传动轴发展剖析

传动轴发展剖析
传动轴发展剖析

传动轴发展

一背景

汽车是最普通的代步、运输工具,许多国家均将汽车工业作为其重要的支柱产业。面对资源和环境的严峻挑战,推进汽车轻量化以降低油耗,一直是汽车工业发展的主题。复合材料因具有加工能耗低, 轻质高强, 可设计性强, 耐锈蚀, 成型工艺性好等优点, 成为汽车工业以塑代钢的理想材料。汽车用材料在经历了通用塑料、工程塑料时代之后, 20世纪九十年代进人复合材料时期。

通用汽车公司1953年生产的世界上第一辆复合材料汽车车身汽车Chevrolet Corvette,敲开了复合材料在汽车领域的应用,自推出此款车型以来通用汽车公司目前已销售130余万辆,此款车型采用的是玻璃纤维增强树脂复合材料。汽车复合材料的应用主要经历了两个时期:在20世纪70年代开始,由于SMC材料的成功开发和机械化模压技术以及模内涂层技术的应用,促使玻璃钢/复合材料在汽车应用的年增长速度达到25%,形成汽车玻璃钢制品发展的第一个快速发展时期;到20年代90年代初,随着环保和轻量化、节能等呼声越来越高,以GMT(玻璃纤维毡增强热塑性复合材料)、LFT(长纤维增强热塑性复合材料)为代表的复合材料得到了迅猛发展,主要用于汽车结构部件的制造,年增长速度达到10~15%,掀起第二个快速发展时期。作为新材料前沿的复合材料逐步替代汽车零部件中的金属产品和其它传统材料,并取得更加经济和安全的效果。

据统计,汽车用复合材料已占全球复合材料总量的23%以上,并且成逐步上升的趋势。美国、日本、欧洲的德国,意大利等发达国家是车用复合材料的主要国家,全球汽车用增强塑料制品的市场规模为每年454万吨,其中美国达到172 万吨,欧洲达到136万吨。目前,德国每辆汽车平均使用的纤维增强塑料制品近300kg,占汽车总消费材料的22%左右,日本每辆汽车平均使用的纤维增强塑料制品达100kg,约占汽车材料消费总量的7.5%。其汽车用复合材料部件制造的整体技术水平高,大量采用SMC/BMC材料,采用流水线作业方式,机械化、自动化程度高,产品质量好,经济效益高。涉及到轿车、客车、火车、拖拉机、摩托车以及运动车、农用车等所有车种,个别车型的单车平均用量已超过200kg。采用复合材料制造的汽车零部件种类繁多,主要包括以下几类[图1.]:

纤维增强树脂复合材料已被广泛应用于桥车、客车、卡车等的各种覆盖件和结构件上。主要包括以下应用,车身及车身部件:车身壳体、地板、车门、前端板、阻流板等;悬挂部件:前后保险杠、仪表板等;动力部件:传动轴、导流罩、发动机外壳等;车内装饰:门内饰板、车门把手、仪表盘等。

1. 碳纤维复合材料在汽车上的应用

图2.复合材料在汽车上的应用

碳纤维复合材料,具有高强度、高刚性, 有良好的耐蠕变和耐腐蚀性, 与其他纤维增强复合材料相比较更具有前途成为汽车轻量化材料。用碳纤维取代钢材制造车身和底盘构件, 可减轻质量, 从而节约汽油消耗。碳纤维复合材料在汽车上的应用, 美国开展的最好, 美国福特公司早已采用制造汽车传动轴、发动机罩、上下悬架臂等零部件,主要应用在结构件和受力件上。2003年,碳纤维的SMC 复合材料首先成功批量应用于2003款的Dodge Viper车型和mercedes Maybach 车型的系列化生产中。

二汽车传动轴发展历程

汽车传动轴作为汽车的一个重要的运动部件,传动轴在不同轴心的两轴间甚至在工作过程中相对位置不断变化的两轴间传递动力,工作环境都比较恶劣。对传动轴材料性能有着较高的要求,传统的汽车传动轴是金属件。包括传动轴体(一根或者多根)、万向节(两个或者多个)、滑动花键副、中间支承结构。对于金属传动轴而言,当两个万向节的中心距离不大于1.5m时,一般采用单根传动轴管。当距离较远传动轴长度超过1.5m时,通常就要采用两根或者两根以上传动轴管、由三个或者三个以上的万向节连接而成,并且要增设中间结构件。金属传动轴在使用过程中要定期给其注入润滑油,以保养传动轴,而且注润滑油又脏又累,给驾驶人员增加负担还浪费时间。并且金属传动轴在使用过程中容易磨损,引起传动轴噪音和发动机能量损失、缩短使用寿命。

为了解决磨损、润滑等缺点,美国最先进行了传动轴涂覆层的研发。1966年成功申请专利。此种工艺将尼龙11、尼龙12、尼龙1010粉末结合粘结剂涂覆在金属传动轴的表面。此种方法对传动轴的性能及其应用有一定的改进,但在部件简化及性能强度上的改善不大。纤维增强树脂复合材料传动轴的问世及发展正在逐渐解决传统金属传动轴的缺点和完善其性能。国内传动轴涂敷尼龙的研究已很成熟了,河南许昌传动轴总厂年产尼龙涂敷汽车传动轴总成90万套,其中:轻型汽车传动轴28万套,中型汽车传动轴34万套,重型汽车传动轴28万套。

最早生产碳纤维复合材料的公司是美国摩里逊公司(Morrison Molded Fiber Glass)生产的碳纤维复合材料汽车传动轴。其生产的传动轴供通用汽车公司载重汽车应用。采用的碳纤维复合材料可以使原来的两件合并为一件,与钢材相比

较质量可以减轻60%,每个传动轴减轻9Kg。该传动轴采用卓尔泰克公司(ZOLTKE)公司的工业级48K碳纤维,年生产量为60万根传动轴,每根传动轴消耗碳纤维0.68Kg。

福特公司1984年将玻璃纤维复合材料传动轴应用到汽车领域。此种材料的抗扭曲强度是传统金属材料的两倍以上,扭矩力测试结果为17 793N远大于安全设计值10 000N,作为受力材料玻璃纤维还要逊色于碳纤维复合材料。考虑到碳纤维使用的成本,早期传动轴主要采用的时玻璃纤维纤维增强树脂或者是玻璃纤维和碳纤维混合的使用,其中碳纤维作为结构层。GKN公司在1988年开始着手于碳纤维复合材料传动轴的研究,传动轴在Renault Espace Quadra 上的使用开导了碳纤维复合材料汽车传动轴的先驱。1992年推出的Renault Safrane Quadra 的传动轴由原始的金属三段式发展到了金属和复合材料相连的两节式,减重高达40%,此种传动轴销量较小,仅年产500套。在Toyota Mark II使用的碳纤维传动轴减重大50%,性能上大大改善了N?V?H。Audi 80/90 Quattro 首次使用碳纤维传动轴是在1989年,并且使用汽车汽车型号一直延续到了1998年的Audi A4/A8 Quattro,此种型号传动轴年产已达30 000套。此外碳纤维汽车传动轴在以下车型上均有使用:阿斯顿?马丁DB9,阿斯顿·马丁V8 Vantage Coupe,阿斯顿马丁V12 Vantage,马自达RX-8。即将上市的2011款奔驰SLS AMG欧翼,碳纤维传动轴的使用也将成为此款车型的标配。

图2.碳纤维传动轴使用进展

汽车传动轴的诸多性能参数但中,临界转速是其很重要的一个参数,当传动轴的转速与它的弯曲振动的固有频率相同时,传动轴就会发生共振使传动轴有折断的危险。常用的计算汽车传动轴临界转速的公式如下:

N c = (C / L2)·(E/?·I/A)0.5

上式中,N c为汽车传动轴的临界转速,

C为常数,

L为传动轴的长度,

I为轴管连接部位力矩,

A为万向十字节的连接面积。

对这些限制因素进行分析可以发现,传动轴长度及连接万向节确定的情况下,要提高传动轴的临界转速只能提高E/?模量系数,对复合材料而言有高强,高模,弯曲模量可高达100Gpa。

简化的临界转速的计算公式:

上式中:l为传动轴的长度,E al、E co为铝和碳纤维/环氧树脂的弹性模量;q al,q co为铝管和碳纤维铺层的单位长度质量。与金属材料相比较,碳纤维复合材料有着高弹性模量,并且有较小的单位长度质量。

碳纤维复合材料传动轴具有优异力学性能并且具有位移补偿能力,单根轴体管就能达到使用上的要求。研究表明:轴体直径一致的情况下,汽车传动轴的临界转速为8000 rev/min时传统金属传动轴的长度为1250mm,而碳纤维增强树脂复合材料传动轴的长度可以达到1650mm。碳纤维复合材料有望实现传动轴的一体化。

图3.传动轴长度与临界转速的关系

碳纤维复合材料具有很高的比强度、比模量,实现汽车轻量化的同时可以达到节能省油的目的。资料表明:碳纤维复合材料传动轴与传统金属传动轴相比较可以至少减轻40%的质量如示意图4,其中包括传动轴两段的金属链接部件。汽车普通部件质量每减轻1%,可节油1%,类似传动轴等运动部件则可以节油2%。纤维增强树脂复合材料传动轴已经广泛应用到汽车领域,并且成功的改善了传统金属汽车传动轴的N?V?H(Noise, Vibration, and Harshness)性能,为汽车驾驶者提供了安静怡人的环境。

图4.金属传动轴和CFRP

传动轴对比示意图

三 成型工艺

纤维增强树脂复合材料汽车传动轴成型技术已趋于成熟,常见的成型工艺有拉挤成型,缠绕成型,空心管轧碾成型,压模注塑成型等成型工艺。 3.1缠绕成型

图5.缠绕工艺示意图

金属传动轴

CFRP 传动轴

缠绕成型是生产复合材料传动轴最常用的成型工艺。缠绕成型可以精度的控制纤维的方向和轴体直径,此成型工艺具有高度的自动化生产能力。GKN公司所提供的复合材料传动轴均由缠绕工艺制备而成。缠绕成型过程中主要控制的参数有缠绕线型和缠绕角度对传动轴性能的影响,复合材料传动轴轴体与金属连接部件连接的方式。针对具体的的缠绕成型工艺选举典型的几个实例予以说明。

3.1.1缠绕线型对传动轴体的影响:

早期的复合材料传动轴考虑增强纤维的加工成本,增强纤维主要采用玻璃纤维(弹性模量552-827GPa,E-glass、S-glass),基体采用双酚A型环氧树脂:Epi-Rez508,Epi-Rez 510(Celanese Coatings),Epon 828(Shell),固化剂采用酸酐类固化剂(邻苯二甲酸酸酐,)或者胺类固化剂(间本二胺,N,N-二甲基苯胺)。其中纤维体积含量为55-70%(60%)。

传动轴长度69.5 英寸(176.53cm,1 英寸=2.54 cm),内径:4英寸(10.16cm),由四个缠绕层组成如图6所示,考虑缠绕角度及每层的厚度对传动轴的影响,US 4171626专利考察了轻微改变每缠绕层的厚度和缠绕角,采用了四种方案进行缠绕,并对比了传动轴的基本性能指标。

图5 轴体示意图

方案一:

Layer No. Thickness/ inch(cm) Fiber reinforcement Fiber angle

1 0.0

2 (0.051) E-glass fiber ±45°

2 0.074 (0.188) E-glass fiber 0°

3 0.01

4 (0.036) Carbon fiber

(2206GPa)

4 0.012 (0.030) E-glass fiber 90°

Layer No. Thickness/ inch(cm) Fiber reinforcement Fiber angle

1 0.020 (0.051) E-glass fiber ±45°

2 0.070 (0.178) E-glass fiber ±10°

3 0.017 (0.043) Carbon fiber

±10°

(2206GPa)

4 0.012 (0.030) E-glass fiber ±80°

方案三:

Layer No. Thickness/ inch(cm) Fiber reinforcement Fiber angle

1 0.0

2 (0.051) E-glass fiber ±45°

2 0.082 (0.208) E-glass fiber 0°

3 0.008 (0.020) Carbon fiber

(3792GPa)

4 0.010 (0.025) E-glass fiber 90°

方案四:

1 0.020 (0.051) E-glass fiber ±45°

2 0.080 (0.203) E-glass fiber ±10°

±10°

3 0.010 (0.025) Carbon fiber

(3792GPa)

4 0.010 (0.025) E-glass fiber ±80°

四种方案传动轴参数:

小角度纤维缠绕层主要为传动轴提供静态弯曲强度,大角度纤维缠绕层为了保障静传动轴态扭曲强度。为了避免小角度缠绕时的纤维脱落、打滑在缠绕时采用

辅助部件销钉如示意图中的31所示。由专利文献小角度缠绕角一般在10°-45°之间,大角度缠绕角度一般为75°-90°。

3.1.2复合材料传动轴轴体与金属连接部件的连接形式 齿纹式连接

连接工序分两种情况,一种是现将碳纤维传动轴轴体成型加工好之后再将其与金属连接部件粘和连接。另外一种则是在缠绕成型过程中将金属连接部件固定在缠绕芯模上,在缠绕过程中即可完成粘和连接。不管是两者中的任何一种连接方式,金属连接部件的外表面都经过齿纹状处理以增加连接强度的作用。(US 2003/0157988 A1)专利传动轴轴体部位采用缠绕成型的工艺,复合材料轴体连接部位和连接部件连接部位采用齿纹连接的方式。

7传动轴示意图

图8.传动轴连接部位连接示意图

如上图所示13为传动轴金属连接部件,14为金属连接部件上的齿纹带。齿纹带齿纹的顶角角度为45°-75°(推荐使用60°)。金属连接部件齿纹带14的外径为70mm-75mm ,齿纹顶尖厚度为0.05mm ,相邻齿纹顶尖宽度为0.9-1.8mm ,齿纹高度为1.25mm ,齿纹根部宽度为1.5mm,齿纹数量在145个左右。

United states patent 5309620本专利中传动轴的连接示意图如下图所示,3为

金属连接部件,5为金属连接部件与复合材料轴体的连接层,6为纤维增强复合材料传动轴轴体。Fig1-3为金属连接部件上连接部位齿纹示意图。齿纹尺寸高为:0.15-1mm,齿纹顶角角度为90°。

图9.传动轴连接部位的连接示意图

缠绕所用轴芯的外直径为70.0mm,长度为1500mm(on winding Position芯模两端各有50mm长度被高强的薄膜(厚度35微米)包裹),增强纤维为碳纤维,树脂基体为双酚A型环氧树脂,固化剂为胺类固化剂(TONOX 60/40),采用此体系缠绕成型轴体部分,厚度为2.85mm,缠绕角度为±16°。增强纤维的体积分数为60±2%。玻璃纤维复合材料作为加强层缠绕在连接层部位,厚度为3mm,缠绕角度为±85°。将芯模放置固化炉中固化,将芯模脱模,切割两端多余部分,最终得到长度为1100mm,内径为70.1mm的传动轴。

此专利中着重研究了连接部位薄膜的加入对连接强度的影响,并且讨论了连接部位的长度与连接强度的关系。如下表所示,专利中数据表明薄膜的加入增强了扭矩断裂强度,并且随着薄膜连接长度的增加断裂强度增加。当长度为45mm 时,传动轴轴体比连接部位先断裂,复合材料传动轴轴体与金属连接部件的连接强度已非常可观。

传动轴连接部位性能参数:

销钉式连接

US4380443中采用的销钉连接的方式,如图9所示:1为传动轴示意图,2为连接部位销钉连接示意图,3为连接部位横切面示意图。

2

3

1

图10.传动轴连接示意图

碳纤维传动轴在冲击强度上有一定的不足、在传动轴的设计生产过程中在最外表面加上增强层,一般为玻璃纤维复合材料。可在缠绕成型过程中完成,也可采用喷射工艺将短纤维复合材料喷射在轴体表面固化成型加强层。

3.2 空心管轧碾真空袋成型(Tube-rolling)

图11。传动轴成型工艺过程

专利US2005159229A1采用真空袋成型工艺,如上图所示:a 将4层碳纤维复合材料布和1层玻璃纤维复合材料布整理叠层卷绕在芯模上。b将芯模插入到铝制空心管中。(复合材料布的长度与略大于芯模与铝制空心管的内孔周长一致);c 旋转芯模将复合材料布堆坨在铝制空心管的内表面;d 将铝制空心管放置在真空袋中;e抽真空固化成型。此种工艺更有利于成型高尔夫球杆、钓鱼杆等小直径的管材。

复合材料轴体固化成型后经加工与金属连接部件采用齿纹式相粘和连接如下图所示:

图12。连接装备示意图

国内对复合材料汽车传动轴有一定的研究。许昌汽车传动轴总厂生产的尼龙涂敷汽车传动轴的生产工艺为:金属零件经过除油、除锈处理后采用马日夫盐、硝酸盐对其进行磷化处理,敷粘结剂后浸敷尼龙,流均匀冷却定型,最后精加工可得成品。此工序过程在美国专利基础上有所改进,改善了采用磨砂处理金属零件不均匀的缺点,并且粘结剂的使用在结合强度上也要有利于涂底漆的处理方法。

哈尔滨玻璃钢研究院、中国船舶重工集团对碳纤维传动轴都有所研究。哈玻院采用采用缠绕成型工艺生产传动轴,轴体分三层、内表层为玻璃纤维增强树脂复合材料采用缠绕或者喷射成型;中间层也称结构层为碳纤维复合材料,采用缠绕成型而成;最外层为玻璃纤维复合材料经缠绕成型而成。经加压固化后,采用特殊的工装和设备进行无锥度脱模,轴体的厚度在3mm 左右。中国船舶重工集团的研究主要是解决了碳纤维轴体与连接部件的连接。采用的法兰连接的方式如下图:

图13. 法兰连接方式

此种类型的碳纤维传动轴主要应用于冷却塔风机、造纸机、印刷机、压缩机、泵等。

四应用展望

资料统计表明2007年中国汽车销售879.15万辆,同比增长20%以上。在汽车市场的带动下,2007年我国汽车传动轴的需求已经突破992万根,产值达到了45亿元。2008年汽车销量达到938.05万辆,而作为汽车零部件的汽车传动轴需求量也接近1900万套,产值达到54亿元。预计,2010年我国汽车传动轴总销售额将达87亿元,在汽车材料应用领域复合材料传动轴具有很大的潜在应用市场。

目前国内传动轴市场被GKN Driveline等大型外资所控制。GKN Driveline 凭借自身技术优势在中国轿车市场占有50%汽车传动轴市场份额,其年产量可达500 万根。2008年10月又在上海投资新工厂,并计划2009年在中国武汉在开设新的传动轴工厂,这将是GKN继上海、重庆、吉林之后,在中国开设的第五家传动轴工厂,全国布局还在继续。中国碳纤维传动轴的研究和生产迫切需要提高。

碳纤维传动轴的大规模的产业化受碳纤维成本高的影响,美国对汽车工业用碳纤维作了研究分析, 结论是碳纤维价格降至16.5美元以下时, 碳纤维与钢材相比就有竞争性了。但其优良的性能及减轻车重的作用对制造商来说具有巨大的魅力。

传动轴发展.

传动轴发展 一背景 汽车是最普通的代步、运输工具,许多国家均将汽车工业作为其重要的支柱产业。面对资源和环境的严峻挑战,推进汽车轻量化以降低油耗,一直是汽车工业发展的主题。复合材料因具有加工能耗低, 轻质高强, 可设计性强, 耐锈蚀, 成型工艺性好等优点, 成为汽车工业以塑代钢的理想材料。汽车用材料在经历了通用塑料、工程塑料时代之后, 20世纪九十年代进人复合材料时期。 通用汽车公司1953年生产的世界上第一辆复合材料汽车车身汽车Chevrolet Corvette,敲开了复合材料在汽车领域的应用,自推出此款车型以来通用汽车公司目前已销售130余万辆,此款车型采用的是玻璃纤维增强树脂复合材料。汽车复合材料的应用主要经历了两个时期:在20世纪70年代开始,由于SMC材料的成功开发和机械化模压技术以及模内涂层技术的应用,促使玻璃钢/复合材料在汽车应用的年增长速度达到25%,形成汽车玻璃钢制品发展的第一个快速发展时期;到20年代90年代初,随着环保和轻量化、节能等呼声越来越高,以GMT(玻璃纤维毡增强热塑性复合材料)、LFT(长纤维增强热塑性复合材料)为代表的复合材料得到了迅猛发展,主要用于汽车结构部件的制造,年增长速度达到10~15%,掀起第二个快速发展时期。作为新材料前沿的复合材料逐步替代汽车零部件中的金属产品和其它传统材料,并取得更加经济和安全的效果。 据统计,汽车用复合材料已占全球复合材料总量的23%以上,并且成逐步上升的趋势。美国、日本、欧洲的德国,意大利等发达国家是车用复合材料的主要国家,全球汽车用增强塑料制品的市场规模为每年454万吨,其中美国达到172 万吨,欧洲达到136万吨。目前,德国每辆汽车平均使用的纤维增强塑料制品近300kg,占汽车总消费材料的22%左右,日本每辆汽车平均使用的纤维增强塑料制品达100kg,约占汽车材料消费总量的7.5%。其汽车用复合材料部件制造的整体技术水平高,大量采用SMC/BMC材料,采用流水线作业方式,机械化、自动化程度高,产品质量好,经济效益高。涉及到轿车、客车、火车、拖拉机、摩托车以及运动车、农用车等所有车种,个别车型的单车平均用量已超过200kg。采用复合材料制造的汽车零部件种类繁多,主要包括以下几类[图1.]:

传动轴基本知识

传动轴基本知识 一、传动轴总成简介 传动轴总成图 传动轴,英文PROPELLER(DRIVING)SHAFT。在不同轴心的两轴间甚至在工作过程中相对位置不断变化的两轴间传递动力。 传动轴按其重要部件万向节的不同,可有不同的分类。如果按万向节在扭转的方向是否有明显的弹性可分为刚性万向节传动轴和挠性万向节传动轴。前者是靠零件的铰链式联接传递动力的,后者则靠弹性零件传递动力,并具有缓冲减振作用。刚性万向节又可分为不等速万向节(如十字轴式万向节)、准等速万向节(如双联式万向节、三销轴式万向节)和等速万向节(如球笼式万向节、球叉式万向节)。等速与不等速,是指从动轴在随着主动轴转动时,两者的转动角速率是否相等而言的,当然,主动轴和从动轴的平均转速是相等的。 主、从动轴的角速度在两轴之间的夹角变动时仍然相等的万向节,称为等速万向节或等角速万向节。它们主要用于转向驱动桥、断开式驱动桥等的车轮传动装置中,主要用于轿车中的动力传递。当轿车为后轮驱动时,常采用十字轴式万向节传动轴,对部分高档轿车,也有采用等速球头的;当轿车为前轮驱动时,则常采用等速万向节,等速万向节也是一种传动轴,只是称谓不同而已。 在发动机前置后轮驱动(或全轮驱动)的汽车上,由于汽车在运动过程中悬架变形,驱动轴主减速器输入轴与变速器(或分动箱)输出轴间经常有相对运动,此外,为有效避开某些机构或装置(无法实现直线传递),必须有一种装置来实现动力的正常传递,于是就出现了万向节传动。万向节传动必须具备以下特点:a、保证所连接两轴的相对位置在预计范围内变动时,能可靠地传递动力;b、保证所连接两轴能均匀运转。由于万向节夹角而产生的附加载荷、振动和噪声应在允许范围内;c、传动效率要高,使用寿命长,结构简单,制造方便,维修容易。对汽车而言,由于一个十字轴万向节的输出轴相对于输入轴(有一定的夹角)是不等速旋转的,为此必须采用双万向节(或多万向节)传动,并把同传动轴相连的两个万向节叉布置在同一平面,且使两万向节的夹角相等。这一点是十分重要的。在设计时应尽量减小万向节的夹角。 传动轴总成不平衡是传动系弯曲振动的主要原因。其引起的振动噪声是明显的。此外,万向节十字轴的轴向窜动、传动轴滑动花键中的间隙、传动轴总成两端连接处的定心精度、高速回转时传动轴的弹性变形及传动轴上点焊平衡片时的热影响因素等都能改变传动轴总成的不平衡度。降低传动轴的不平衡度,对于汽车,

传动轴结构分析与设计(精)

第五节传动轴结构分析与设计 传动轴总成主要由传动轴及其两端焊接的花键轴和万向节叉组成。传动轴中一般设有由滑动叉和花键轴组成的滑动花键,以实现传动长度的变化。为了减小滑动花键的轴向滑动阻力和磨损,有时对花键齿进行磷化处理或喷涂尼龙层;有的则在花键槽中放入滚针、滚柱或滚珠等滚动元件,以滚动摩擦代替滑动摩擦,提高传动效率。但这种结构较复杂,成本较高。有时对于有严重冲击载荷的传动,还采用具有弹性的传动轴。传动轴上的花键应有润滑及防尘措施,花键齿与键槽间隙不宜过大,且应按对应标记装配,以免装错破坏传动轴总成的动平衡。 传动轴的长度和夹角及它们的变化范围由汽车总布置设计决定。设计时应保证在传动轴长度处在最大值时,花键套与轴有足够的配合长度;而在长度处在最小时不顶死。传动轴夹角的大小直接影响到万向节十字轴和滚针轴承的寿命、万向传动的效率和十字轴旋转的不均匀性。 在长度一定时,传动轴断面尺寸的选择应保证传动轴有足够的强度和足够高的临界转速。所谓临界转速,就是当传动轴的工作转速接近于其弯曲固有振动频率时,即出现共振现象,以致振幅急剧增加而引起传动轴折断时的转速。传动轴的临界转速为 22 2 8 10 2.1 C c C k L d D n + ? = (4—13) 式中,n k为传动轴的临界转速(r/min);L C为传动轴长度(mm),即两万向节中心之间的距离;d c和D c分别为传动轴轴管的内、外径(mm)。 在设计传动轴时,取安全系数K=n k/n max=1.2~2.0,K=1.2用于精确动平衡、高精度的伸缩花键及万向节间隙比较小时,n max为传动轴的最高转速(r/min)。 由式(4—13)可知,在D c和L c相同时,实心轴比空心轴的临界转速低,且费材料。另外,当传动轴长度超过1.5m时,为了提高n k以及总布置上的考虑,常将传动轴断开成两根或三根,万向节用三个或四个,而在中间传动轴上加设中间支承。 传动轴轴管断面尺寸除满足临界转速的要求外,还应保证有足够的扭转强度。轴管的扭转切应力τc应满足

传动轴基本知识

传动轴基本知识 一、传动轴总成简介(结合具体总成图) 传动轴,英文PROPELLER(DRIVING) SHAFT。在不同轴心的两轴间甚至在工作过程中相对位置不断变化的两轴间传递动力。 传动轴按其重要部件——万向节的不同,可有不同的分类。如果按万向节在扭转的方向是否有明显的弹性可分为刚性万向节传动轴和挠性万向节传动轴。前者是靠零件的铰链式联接传递动力的,后者则靠弹性零件传递动力,并具有缓冲减振作用。刚性万向节又可分为不等速万向节(如十字轴式万向节)、准等速万向节(如双联式万向节、三销轴式万向节)和等速万向节(如球笼式万向节、球叉式万向节)。等速与不等速,是指从动轴在随着主动轴转动时,两者的转动角速率是否相等而言的,当然,主动轴和从动轴的平均转速是相等的。 主、从动轴的角速度在两轴之间的夹角变动时仍然相等的万向节,称为等速万向节或等角速万向节。它们主要用于转向驱动桥、断开式驱动桥等的车轮传动装置中,主要用于轿车中的动力传递。当轿车为后轮驱动时,常采用十字轴式万向节传动轴,对部分高档轿车,也有采用等速球头的;当轿车为前轮驱动时,则常采用等速万向节——等速万向节也是一种传动轴,只是称谓不同而已。 在发动机前置后轮驱动(或全轮驱动)的汽车上,由于汽车在运动过程中悬架变形,驱动轴主减速器输入轴与变速器(或分动箱)输出轴间经常有相对运动,此外,为有效避开某些机构或装置(无法实现直线传递),必须有一种装置来实现动力的正常传递,于是就出现了万向节传动。万向节传动必须具备以下特点: a 、保证所连接两轴的相对位置在预计范围内变动时,能可靠地传递动力; b 、保证所连接两轴能均匀运转。由于万向节夹角而产生的附加载荷、振动和噪声应在允许范围内; c 、传动效率要高,使用寿命长,结构简单,制造方便,维修容易。对汽车而言,由于一个十字轴万向节的输出轴相对于输入轴(有一定的夹角)是不等速旋转的,为此必须采用双万向节(或多万向节)传动,并把同

传动轴的原理

十字轴式万向传动轴的原理及其结构 十字轴式万向传动轴是应用于两相交轴或两平行轴之间的动力或运动的传递装置。由于 它结柯简单、运行可靠、使用维护方便而被广泛应用于各类机械传动中。如:交通运输,建 筑工程.冶金矿山、轧钢以及军工器械等。其传避的扭矩小至几N ·m ,大到几百kN ·m ,它 的结构也从单接头,双接头发展到多根联接的万向传动链。 图1是常见的双接头万向传动轴属于刚性非等速率传椭十字轴式万向传动轴。 使用于不同场台的传动轴,其结构型式和技术性能要求也有所不同。准确、台理地选用 和维护传动轴,对保证机槭稳定、可靠地运行以及延长其使用寿命十分重要。 一、传动轴的运动特性 一套完整的传动轴是由不同数量的万向节以不同的联接方式组合而成。 1、单接头万向节的运动特性 图2是单接头万向传动轴的原理图。它由两个分别与主动轴和从动轴相连接的叉头与一 个轴承组成,两轴成一定的角度β相交。Β称为输入或输出轴的轴间折角。 由图2可以看到,当主动轴旋转一周时,从动轴也旋转一周,因而它们的旋转周数始终 相等,即传动比始终等于1。但是,当我们观察其瞬时传动情况时会发现,由于轴间折角的 存在,它的传动比是变化的,即当主动轴以角速度ω1匀速转动时,从动轴由于叉子所处的 位置不同而以ω2转动,并且随着叉子角位移φ1的变化而变化: ()[]1 2122sin cos 1/cos ωβ?βω?-= 角速度的差异必然出现二轴转角的差异 ()211cos ?β?tg tg -= 图3为单接头万向轴的运动特性描述,从图中我们可以得出如下结论: 图1 双接头万向传动轴

(1)由于轴f可折角的存在(β≠0,其瞬时的传动比发生变化(i≠1),并以输人轴转角的π为周期交替变化,表明输入、输出轴之间为等周数而非等速率传动。 (2)轴间折角越大,瞬时传动比变化也越大,当轴间折角趋于9O°时,传动比趋于零,表明机构将会卡死, 不能传动。 (3)角位移差的存在,表明输入、输出轴之间出现异相,从而产生传动误差,降低了两轴间的传动精度。 (4)从动轴角速度的变化,必产生角加速度,由此系统的附加惯性矩引起冲击和振动,从而影响传动效率,降低机械及传莉轴的使用寿命。 (5)结构上的对称性,可以实现逆向传动。 2、双接头万向节和双联接万向节的运动特性 图4所示是按下列条件组合两个单接头万向节而形成的双接头十字轴式万向传动轴的结构。其组合条件是轴同折角必须相等β1=β2;中间联接轴两端叉头的轴承孔中心必须处在同一平面内;主,从动轴和中间联接轴的轴线必须处在同一平面内。 由图4我们可以看到.双接头万向轴与单接头万向轴在运动特性上的区别: (1)传动过程中两个万向节的不等速性互补,正好实现主、从动轴之间的等速率传动,即ω1=ω2; (2)中间联接轴仍然具有不等角速度转动的特点。因而,上述的组合条件称为十字轴式万向传动轴的等速条件。图5是按等速条件组成的双联中心球节十字轴式万向传动轴。 图2 单接头万向节的原理

qct29082-92汽车传动轴总成技术条件

中华人民共和国汽车行业标准 QC/T 29082一92 汽车传动轴总成技术条件 1 主题内容与适用范围 本标准规定了十字轴式万向节传动轴总成(以下简称传动轴)的技术条件。 本标准适用于轻、中型各类汽车及其改装车用传动轴,微型及重型各类汽车及其改装车用传动轴亦可参照使用。 2 引用标准 GB 9239刚性转子平衡品质——许用不平衡量的确定 JB 524汽车万向节十字轴技术条件 JB 3741汽车传动轴总成台架试验方法 JB 3677汽车用螺纹紧固件拧紧扭矩规范 ZB J 11014万向节滚针轴承技术条件 JB/Z汽车油漆涂层 3 技术要求和试验方法 3.1 传动轴应符合本标准的要求,并按照经规定程序批准的图样及技术文件制造。 3.2 万向节轴承应符合ZB J11014的规定。 3.3 万向节十字轴应参照JB 524的有关规定。 3.4 装配用的零部件必须经过检验合格。 3.5 装配用的零部件在装配前必须清洗干净。 3.6 传动轴外观及零件加工表面不得有毛刺、碰伤、锈蚀、折痕、扭曲变形及裂纹等缺陷。 3.7 传动轴装配前零部件应符合以下要求:

3.7.1 十字轴的油道应清洁畅通,轴承碗中的滚针排列无横倒或少装 3.7.2 万向节总成装配后轴承转动灵活、油封完好、装配尺寸应符合图样要求。3.7.3 传动轴管焊接合件焊接前后必须进行校直,滑动轴、非滑动轴轴颈的径向跳动不超过0.1mm,轴管全长上的径向跳动应符合表1规定: 当轴管长度小于轴管直径的倍时,滑动轴、非滑动轴轴颈的径向跳动量 不大于0.3mm,轴管全长径向跳动量不大于1mm。 3.7.4 传动轴管焊接合件的焊接质量应可靠,焊缝尺寸应符合图样要求,焊 缝外观应平整光滑无间断,不得有虚焊、夹渣等缺陷。用倍最大工作扭矩静 扭转时,焊缝不得开裂。 3.8 装配时不得漏装、错装,连接紧固件应牢固可靠,其拧紧力矩应符合JB 3677的规定。 3.9 传动轴装配后,用手在正、反两个方向上沿万向节夹角形成的圆锥面运动 轨迹转动时,万向节工作平稳,不得有卡阻现象或明显的间隙,万向节夹角应符 合设计要求。 3.10 传动轴装配时,十字轴上的滑脂嘴及滑动叉上的滑脂嘴应在同一侧。 3.11 盖板式结构的万向节,其盖板凸出部分必须嵌入轴承碗外端面的槽内,并将固定锁片锁住盖板上的紧固螺栓,卡环式结构的万向节,卡环必须全部嵌入耳 孔槽内或轴承碗外圆槽内。 3.12 传动轴两端的万向节,应在规定的相位面上,其偏差不大于5°。 3.13 滑动轴与滑动叉装配后,应能在设计要求的工作长度范围内轴向滑动,不

传动轴结构分析与设计

传动轴结构分析与设计 传动轴总成主要由传动轴及其两端焊接的花键轴和万向节叉组成。传动轴中一般设有由滑动叉和花键轴组成的滑动花键,以实现传动长度的变化。为了减小滑动花键的轴向滑动阻力和磨损,有时对花键齿进行磷化处理或喷涂尼龙层;有的则在花键槽中放入滚针、滚柱或滚珠等滚动元件,以滚动摩擦代替滑动摩擦,提高传动效率。但这种结构较复杂,成本较高。有时对于有严重冲击载荷的传动,还采用具有弹性的传动轴。传动轴上的花键应有润滑及防尘措施,花键齿与键槽间隙不宜过大,且应按对应标记装配,以免装错破坏传动轴总成的动平衡。 传动轴的长度和夹角及它们的变化范围由汽车总布置设计决定。设计时应保证在传动轴长度处在最大值时,花键套与轴有足够的配合长度;而在长度处在最小时不顶死。传动轴夹角的大小直接影响到万向节十字轴和滚针轴承的寿命、万向传动的效率和十字轴旋转的不均匀性。 在长度一定时,传动轴断面尺寸的选择应保证传动轴有足够的强度和足够高的临界转速。所谓临界转速,就是当传动轴的工作转速接近于其弯曲固有振动频率时,即出现共振现象,以致振幅急剧增加而引起传动轴折断时的转速。传动轴的临界转速为 22 2 8 10 2.1 C c C k L d D n + ? = (4—13) 式中,n k为传动轴的临界转速(r/min);L C为传动轴长度(mm),即两万向节中心之间的距离;d c和D c分别为传动轴轴管的内、外径(mm)。 在设计传动轴时,取安全系数K=n k/n max=1.2~2.0,K=1.2用于精确动平衡、高精度的伸缩花键及万向节间隙比较小时,n max为传动轴的最高转速(r/min)。 由式(4—13)可知,在D c和L c相同时,实心轴比空心轴的临界转速低,且费材料。另外,当传动轴长度超过1.5m时,为了提高n k以及总布置上的考虑,常将传动轴断开成两根或三根,万向节用三个或四个,而在中间传动轴上加设中间支承。 传动轴轴管断面尺寸除满足临界转速的要求外,还应保证有足够的扭转强度。轴管的扭转切应力τc应满足

传动轴与万向传动装置的拆装与调整-)

实训五:传动轴与万向传动装置的拆装与调整 一、实训目的及要求 1、掌握万向传动装置在汽车上的安装及其注意事项的要求; 2、了解万向传动装置的组成及其各组成零件的构造; 3、掌握万向传动装置的拆装步骤及技术要求; 4、掌握万向传动装置的检修方法。 二、实训仪器设备 1、货车传动轴与万向传动装置1套; 2、常用汽车维修工具1套; 3、专用夹具、工作台1套。 三、实训内容与操作步骤 1、实训内容 (1)传动装置的检验 (2)传动轴与万向传动装置的拆装及调整(3)万向传动装置的检修 2、操作步骤 (1)传动装置的检验 1)车辆起步时,试听传动装置有无“咯咯”的声响; 2)突然加速(猛踩油门)或突然减速(猛踩刹车),试听有无异响; 3)中、高速时,试听底盘传动装置有无异响及振动; 4)减速行驶,以最小半径绕圈时,试听底盘传动装置有无异响及振动,并确定是左边还是右边的异响及振动。 (2)传动轴与万向传动装置的拆装与调整 对国产中型载货汽车,一级维护时应进行润滑和紧固作业。对传动轴的十字轴、传动轴滑动叉、中间支撑轴承等加注润滑脂;检查传动轴各部螺栓和螺母的紧固情况,特别是万向节叉凸缘连接螺栓和中间支撑支架的固定螺栓等,应按规定的力矩拧紧。 拆卸传动轴时,要防止汽车的移动。同时按下图所示的方法,在每个万向节叉的凸缘上做好标记,以确保作业后原位装复,否则极易破坏万向传动装置的平衡性,造成运转噪声和强烈振动。 拆卸传动轴时,应从传动轴后端与驱动桥连接处开始,先把与后桥凸缘连接的螺栓拧松取下,然后将与中间传动轴凸缘连接的螺栓拧下,拆下传动轴总成。接着,松开中间支撑支架与车架的连接螺栓,最后松下前端凸缘盘,拆下中间传动轴。 轿车前驱传动轴的拆卸具体操作步骤如下: 1)卸下两侧的横向稳定杆的轴承夹箍、制动卡盘、制动盘; 2)卸下相连的下控制臂外端的球形连接伴,往外压球形连接件的销子,如其过紧可用管形撬棒撬出,使下控制臂与转向节臂(车轮轴承罩)脱开;使用专用工具使横向稳定杆与下控制臂相脱开;

汽车传动轴故障现象-原因分析及故障排除

汽车传动轴故障现象\原因分析及故障排除 [摘要]本文介绍了汽车传动轴的故障原因、分析和判断以及排除的方法。 [关键词]传动轴;中间支承;传动轴凸缘;万向节十字轴 前言:新岭煤矿是露天煤矿,生产运输方式是采用汽车运输。全矿有运岩石车辆25台(北京中环:15台、豪威:10台),运煤车辆4台(豪沃)以及生产服务车辆22台,总计达47台车辆。减少车辆故障,使车辆在完好技术状态下运行,是确保新岭煤矿安全生产的关键。 汽车传动轴的功能,是将不同心的部件连接起来并传递动力。一般说来,各部件的连接并不在一条直线上,而且在工作时,不断改变相互位置,传动轴是传递扭矩的,它同时解决了各连接部件不同心的问题以及它们之间距离不断变化的问题。当两个部件(发动机与变速器或变速器与后桥)发生相对位移时,它们仍然能够继续转动。 传动轴的常见故障有:传动轴、万向节和花键松旷;传动轴不平衡以及万向节十字轴及轴承过早磨损等。 1、传动轴不平衡、发响 1.1故障现象 车辆传动轴的不平衡,在行驶中会出现一种周期性的声响,车速度越高,响声越大,达到一定速度时,车门窗玻璃、方向盘均有强烈振响,手握方向盘有麻木的感觉。脱档行驶振动更强烈,降到中速,抖振消失,但响声仍然存在。 1.2故障原因: 传动轴弯曲、凹陷,运转中失去平衡;传动轴安装不当,破坏了平衡条件,或原来安装的平衡块丢失;各连接或固定螺栓松动;曲轴飞轮组合件动不平衡超差;万向节十字轴回转中心与传动轴不同轴度超差;传动轴花键套磨损过量。 1.3故障的判断与排除 传动轴不平衡,危及安全行车。如果出现传动轴不平衡的故障,可以采用下述方法判断:将车前轮用垫木塞紧,用千斤顶起一侧的中、后驱动桥;将发动机发动,挂上高速档,观察传动轴摆动情况。观察中注意转速下降大时,若摆振明显增大,说明传动轴弯曲或凸缘歪斜。传动轴弯曲都是轴管弯曲,大部分是由于汽车超载造成的。运岩石车辆由于经常超载运行,传动轴弯曲断裂的故障较多。更换传动轴部件,校直后,应进行平衡检查。不平衡量应符合标准要求。万向节叉及传动轴吊架的技术状况也应详细检查,如因安全不符合要求,十字轴及滚柱

传动轴共振的案例研究

一个关于传动轴共振的案例研究 闵福江 重庆长安汽车股份有限公司 汽车工程研究院 【摘要】NVH是汽车研究与设计过程中既需要一定的理论基础,又需要大量实践经验才能解决的应用问题。文章阐述了汽车动力系统引起整车NVH问题的原理,以及解决这些NVH问题的一些方法。 【主题词】传动系 共振 汽车 轰鸣声 A Case Study on the Syntony of Drive shaft Min Fujiang Chongqing Changan Automobile Stock CO . LTD Automotive Engineering Institute 【Abstract】NVH is a application problem to be solved with certain theoretical basis and much practical experience .This paper describes the complete vehicle NVH problem principally caused by power system ,and introduce some ways how to solve this problem。 【Key Words】Transmission system , Syntony , Vehicle , Booming Noise 1前言 某新研发的车辆,在样车试制期间,发现当车辆在行驶过程中发动机转速达到3300转/分时,车内产生明显的轰鸣声(Booming Noise),该车型如果投放市场,必然引起顾客抱怨,影响市场销售。经诊断分析确定为传动轴一阶弯曲共振导致,必须针对传动轴采取措施,解决轰鸣噪声。本文系统地阐述了该问题的分析和解决过程。 2传动轴共振引发的NVH问题 汽车的动力系统时刻向传动轴施加各种激振,尤其以发动机的往复惯性力与传动轴不平衡产生的惯性力冲击最为显著。传动轴的响应与传动轴的尺寸规格、材料特性和边界条件相关,而且在理论上是一个拥有无数模态的连续结构。由于传动轴最主要的激振力为发动机往复惯性力与传动轴不平衡产生的惯性力,因此,传动轴的一阶弯曲模态更容易受到激发产生共振。在采用不等速万向节时,还应该考虑二阶激励。 传动轴的振动通过外万向节、轮毂、悬挂将激振能量传递至车身,车身覆盖件受激共振后又将振动能量传入腔体,车辆腔体受激共振,产生低频轰鸣声。同时内万向节及差速器齿轮啮合转动的不稳定性还会引起车辆产生波动式耦合噪音和刺耳的尖叫声音。 3 传动轴在设计中如何避免共振

传动轴开题报告

课题名称:传动轴设计与模态分析 一、课题来源、课题研究的主要内容及国内外现状综述 1.课题来源 生产实际 2.课题研究的主要内容 传动轴是汽车传动系中传递动力的重要部件,它的作用是与变速箱、驱动桥一起将发动机的动力车轮,使汽车产生驱动力,一般由高抗扭、抗弯的空心碳钢钢管制成。传动轴的工作条件很恶劣,汽车行驶时,由于悬架变位,变速器与驱动桥的相对位置不断变化,使传动轴与变速器间存在相对轴向位移。汽车在起步、加速和制动时,传动轴要承受很大的扭矩。因此,传动轴对整车性能影响极大。 传动轴设计的主要内容是选择传动轴长度和断面尺寸。根据传动系统可靠而稳定的传递动力以及经济性等的要求,对传动轴进行结构分析设计,并应用ANSYS软件对传动轴的振动进行模态分析。 3.国内外现状综述 本课题是对汽车传动轴的设计,它是符合车辆制造技术专业的一个课题。通过对该课题的设计,培养了我们综合运用所学基础理论,基本知识,并且提高了我们对现实问题的分析,解决能力。 随着我国汽车业的高速发展,带动我国汽车传动轴需求持续大幅增长。2007年中国汽车传动轴的需求已经突破992万根,产值达到了45亿元。2008年汽车销量达到938万辆,而作为汽车零部件的汽车传动轴需求量也接近1900万套,产值达到54亿元。到了2010年我国汽车传动轴总销售额已达87亿元。2011年我国汽车传动轴产量达到3800万套以上。但同时,本土高技术产品汽车零部件企业面临采购方面的不利境界,难以获得成长机会。外资由于历史上传统的配套关系,在高技术含量及高附加值领域,基本移植国外原有的配套关系。目前,国内传动轴市场被GKNDriveline等大型外资企业所控制。GKNDriveline凭借自身技术优势在中国轿车市场占有50%的汽车传动轴市场份额,2008年在上海投资新工厂,又于09年在中国武汉开设新传动轴工厂,这是GKN继上海、重庆、吉林之后在中国开设的第五家传动轴工厂,全国布局还在继续。而其他企业尤其是内资企业只能在有限的空间里求得生存。另一方面,迫于竞争压力以及产品升级的需

传动轴的特点详情介绍

传动轴的特点详情介绍 轴传动优点确实很多,但是很多人想当然认为相交轴齿轮传动效率低,这是直觉,但有机械常识的人都知道常用的双曲锥齿轮传动效率在95%左右,密闭式的会更高,自行车上要使用两对,效率大概在90%。链条的效率看似非常高,实际上一般也就是90% 左右,自行车使用开放式链条,相对会更低一点,加上链条效率随链条拉长而降低,所以轴传动在效率上绝对不输链传动。 轴驱动自行车的优势是什么 容易操作:简单的扭转控制转移方便,响应和运营独立骑车,这样你可以随时改变方式,即使在完全停止。 更安全:没有链条脱落,没有链咬衣服。 清洁:轴和齿轮是完全封闭的,没有油/油脂接触手或衣物。 较低的维护:全封闭、耐用锥齿轮免受影响,碎片和元素。 顺利的:液体转移和啮合传动装置结合起来创造流畅骑车和转移。 容易运输:容易装卸不链油脂手上和衣服。 降低拥有成本:增加耐用性和大大减少维修计划意味着更少的服务和维修成本。 轴驱动自行车存在多久了? 轴驱动自行车实际上可以追溯到1990年代初。然而,现代轴驱动已经生产了将近15年。我们目前采用的是第三代轴驱动。然而,直到最近几年,由于轴驱动自行车有限流行限制可用的传动装置。现在,随着禧马诺的先进7-speed和8速内部齿轮中心,让我们的自行车提供了很多种齿轮不需外部移动部件。 轴驱动是如何持久? 我们公司轴驱动设计寿命是普通链条类传动的两倍。在轴驱动的材料选择上采用等级最高的组件,是在我们自己的工厂手工组装,经过严格测试强度和耐久性。我们的轴驱动器是由: 热处理,硬化chromoly弧齿锥齿轮 热处理硬化chromoly主轴 碳钢轴杆 密封内部精密轴承 精密加工铝住房 轴驱动也是有弹性的影响,不受天气影响的全天候使用。密封的设计使它更好的保证其在砂、泥土、水、盐和污垢等不利条件下正常使用,这个比任何链自行车都要稳定和耐用。 内部齿轮传动自行车的重量是与链条自行车一样吗? 轴传动自行车使用我们的Versa公路自行车部件重量大约三磅。根据组件。轴传动公路自行车使用我们的V ersa道路内部组件是迄今为止自行车市场上最轻的,并与外部齿轮公路自行车是很有竞争力的。根据不同的款式,事实上,传动轴自行车使用我们的轴驱动系统重量不到2磅以上,而且这还跟传统链驱动自行车相同的配置的情况。换句话说,如果相同的自行车,车身上不是配置了一个链和链轮轴驱动,而是我们的轴驱动。这意味着我们所有的额外优势就包括了自行车的流畅,平滑转移,减少维护,减少维修和更大的安全,代价是不

传动轴发展

传动轴发展

传动轴发展 一背景 汽车是最普通的代步、运输工具,许多国家均将汽车工业作为其重要的支柱产业。面对资源和环境的严峻挑战,推进汽车轻量化以降低油耗,一直是汽车工业发展的主题。复合材料因具有加工能耗低, 轻质高强, 可设计性强, 耐锈蚀, 成型工艺性好等优点, 成为汽车工业以塑代钢的理想材料。汽车用材料在经历了通用塑料、工程塑料时代之后, 20世纪九十年代进人复合材料时期。 通用汽车公司1953年生产的世界上第一辆复合材料汽车车身汽车Chevrolet Corvette,敲开了复合材料在汽车领域的应用,自推出此款车型以来通用汽车公司目前已销售130余万辆,此款车型采用的是玻璃纤维增强树脂复合材料。汽车复合材料的应用主要经历了两个时期:在20世纪70年代开始,由于SMC材料的成功开发和机械化模压技术以及模内涂层技术的应用,促使玻璃钢/复合材料在汽车应用的年增长速度达到25%,形成汽车玻璃钢制品发展的第一个快速发展时期;到20年代90年代初,随着环保和轻量化、节能等呼声越来越高,以GMT(玻璃纤维毡增强热塑性复合材料)、LFT(长纤维增强热塑性复合材料)为代表的复合材料得到了迅猛发展,主要用于汽车结构部件的制造,年增长速度达到10~15%,掀起第二个快速发展时期。作为新材料前沿的复合材料逐步替代汽车零部件中的金属产品和其它传统材料,并取得更加经济和安全的效果。 据统计,汽车用复合材料已占全球复合材料总量的23%以上,并且成逐步上升的趋势。美国、日本、欧洲的德国,意大利等发达国家是车用复合材料的主要国家,全球汽车用增强塑料制品的市场规模为每年454万吨,其中美国达到172 万吨,欧洲达到136万吨。目前,德国每辆汽车平均使用的纤维增强塑料制品近300kg,占汽车总消费材料的22%左右,日本每辆汽车平均使用的纤维增强塑料制品达100kg,约占汽车材料消费总量的7.5%。其汽车用复合材料部件制造的整体技术水平高,大量采用SMC/BMC材料,采用流水线作业方式,机械化、自动化程度高,产品质量好,经济效益高。涉及到轿车、客车、火车、拖拉机、摩托车以及运动车、农用车等所有车种,个别车型的单车平均用量已

传动轴振动分析

毕业设计(论文)题目:传动轴振动分析 院别:汽车与交通学院 专业班级:交通运输 学生姓名:XXX 学号:XXXXXXXXX 指导老师:XXX 2010年5月21日

摘要 传动轴作为汽车传动系统的主要部件在汽车行驶过程中起着传递运动及扭矩的作用。由于传动轴在使用过程中的特点是转速高,并且其结构较为复杂,所以不可避免的存在振动现象。 传动轴的振动存在许多危害,首先会产生噪音,作为汽车部件这会大大地影响汽车舒适性;还会降低传动效率,产生配合松动,乃至于使元件断裂,从而导致事故的发生。 本文的中心内容是利用Solidworks软件来研究传动轴的振动问题,也就是针对某种车型的传动轴这一特定的旋转体,先使用大型CAD软件Solidworks 进行实体建模,利用其自有的计算模块分别计算各个不同部件的质量,然后利用Solidworks 中的Simulation 插件进行有限元分析,建立相应的CAE模型,进行网格化,分成一定数量的单元,再通过计算机的分析计算,经过有限元算法的处理,得出相应的数据结果,最后算出临界速度和固有频率。 通过阅读了大量的国内外相关的技术研究文献,对当前本课题研究的最新状况进行比较全面的、深入的研究。总结各类结构有限元分析的优点,找出存在的问题,立足于工作中的实际存在的问题和实用性,对其进行分析和研究。 关键词:传动轴;有限元分析;模态分析;临界转速;固有频率

ABSTRACT As the car transmission shaft of the main parts in the process of vehicle movement and torque transmission. Due to the characteristics of transmission is in use process, and its structure of high speed is more complicated, so there are inevitably vibration phenomenon. There are many hazards shaft vibration and noise, first as automobile parts will greatly affect auto comfort, Still can reduce transmission efficiency and cooperate with loose, and even make component fault, causing accidents. This center is to study using Solidworks software shaft vibration problem, also is this particular tothe shaft, large CAD software used for modeling, Solidworks its own calculation module of different components are calculated respectively, and the quality of the Simulation using Solidworks plugin fe analysis, establish corresponding CAE model, the grid, into a certain number of units, through the analysis and calculation of computer, through the finite element algorithm, corresponding data, and finally calculate critical speed and the inherent frequency. Through reading a lot of domestic and foreign relevant technical research literature on this subject, the current situation of the latest research on comprehensive and thorough research. Summarizes the advantages of finite element analysis, find out the existing problems in actual work, based on the existing problems and practical, carries on the analysis and research. KEY WORDS:shaft, Finite element analysis, Modal analysis, The critical speed, Inherent frequency

传动轴设计

德州科技职业学院 毕业设计(论文)题目传动轴的工艺设计 系(部):机电工程系 学生姓名:苗壮青 学号:070201317 班级名称:07机电3班 指导教师:李娟 答辩教师:孙丽华 时间:2010年5月12日

摘要 机械制造工业是在我国国民经济中起着极其重要作用的基础工业。近年来,随着现代科学技术的进步,机械制造工业的面貌发生了深刻的变化,呈现出激烈的国际性竞争的高速发展态势。 机械工业的高速发展,对高职院校培养工程技术人才提出了新的更高的要求。机械制造工艺在机械制造工业中为国民经济各部门和自身的技术进步提供先进的技术、装备,在国民经济中具有重要的地位和作用,应用于各个领域。机械工业的规模和技术水平是衡量国家科技水平和经济实力的重要标志。 机械制造工艺知识具有很强的实践性。因此,本课题的内容重视的是零件的作用,结构和工艺过程的拟制及夹具设计和加工方案的确定。即通过设计及车间调研来更好的体会,加深理解。本课题给出的仅是零件图,真正的设计与加工必须在不断的实践、理论循环中总结。 在研究本课题过程中通过各种渠道搜集了一些与本课题相关的资料。例如:图书查阅、上网搜集、请教老师及和同学之间的讨论。本课题的重点零件的工艺分析和工艺规程制定 关键词:机电一体化,传动轴,零件,刚度,强度

ABSTRACT Mechanical manufacturing industry in the national economy in China is plays an important role in the basic industry.In recent years,along with the development of modern science and technology progress,machinery manufacturing industry,great changes have taken place,the fierce international competition of high-speed development trend. The rapid development of industry,mechanical engineering in higher vocational colleges are put forward new talents of higher requirements. Mechanical manufacturing process in mechanical manufacturing industry for national economic sectors and its technical progress of advanced technology and equipment provided in the national economy,and has an important position and role,applied in various fields.Mechanical industrial scale and technology level of national science and technology level and measure is an important symbol of economic strength. Mechanical manufacturing process knowledge is strong practicality. Therefore,the importance of this topic is part of the content,structure and process of artificial and fixture design and processing of the scheme. Through the investigation and design and workshop,better to deepen understanding.This topic is only part of the design and fabrication,in practice,and to summarize cycle theory. This topic in the research process through various channels and collected the data of topic.Example:the Internet access,collect books, consult teachers and classmates and the discussion between.The key parts of the subject of process analysis and procedure Keywords:mechanical and electrical integration,Shaft,parts,stiffness, strength

机械毕业设计英文外文翻译83传动轴简介 (2)

附录 附录A外文文献原文 A shaft assembly, profile The shaft axis in two different, even in its working process and relative position between the two shafts changing. According to the important components - shaft, can have the different universal classification. If the direction in reverse universal elastic, whether can be divided into the rigid universal shaft transmission and flexible joints. The former is the hinged on parts of the power transmission link, the latter by elastic parts, and has passed dynamic buffer reduced. Rigid gimbal and can be divided into different speed universal shaft type (such as cross gimbal) and patterned (such as double type gimbal, three pin shaft type gimbal) and patterned (such as ball cage gimbal, fork type gimbal). Patterned constant, and refers to the driven shaft rotation in driving shaft with the rotation Angle, whether of equal velocity, of course, driving shaft and driven shafts is equal to the speed of the average. Lord, the driven shaft axis in two angular change when the Angle between the universal and equal still called patterned or DengJiao velocity universal. They mainly used to drive axles, breaking the wheel transmission device etc, and is mainly used in the power of the car. When the car for a rear wheel drive, often

相关文档
最新文档