PF ⊥,且2160PF F ∠=︒,则C 的离心率为()A .312-B .2C .312D 1-(2018·新课标Ⅲ,文8)直线20x y ++=分别与x 轴,y 轴交于A ,B 两点,点P 在圆()2222x y -+=上,则ABP ∆面积的取值范围是()A .[]26,B .[]48,C .D .⎡⎣(2018·新课标Ⅲ,文10)已知双曲线22221x y C a b-=:(00a b >>,,则点()40,到C 的渐近线的距离为()A B .2C .322D .(2017·新课标Ⅰ,文5)已知F 是双曲线22:13y C x -=的右焦点,P 是C 上一点,且PF 与x 轴垂直,点A 的坐标是(1,3),则APF ∆的面积为()A .13B .12C .23D .32(2017·新课标Ⅰ,文12)设A 、B 是椭圆C :2213x y m+=长轴的两个端点,若C 上存在点M 满足∠AMB =120°,则m 的取值范围是()A .(0,1][9,)+∞ B .[9,)+∞ C .(0,1][4,)+∞ D .[4,)+∞ (2017·新课标Ⅱ,文5)若a >1,则双曲线2221-=x y a的离心率的取值范围是()A.+∞)B.2)C. D.12(,)(2017·新课标Ⅱ,文12)过抛物线C :y 2=4x 的焦点F ,C 于点M (M 在x 轴上方),l 为N 在MN ⊥l,则M NF )A. B. C. D.(2017·新课标Ⅲ,文11)已知椭圆()2222:10x y C a b a b+=>>的左、右顶点分别为1A ,2A ,且以线段12A A 为直径的圆与直线20bx ay ab -+=相切,则C 的离心率为()A .3B .3C .3D .13(2016·新课标Ⅰ,文5)直线l 经过椭圆的一个顶点和一个焦点,若椭圆中心到l 的距离为其短轴长的14,则该椭圆的离心率为()A .13B .12C .23D .34(2016·新课标Ⅱ,文5)设F 为抛物线C :y 2=4x 的焦点,曲线y =kx(k >0)与C 交于点P ,PF ⊥x 轴,则k =A .12B .1C .32D .2(2016·新课标Ⅱ,文6)圆2228130x y x y +--+=的圆心到直线10ax y +-=的距离为1,则a =()A .43-B .34-C D .2(2016·新课标Ⅲ,文12)已知O 为坐标原点,F 是椭圆2222:1(0)x y C a b a b+=>>的左焦点,A ,B 分别为C 的左,右顶点.P 为C 上一点,且PF x ⊥轴.过点A 的直线l 与线段PF 交于点M ,与y 轴交于点E .若直线BM 经过OE 的中点,则C 的离心率为().A .13B .12C .23D .34(2015·新课标Ⅰ,文5)已知椭圆E 的中心为坐标原点,离心率为12,E 的右焦点与抛物线C :y 2=8x ,的焦点重合,A ,B 是C 的准线与E 的两个交点,则|AB |=()A .3B .6C .9D .12(2015·新课标Ⅱ,文7)已知三点)0,1(A ,)3,0(B ,)3,2(C ,则ABC ∆外接圆的圆心到原点的距离为A.53B.C.D.43(2014·新课标Ⅰ,文10)已知抛物线C :y 2=x 的焦点为F ,A (x 0,y 0)是C 上一点,|AF |=054x ,则x 0=()A .1B .2C .4D .8(2014·新课标Ⅰ,文4)已知双曲线)0(13222>=-a y a x 的离心率为2,则a=()A .2B .26C .25D .1(2014·新课标Ⅱ,文10)设F 为抛物线C :y 2=3x 的焦点,过F 且倾斜角为30°的直线交于C 于A 、B 两点,则|AB |=()A B .6C .12D .(2014·新课标Ⅱ,文12)设点M (x 0,1),若在圆O :x 2+y 2=1上存在点N ,使得∠OMN =45°,则x 0的取值范围是()A .[1,1]-B .11[]22-,C .[D .[(2013·新课标Ⅰ,文4)已知双曲线C :2222=1x y a b-(a >0,b >0)的离心率为52,则C 的渐近线方程为()A .y =14x ±B .y =13x ±C .y =12x ±D .y =±x(2013·新课标Ⅰ,文8)O 为坐标原点,F 为抛物线C :y 2=的焦点,P 为C 上一点,若|PF |=则△POF 的面积为()A .2B .C .D .4(2013·新课标Ⅱ,文5)设椭圆2222:1x y C a b +=(0)a b >>的左、右焦点分别为12,F F ,P 是C 上的点,212PF F F ⊥,1230PF F ∠=,则C 的离心率为()A .6B .13C .12D .3(2013·新课标Ⅱ,文10)设抛物线C :y 2=4x 的焦点为F ,直线l 过F 且与C 交于A ,B 两点.若|AF |=3|BF |,则l 的方程为()A .1y x =-或1yx =-+B .(1)3y x =-或(1)3y x =--C .1)y x =-或1)y x =-D .(1)2y x =-或(1)2y x =--(2012·新课标Ⅰ,文4)设1F 、2F 是椭圆E :2222x y a b +(0a b >>)的左、右焦点,P 为直线32ax =上一点,21F PF ∆是底角为30°的等腰三角形,则E 的离心率为()A .12B .23C .34D .45(2012·新课标Ⅰ,文10)等轴双曲线C 的中心在原点,焦点在x 轴上,C 与抛物线216y x =的准线交于A ,B 两点,||AB =,则C 的实轴长为()A B .C .4D .8(2011·新课标Ⅰ,文4)椭圆221168x y +=的离心率为()A .13B .12C .3D .2(2011·新课标Ⅰ,文9)已知直线l 过抛物线的焦点,且与C 的对称轴垂直,l 与C 交于A ,B 两点,12AB =,P 为C 的准线上一点,则ABP △的面积为().A .18B .24C .36D .48二、填空题(2018·新课标Ⅰ,文15)直线1y x =+与圆22230x y y ++-=交于A ,B 两点,则||AB =.(2016·新课标Ⅰ,文15)设直线2y x a =+与圆22:220C x y ay +--=相交于,A B 两点,若AB =,则圆C 的面积为.(2016·新课标Ⅲ,文15)已知直线:60l x -+=与圆2212x y +=交于A 、B 两点,过A 、B 分别作l的垂线与x 轴交于C 、D 两点,则CD =_________.(2015·新课标Ⅰ,文16)已知F 是双曲线C :2218y x -=的右焦点,P 是C 左支上一点,A ,当ΔAPF 周长最小时,该三角形的面积为.(2015·新课标Ⅱ,文15)已知双曲线过点,且渐近线方程为12y x =±,则该双曲线的标准方程为.三、解答题(2018·新课标Ⅰ,文20)设抛物线2:2C y x =,点()2,0A ,()2,0B -,过点A 的直线l 与C 交于M ,N两点.(1)当l 与x 轴垂直时,求直线BM 的方程;(2)证明:ABM ABN ∠=∠.(2018·新课标Ⅱ,文20)设抛物线24C y x =:的焦点为F ,过F 且斜率为(0)k k >的直线l 与C 交于A ,B 两点,||8AB =.(1)求l 的方程;(2)求过点A ,B 且与C 的准线相切的圆的方程.(2018·新课标Ⅲ,文20)已知斜率为k 的直线l 与椭圆22143x y C +=:交于A ,B 两点.线段AB 的中点为()()10M m m >,.(1)明:12k <-;⑵设F 为C 的右焦点,P 为C 上一点,且0FP FA FB ++= .证明:2FP FA FB =+ .(2017·新课标Ⅰ,文20)设A ,B 为曲线C :24x y =上两点,A 与B 的横坐标之和为4.(1)求直线AB 的斜率;(2)设M 为曲线C 上一点,C 在M 处的切线与直线AB 平行,且BM AM ⊥,求直线AB 的方程.(2017·新课标Ⅱ,文20)设O 为坐标原点,动点M 在椭圆C :2212x y +=上,过M 作x 轴的垂线,垂足为N ,点P 满足NP =(1)求点P 的轨迹方程;(2)设点Q 在直线x =-3上,且1OP PQ ⋅=.证明过点P 且垂直于OQ 的直线l 过C 的左焦点F.(2017·新课标Ⅲ,文20)在直角坐标系xOy 中,曲线2–2y x mx =+与x 轴交于A ,B 两点,点C 的坐标为()01,.当m 变化时,解答下列问题:(1)能否出现AC BC ⊥的情况?说明理由;(2)证明过A ,B ,C 三点的圆在y 轴上截得的弦长为定值.(2016·新课标Ⅰ,文20)在直角坐标系xOy 中,直线:(0)l y t t =≠交y 轴于点M ,交抛物线2:2(0)C y px p =>于点P ,M 关于点P 的对称点为N ,连结ON 并延长交C 于点H .(1)求OHON;(2)除H 以外,直线MH 与C 是否有其他公共点?请说明理由.(2016·新课标Ⅱ,文21)已知A 是椭圆E :22143x y +=的左顶点,斜率为k (k >0)的直线交E 于A ,M 两点,点N 在E 上,MA ⊥NA .(Ⅰ)当|AM|=|AN|时,求△AMN 的面积;(Ⅱ)当|AM|=|AN|2k <<.(2016·新课标Ⅲ,文20)已知抛物线2:2C y x =的焦点为F ,平行于x 轴的两条直线1l ,2l 分别交C 于A ,B 两点,交C 的准线于P ,Q 两点.(1)若F 在线段AB 上,R 是PQ 的中点,证明//AR FQ ;(2)若PQF △的面积是ABF △的面积的两倍,求AB 中点的轨迹方程.(2015·新课标Ⅰ,文20)已知过点A (0,1)且斜率为k 的直线l 与圆C :(x -2)2+(y -3)2=1交于M ,N 两点.(Ⅰ)求k 的取值范围;(Ⅱ)OM ON ⋅=12,其中O 为坐标原点,求|MN |.(2015·新课标Ⅱ,文20)已知椭圆C :22221x y a b +=(a >b >0)的离心率为2,点(2)在C 上.(Ⅰ)求C 的方程;(Ⅱ)直线l 不过原点O 且不平行于坐标轴,l 与C 有两个交点A 、B ,线段AB 的中点为M ,证明:直线OM 的斜率与直线l 的斜率的乘积为定值.(2014·新课标Ⅰ,文20)已知点)2,2(P ,圆C :0822=-+y y x ,过点P 的动直线l 与圆C 交于B A ,两点,线段AB 的中点为M ,O 为坐标原点.(1)求M 的轨迹方程;(2)当OM OP =时,求l 的方程及POM ∆的面积.(2014·新课标Ⅱ,文20)设F 1,F 2分别是椭圆C :12222=+by a x (a >b >0)的左、右焦点,M 是C 上一点且MF 2与x 轴垂直,直线MF 1与C 的另一个交点为N .(Ⅰ)若直线MN 的斜率为43,求C 的离心率;(Ⅱ)若直线MN 在y 轴上的截距为2且|MN |=5|F 1N |,求a ,b .(2013·新课标Ⅰ,文21)已知圆M :(x +1)2+y 2=1,圆N :(x -1)2+y 2=9,动圆P 与圆M 外切并且与圆N 内切,圆心P 的轨迹为曲线C .(1)求C 的方程;(2)l 是与圆P ,圆M 都相切的一条直线,l 与曲线C 交于A ,B 两点,当圆P 的半径最长时,求|AB |.(2013·新课标Ⅱ,文20)在平面直角坐标系xoy 中,已知圆P 在x 轴上截得线段长为y 轴上截得线段长为(Ⅰ)求圆心P 的轨迹方程;(Ⅱ)若P 点到直线y x =的距离为22,求圆P 的方程.(2012·新课标Ⅰ,文20)设抛物线C :py x 22=(0>p )的焦点为F ,准线为l ,A 为C 上一点,已知以F 为圆心,FA 为半径的圆F 交l 于B ,D 两点。

高考文科数学试题分类汇编:数列(全国各地高考)【真题分类汇总、含参考答案】

高考文科数学试题分类汇编:数列(全国各地高考)【真题分类汇总、含参考答案】

an 的前 n 项和, S8 4a3 , a7 2 ,则 a9 =
B. 4 C. 2 D.2
A. 6
3 .设首项为 1 ,公比为
2 的等比数列 {an } 的前 n 项和为 S n ,则 3
B. S n 3an 2 C. S n 4 3an D. S n 3 2an
C. p2 , p3
D. p1 , p4
二、填空题 5 .若 2、 a 、 b 、 c 、9 成等差数列,则 c a ____________. 6 .若等比数列 an 满足 a2
a4 20, a3 a5 40 ,则公比 q =__________;前 n 项 Sn =_____.
4 S 2 , a 2 n 2a n 1
(Ⅰ)求数列 a n 的通项公式 (Ⅱ)设数列 bn 满足
b b1 b2 1 n 1 n , n N * ,求 bn 的前 n 项和 Tn a1 a2 an 2
20.在公差为 d 的等差数列{an}中,已知 a1=10,且 a1,2a2+2,5a3 成等比数列.
高考文科数学试题分类汇编 5:数列
一、选 择题 1 .已知数列 an 满足 3an 1 an
4 0, a2 , 则an 的前10项和等于 3
C. 3 1-3
A. -6 1-3

-10

B.
1 1-3-10 9

-10

D. 3 1+3

-10

2 .设 S n 为等差数列
d1 , d 2 ,, d n 1 是等比数列;
(Ⅲ)设 d1 , d 2 ,, d n 1 是公差大于 0 的等差数列,且 d1 0 ,证明: a1 , a2 ,, an 1 是等差 数列

2012-2021十年全国高考数学(文科)真题分类汇编解析 逻辑与推理(解析版)

2012-2021十年全国高考数学(文科)真题分类汇编解析  逻辑与推理(解析版)

2012-2021十年全国高考数学(文科)真题分类汇编解析逻辑与推理(解析版)一、选择题1.(2021年全国高考乙卷文科)已知命题:,sin 1p x x ∃∈<R ﹔命题:q x ∀∈R ﹐||e 1x ≥,则下列命题中为真命题的是 ( )A .p q ∧B .p q ⌝∧C .p q ∧⌝D .()p q ⌝∨【答案】A解析:由于1sin 1x -≤≤,所以命题p 为真命题; 由于0x ≥,所以||e 1x ≥,所以命题q 真命题;所以p q ∧为真命题,p q ⌝∧、p q ∧⌝、()p q ⌝∨为假命题.故选:A .2.(2019年高考数学课标Ⅲ卷文科)记不等式组62x y x y +⎧⎨-⎩,≥≥0表示的平面区域为D .命题p :(,)29x y D x y ∃∈+,≥;命题q :(,)212x y D x y ∀∈+,≤.下面给出了四个命题①p q ∨②p q ⌝∨③p q ∧⌝④p q ⌝∧⌝这四个命题中,所有真命题的编号是( )A .①③B .①②C .②③D .③④【答案】A【解析】作出等式组6,20x y x y +⎧⎨-⎩的平面区域为D .在图形可行域范围内可知: 命题:(,)p x y D ∃∈,29x y +;是真命题,则p ⌝假命题;命题:(,)q x y D ∀∈,212x y +.是假命题,则q ⌝真命题;所以:由或且非逻辑连词连接的命题判断真假有:①p q⌝∨假;③p q∨真;②p q∧⌝真;④p q⌝∧⌝假;故答案①③真,正确.故选:A.3.(2019年高考数学课标Ⅱ卷文科)在“一带一路”知识测验后,甲、乙、丙三人对成绩进行预测.甲:我的成绩比乙高.乙:丙的成绩比我和甲的都高.丙:我的成绩比乙高.成绩公布后,三人成绩互不相同且只有一个人预测正确,那么三人按成绩由高到低的次序为( )A.甲、乙、丙B.乙、甲、丙C.丙、乙、甲D.甲、丙、乙【答案】A【解析】若甲预测正确,则乙、丙预测错误,则甲比乙成绩高,丙比乙成绩低,故3人成绩由高到低依次为甲,乙,丙;若乙预测正确,则丙预测也正确,不符合题意;若丙预测正确,则甲必预测错误,丙比乙的成绩高,乙比甲成绩高,即丙比甲,乙成绩都高,即乙预测正确,不符合题意,故选A.【点评】本题将数学知识与时政结合,主要考查推理判断能力.题目有一定难度,注重了基础知识、逻辑推理能力的考查.4.(2017年高考数学课标Ⅱ卷文科)甲、乙、丙、丁四位同学一起去向老师询问成语竞赛的成绩,老师说,你们四人中有2位优秀,2位良好,我现在给甲看乙、丙的成绩,给乙看丙的成绩,给丁看甲的成绩,看后甲对大家说:我还是不知道我的成绩,根据以上信息,则( )A.乙可以知道两人的成绩B.丁可能知道两人的成绩C.乙、丁可以知道对方的成绩D.乙、丁可以知道自己的成绩【答案】D【解析】由甲的说法可知乙、丙一人优秀一人良好,则甲丁一人优秀一人良好,乙看到丙的结果则知道自己的结果,丁看到甲的结果则知道自己的结果,故选D .【考点】推理【点评】推理实际考查数据处理能力,从众多数据中,挑选关键数据进行分类讨论,一般利用反证法、类比法、分析法得到结论.5.(2013年高考数学课标Ⅰ卷文科)已知命题:p x R ∀∈,23x x <;命题:q x R ∃∈,321x x =-,则下列命题中为真命题的是: ( )A .p q ∧B .p q ⌝∧C .p q ∧⌝D .p q ⌝∧⌝【答案】B解析:由指数函数的性质知,命题p 是假命题.而命题q 是真命题.故选B .考点:(1)命题真假的判断;(2)真值表的运用难度:B备注:高频考点二、填空题6.(2016年高考数学课标Ⅱ卷文科)有三张卡片,分别写有1和2,1和3,2和3.甲,乙,丙三人各取走一张卡片,甲看了乙的卡片后说:“我与乙的卡片上相同的数字不是2”,乙看了丙的卡片后说:“我与丙的卡片上相同的数字不是1”,丙说:“我的卡片上的数字之和不是5”,则甲的卡片上的数字是_________.【答案】()1,3【解析】由题意得:丙不拿()2,3,若丙()1,2,则乙()2,3,甲()1,3满足,若丙()1,3,则乙()2,3,甲()1,2不满足,故甲()1,3,7.(2014年高考数学课标Ⅰ卷文科)甲、乙、丙三位同学被问到是否去过A 、B 、C 三个城市时,甲说:我去过的城市比乙多,但没去过B城市;乙说:我没去过C城市;丙说:我们三人去过同一城市;由此可判断乙去过的城市为________.【答案】A解析:∵丙说:三人同去过同一个城市,甲说没去过B城市,乙说:我没去过C城市∴三人同去过同一个城市应为A,∴乙至少去过A,若乙再去城市B,甲去过的城市至多两个,不可能比乙多,∴可判断乙去过的城市为A.考点:1.简单的逻辑关系;难度:A。

全国高考文科数学历年试题分类汇编

全国高考文科数学历年试题分类汇编

全国高考文科数学历年试题分类汇编全国高考文科数学历年试题分类汇编(一)小题分类1.集合(2019卷1)已知集合{32,},{6,8,10,12,14}A x x n n N B ==+∈=, 则集合A B I 中的元素个数为( )(A ) 5 (B )4 (C )3 (D )2 (2019卷2)已知集合A={}{}=<<=<<-B A x x B x x Y 则,30,21 A.(-1, 3) B.(-1, 0 ) C.(0, 2) D.(2, 3)(2019卷1)已知集合{}{}12|,31|≤≤-=≤≤-=x x B x x M , 则M B =I ( ) A. )1,2(- B. )1,1(- C. )3,1( D. )3,2(-(2019卷2)已知集合A=﹛-2,0,2﹜,B=﹛x |2x -x -20=﹜, 则A B ⋂=( )(A) ∅ (B ){}2 (C ){}0 (D) {}2-(2019卷1)已知集合{1,2,3,4}A =, 2{|,}B x x n n A ==∈,则A B =I ( )(A ){0} (B ){-1, ,0} (C ){0, 1} (D ){-1, ,0, 1} (2019卷2)已知集合M ={x |-3<x <1}, N ={-3, -2, -1,0,1}, 则M ∩N =( ).A .{-2, -1,0,1}B .{-3, -2, -1,0}C .{-2, -1,0}D .{-3, -2, -1}(2018卷1)已知集合A={x |x 2-x -2<0}, B={x |-1<x <1}, 则(A )A ⊂≠B (B )B ⊂≠A (C )A=B (D )A ∩B=∅(2018卷2)☆已知集合{|A x x =是平行四边形}, {|B x x =是矩形}, {|C x x =是正方形},{|D x x =是菱形}, 则(A )A B ⊆ (B )C B ⊆ (C )D C ⊆ (D )A D ⊆(2017卷1)已知集合M={0, 1, 2, 3, 4}, N={1, 3, 5}, P=M N I ,则P 的子集共有 A .2个 B .4个 C .6个 D .8个(2016卷1)已知集合A ={x ||x |≤2, x ∈R}, B ={x |x ≤4, x ∈Z}, 则A ∩B =( )A .(0,2)B .[0,2]C .{0,2}D .{0,1,2}(2015卷1)已知集合}{{}1,3,5,7,9,0,3,6,9,12A B ==, 则A B =IA .{3, 5}B .{3, 6}C .{3, 7}D .{3, 9}(2014卷1)已知集合M ={ x|(x + 2)(x -1) < 0 }, N ={ x| x + 1 < 0 }, 则M ∩N =( ) A. (-1, 1)B. (-2, 1)C. (-2, -1)D. (1, 2)(2016卷1)设集合{1,3,5,7}A =, {|25}B x x =≤≤, 则A B =I (A ){1,3}(B ){3,5}(C ){5,7}(D ){1,7}(2016卷2)已知集合{123}A =,,,2{|9}B x x =<, 则A B =I (A ){210123}--,,,,, (B ){21012}--,,,, (C ){123},,(D ){12},(2017卷1)已知集合A ={}|2x x <, B ={}|320x x ->, 则 A .A ∩B =3|2x x ⎧⎫<⎨⎬⎩⎭ B .A ∩B =∅ C .A U B 3|2x x ⎧⎫=<⎨⎬⎩⎭D .A U B=R(2017II 卷1).设集合{}{}123234A B ==,,, ,,, 则=A B U A. {}123,4,, B. {}123,, C. {}234,, D. {}134,,2.复数(2019卷1)已知复数z 满足(1)1z i i -=+, 则z =( )(A ) 2i -- (B )2i -+ (C )2i - (D )2i +(2019卷2)若a 实数, 且=+=++a i iai则,312( ) A.-4 B. -3 C. 3 D. 4 (2019卷1)设i iz ++=11, 则=||z ( ) A.21B. 22C. 23D. 2(2019卷2)131ii+=-( ) (A )12i + (B )12i -+ (C )1-2i (D) 1-2i -(2019卷1)212(1)ii +=-( ) (A )112i --(B )112i -+(C )112i +(D )112i -(2019卷2)21i+=( ).A .B .2CD ..1 (2018卷1)复数z =-3+i 2+i的共轭复数是(A )2+i (B )2-i (C )-1+i (D )-1-i (2017卷1)复数512ii=-( )A .2i -B .12i -C . 2i -+D .12i -+(2016卷1)已知复数z =3+i(1-3i )2, z 是z 的共轭复数, 则z ·z =( )A.14B.12C .1D .2(2015卷1)复数3223ii+=- A .1 B .1- C .i (D)i -(2014卷1)已知复数1z i =-, 则21z z =-( ) A. 2B. -2C. 2iD. -2i(2016卷1)设(12i)(i)a ++的实部与虚部相等, 其中a 为实数, 则a=(A )-3(B )-2(C )2(D )3(2016卷2)设复数z 满足i 3i z +=-, 则z =(A )12i -+(B )12i -(C )32i +(D )32i - (2017II 卷2)(1+i )(2+i )=A.1-iB. 1+3iC. 3+iD.3+3i (2017卷3)下列各式的运算结果为纯虚数的是 A .i(1+i)2B .i 2(1-i)C .(1+i)2D .i(1+i)3.向量(2019卷1)已知点(0,1),(3,2)A B , 向量(4,3)AC =--u u u r, 则向量BC =u u u r ( )(A ) (7,4)-- (B )(7,4) (C )(1,4)- (D )(1,4)(2019卷2)已知向量=•+-=-=则(2),2,1(),1,0(( )A. -1B. 0C. 1D. 2(2019卷1)设F E D ,,分别为ABC ∆的三边AB CA BC ,,的中点, 则=+( ) A. B.AD 21 C. BC 21D.(2019卷2)设向量a ,b满足则a b?( )(A )1 (B ) 2 (C )3 (D) 5(2017卷2)设非零向量a , b 满足+=-b b a a 则 A a ⊥b B. =b a C. a ∥b D. >b a(2019卷1)已知两个单位向量a , b 的夹角为60o, (1)=+-c ta t b , 若0⋅=b c , 则t =_____。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

全国高考文科数学近三年试题分类汇编
大题分类之选做题
(1)坐标系与参数方程
1.(2015卷1)在直角坐标系xOy 中,直线1:2C x =-,圆222:(1)(2)1C x y -+-=,以坐标原点为极点,x 轴
的正半轴为极轴建立极坐标系.
(1)求12,C C 的极坐标方程;(2)若直线3C 的极坐标方程为()4R πθρ=
∈,设23,C C 的交点为,M N ,求2C MN ∆的面积.
2.(2015卷2)在直角坐标系xOy 中,曲线1cos :sin x t C y t αα
=⎧⎨=⎩(t 为参数,且0t ≠),其中0απ≤<,在以O 为极
点,x 轴的正半轴为极轴的极坐标系中,曲线2:2sin C ρθ=,3:C ρθ=
(1)求23,C C 交点的直角坐标;(2)若1C 与2C 相交于A ,1C 与3C 相交于B ,求AB 的最大值.
3.(2016卷1)在直角坐标系xOy 中,曲线1C 的参数方程cos 1sin x a t y a t =⎧⎨=+⎩
(t 为参数,且0a >),在以O 为极点,x 轴的正半轴为极轴的极坐标系中,曲线2:4cos C ρθ=
(1)说明1C 是哪种曲线,并将1C 的方程化为极坐标方程;
(2)直线3C 的极坐标方程为0θα=,其中0α满足0tan 2α=,若曲线1C 与2C 的公共点都在3C 上,求0α.
4.(2016年卷2)在直角坐标系xOy 中,圆C 的方程为22
(6)25x y ++=
(1)以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,求C 的极坐标方程;
(2)直线l 的参数方程为cos sin x t y t αα=⎧⎨
=⎩(t 为参数),l 与C 相交于,A B
两点,AB =l 的斜率.
5.(2017年卷1)在直角坐标系xOy 中,曲线C 的参数方程3cos sin x y θθ=⎧⎨
=⎩(θ为参数),直线l 的参数方程为41x a t y t =+⎧⎨=-⎩(t 为参数),
(1)若1a =-,求C 与l 交点的坐标;(2)若C 上的点到l
,求a .
6.(2017年卷2)在直角坐标系xOy 中,以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,曲线1C 的极坐标方程为cos 4ρθ=
(1)M 为曲线1C 的动点,点P 在线段OM 上,且满足16OM OP ⋅=,求点P 的轨迹2C 的直角坐标方程;
(2)设点A 的极坐标为(2,
)3π,点B 在曲线2C 上,求OAB V 的面积的最大值.
7.(2017年卷3)在直角坐标系xOy 中,直线1l 的的方程为2x t y kt =+⎧⎨=⎩(t 为参数),直线2l 的参数方程为2x m m y k =-+⎧⎪⎨=⎪⎩
(m 为参数),设1l 与2l 的交点为P ,当k 变化时,P 的轨迹方程为C
(1)写出C 的普通方程;
(2)以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,设3:(cos sin )0l ρθθ+=,M 为3l 与C 的交点,求M 的极径.
(2)不等式选讲
1.(2015卷1)已知函数()12,0f x x x a a =+-->
(1)当1a =时,求不等式()1f x >的解集;(2)若()f x 的图像与x 轴围成的面积大于6,求a 的取值范围.
2.(2015卷2)设,,,a b c d 均为正数,且a b c d +=+,证明:
(1)若ab cd >>
(2>a b c d -<-的充要条件.
3.(2016卷1)已知函数()123f x x x =+--
(1)画出()y f x =的图像;(2)求不等式()1f x >的解集
4.(2016卷2)已知函数11()22
f x x x =-++,M 为不等式()2f x <的解集 (1)求M ;(2)证明:当,a b R ∈时,1a b ab +<+.
5.(2017年卷1)已知函数2()4f x x ax =-++,()11g x x x =++-
(1)当1a =时,求不等式()()f x g x ≥的解集;
(2)若不等式()()f x g x ≥的解集包含[1,1]-,求a 的取值范围.
6.(2017年卷2)已知330,0,2a b a b >>+=,证明:
(1)55()()4a b a b ++≥;
(2)2a b +≤.
7(2017年卷3)已知函数()12f x x x =+--
(1)求不等式()1f x ≥的解集;
(2)若不等式2()f x x x m ≥-+的解集非空,求m 的取值范围.。

相关文档
最新文档