轴对称图形典型例题

合集下载

轴对称图形练习题及答案

轴对称图形练习题及答案

轴对称图形练习题及答案轴对称图形是一种数学概念,指的是如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴。

以下是一些轴对称图形的练习题及答案。

练习题1:判断下列图形是否为轴对称图形,并找出对称轴。

1. 圆形2. 等边三角形3. 矩形4. 等腰梯形5. 五角星答案1:1. 圆形是轴对称图形,有无数条对称轴。

2. 等边三角形是轴对称图形,有3条对称轴。

3. 矩形是轴对称图形,有2条对称轴。

4. 等腰梯形是轴对称图形,有1条对称轴。

5. 五角星是轴对称图形,有5条对称轴。

练习题2:如果一个图形沿着某条直线折叠后,直线两旁的部分能够完全重合,这条直线叫做这个图形的对称轴。

请找出下列图形的对称轴数量。

1. 正方形2. 菱形3. 正六边形4. 半圆形5. 等腰三角形答案2:1. 正方形有4条对称轴。

2. 菱形有2条对称轴。

3. 正六边形有6条对称轴。

4. 半圆形有1条对称轴。

5. 等腰三角形有1条对称轴。

练习题3:在下列图形中,找出不是轴对称图形的图形。

1. 长方形2. 等边四边形3. 等腰梯形4. 平行四边形5. 正五边形答案3:4. 平行四边形不是轴对称图形。

练习题4:如果一个轴对称图形的对称轴是直线x=1,那么这个图形关于这条直线对称。

根据这个定义,判断下列点是否在对称轴上。

1. 点A(2,3)2. 点B(0,0)3. 点C(1,1)4. 点D(-1,1)答案4:1. 点A不在对称轴上。

2. 点B不在对称轴上。

3. 点C在对称轴上。

4. 点D不在对称轴上。

练习题5:在一个坐标平面上,如果一个点P(x,y)关于直线x=1对称,那么它的对称点的坐标是什么?答案5:如果点P(x,y)关于直线x=1对称,那么它的对称点的坐标是(2-x, y)。

这些练习题和答案可以帮助学生更好地理解和掌握轴对称图形的概念和性质。

通过解决这些问题,学生可以加深对轴对称图形的认识,提高解决相关问题的能力。

《生活中的轴对称》典型例题

《生活中的轴对称》典型例题

《生活中的轴对称》典型例题例1 指出下列图形中的轴对称图形例2 指出下列图形中的轴对称图形,并指出轴对称图形的对称轴.(1)正方形;(2)长方形;(3)圆;(4)平行四边形.例3 画出下列图形的对称轴。

例4 指出下边哪组图形是轴对称的,并指出对称轴.(1)任意两个半径相等的圆;(2)正方形的一条对角线把一个正方形分成的两个三角形;(3)长方形的一条对角线把长方形分成的两个三角形;(4)两个全等的三角形.(1) (2) (3) (4)(5) (6) (7) (8)例5找出下面的轴对称图形,并说出它们各有几条对称轴.例6 下列图形中,不是轴对称图形的是( )(A)有两个角相等的三角形(B)有一个内角是︒45的直角三角形(C)有一个内角是︒120的三角形30,另一个内角为︒(D)有一个角是︒30的直角三角形例7观察中(1)~(5),它们是不是轴对称图形?有什么共同特点?例8请分别画出下图中3个图形的对称轴.例9如图,(1)正三角形,(2)正四边形,(3)正五边形,(4)正六边形,(5)正八边形,(6)正九边形都是轴对称图形,数一数它们的对称轴的条数.观察后分析:正多边形对称轴的条数与边数"有什么关系?根据你的分析结果回答,正十边形,正十六边形,正二十九边形分别有几条对称轴?正五十边形呢?正一百边形呢?参考答案例1分析:正确理解轴对称图形概念.解:轴对称图形是(2)(3)(4)(6)(7)(8)例2 分析:判断一个图形是否是轴对称图形,关键是能否找到一条直线使该图的两部分沿这条直线对折后完全重合.解:(1)、(2)、(3)都是轴对称图形,(4)不是轴对称图形.正方形的对称轴是两条对边中点所在的直线和正方形对角线所在的直线;长方形的对称轴是两条对边中点所在的直线;圆的对称轴是任意一条直径所在的直线.说明:对称轴是一条直线,不是线段.例3分析:依据定义可以画出,但可能是多条.解:如图例4 分析:判断两个图形是否是轴对称,关键是能否找到一条直线使这两个图形沿这条直线对折后能够重合.解:(1)和(2)每组的两个图形都是轴对称的.(3)和(4)每组的两个图形不是轴对称的.(1)的对称轴是连结两个圆心的线段的垂直平分线;(2)的对称轴就是原正方形分成两三角形时的这条对角线所在的直线.说明:对称轴是直线而非线段.例5分析:本题主要考查识别轴对称图形的能力.根据轴对称图形的概念来认真识别.但要注意.图(9)(10)这两个图也有“对称”性,但它们没有对称轴.不能把它们误认为是轴对称图形.解:根据图形可知:(1)是轴对称图形,它有3条对称轴;(2)是轴对称图形,它有5条对称轴;(3)是轴对称图形.它有4条对称轴.(4)是轴对称图形.它有1条对称轴;(5)是轴对称图形,它有2条对称轴;(6)不是轴对称图形;(7)是轴对称图形,它有1条对称轴;(8)是轴对称图形,它有1条对称轴;(9)(10)虽然有“对称”性,但都不是轴对称图形.例6 分析:在(A)中,有两个角相等的三角形一定是等腰三角形,而等腰三角形一定是轴对称图形,它的对称轴为底边上的高(或底边上的中线或顶角的平分线). 而(B)和(C)中的两个三角形同样也是等腰三角形,所以也是轴对称图形. 那么(D)中三角形的三个内角各不相等,不是等腰三角形,所以(D)不是轴对称图形.解:选(D)说明:在三角形中,只有等腰三角形才是轴对称图形,而不是等腰三角形的三角形就一定不是轴对称图形.例7分析:本题主要考查两个图形成轴对称图形的理解.可以利用轴对称的概念加以判断,但不能把两个图形成轴对称与一个图形是轴对称图形的概念相混淆.解:它们都是轴对称图形,每一组中都有两个图形.可以沿某一条直线对折使两个图形能完全重合在一起,所以每幅图中的两个图形成轴对称.轴对称图形是一个图形.可以有一条或许多条对称轴.(1)~(5)两个图形成轴对称,一般来说只有一条对称轴.例8分析:找对称轴从不同角度观察,全面分析.解:(1)有6条对称轴;(2)有5条对称轴;(3)有6条对称轴.画图略.例9分析:正多边形并不都是轴对称图形.但是,是轴对称图形的正多边形的对称轴的条数与其边数有着密切的联系,请仔细找出它们之间的规律.解:正三角形有3条对称轴,正四边形有4条对称轴,正五边形有5条对称轴,正六边形就有6条对称轴,正八边形有8条对称轴,正九边形有9条对称轴.正多边形对称轴的条数与边数n之间的关系是:边数是n,对称轴的条数是n条.所以正十边形有10条对称轴,正十六边形有16条对称轴,正二十九边形就有29条对称轴,正五十边形就有50条对称轴,正一百边形就有100条对称轴.。

2024年中考备考:初二数学上册:画轴对称图形经典例题(含答案)

2024年中考备考:初二数学上册:画轴对称图形经典例题(含答案)

2024年中考备考:初二数学上册:画轴对称图形经典例题(含答案)一、单选题1. 下列剪纸图案中,能通过轴对称变换得到的有( C )2. 下列说法错误的是(B )A.关于某直线对称的两个图形一定能完全重合B.全等的两个三角形一定关于某直线对称C.轴对称图形的对称轴至少有一条D.线段是轴对称图形3.如图是一个台球桌面的示意图,图中四个角上的阴影部分分别表示四个入球孔.若一个球按图中所示的方向被击出(球可以经过多次反射),则该球最后将落入的球袋是(B )A.1 号袋 B.2 号袋 C.3 号袋 D.4 号袋4.如图所示,在3×3的正方形网格中已有两个小正方形被涂黑,再将图中其余小正方形任意涂黑一个,使整个图案构成一个轴对称图形的办法有( C )A.3种 B.4种 C.5种 D.6种解析:试题分析:如果一个图形沿一条直线对折,直线两旁的部分能互相重合,那么这个图形叫做轴对称图形.选择一个正方形涂黑,使得3个涂黑的正方形组成轴对称图形,选择的位置有以下几种:1处,3处,7处,6处,5处,选择的位置共有5处故选C.考点:利用轴对称设计图案点评:轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.5.在如上图由5个小正方形组成的图形中,再补上一个小正方形,使它成为轴对称图形,你有几种不同的方法( C )A.2种 B.3种 C.4种 D.5种6. 小强将一张正方形纸片按如图所示对折两次,并在如图位置上剪去一个小正方形,然后把纸片展开,得到的图形应是(B )7. 如图,直线l1与直线l2相交,∠α=60°,点P在∠α内(不在l1 ,l2上)。

小明用下面的方法作P的对称点:先以l1为对称轴作点P关于l1的对称点P1 ,再以l2为对称轴作P1关于l2的对称点P2 ,然后再以l1为对称轴作P2关于l1的对称点P3 ,以l2为对称轴作P3关于l2的对称点P4 ,……,如此继续,得到一系列点P1 ,P2 ,P3 ,…,。

初二轴对称经典题目

初二轴对称经典题目

初二轴对称经典题目一、等腰三角形的性质与判定相关题目1. 已知:在△ABC中,AB = AC,∠A = 36°,BD平分∠ABC交AC于点D。

- 求证:AD = BD = BC。

- 解析:- 因为AB = AC,∠A = 36°,根据等腰三角形两底角相等,可得∠ABC=∠C=(180° - 36°)÷2 = 72°。

- 又因为BD平分∠ABC,所以∠ABD = ∠DBC=72°÷2 = 36°。

- 在△ABD中,∠A = ∠ABD = 36°,根据等角对等边,可得AD = BD。

- 在△BDC中,∠BDC = 180° - ∠DBC - ∠C=180° - 36° - 72° = 72°,所以∠BDC = ∠C,根据等角对等边,可得BD = BC。

- 综上,AD = BD = BC。

2. 如图,在△ABC中,AD是高,点E在AD上,且BE = AC,求证:△BDE≌△ADC。

- 解析:- 因为AD是高,所以∠ADB = ∠ADC = 90°。

- 在Rt△BDE和Rt△ADC中,已知BE = AC,又因为∠BDE = ∠ADC = 90°,且∠BED和∠C都是∠EBD的余角,根据同角的余角相等,可得∠BED = ∠C。

- 根据AAS(两角及其中一角的对边对应相等),可证得△BDE≌△ADC。

二、线段垂直平分线相关题目1. 如图,在△ABC中,AB的垂直平分线MN交AB于点D,交AC于点E,且AC = 15cm,△BCE的周长等于25cm。

- 求BC的长。

- 解析:- 因为MN是AB的垂直平分线,根据线段垂直平分线上的点到线段两端的距离相等,可得AE = BE。

- 因为△BCE的周长=BE + EC+BC = 25cm,又因为AE = BE,AC = AE+EC = 15cm。

轴对称练习题及答案

轴对称练习题及答案

轴对称练习题及答案一、选择题1. 以下哪个图形是轴对称图形?A. 圆形B. 三角形C. 正方形D. 五边形2. 轴对称图形的对称轴与图形的对称点之间的关系是:A. 垂直B. 平行C. 相交D. 重合3. 一个轴对称图形的对称点到对称轴的距离是:A. 相等B. 不相等C. 有时相等有时不相等D. 无法确定4. 如果一个图形关于x轴对称,那么它的对称点的坐标关系是:A. (x,y)和(x,-y)B. (x,y)和(-x,y)C. (x,y)和(-x,-y)D. (x,y)和(y,x)5. 一个点关于y轴的对称点的坐标是:A. (-x,y)B. (x,-y)C. (-y,x)D. (y,-x)二、填空题1. 轴对称图形的对称轴是图形中所有对称点的________。

2. 如果一个图形关于y轴对称,那么它的对称点的坐标关系是(x,y)和________。

3. 一个图形关于原点对称,那么它的对称点的坐标关系是(x,y)和________。

三、解答题1. 已知点A(3,4),求点A关于x轴的对称点的坐标。

2. 已知点B(-2,-3),求点B关于y轴的对称点的坐标。

3. 已知点C(1,-1),求点C关于原点的对称点的坐标。

四、判断题1. 所有矩形都是轴对称图形。

()2. 所有等腰三角形都是轴对称图形。

()3. 所有等边三角形都是轴对称图形。

()4. 所有平行四边形都是轴对称图形。

()五、综合题1. 给出一个等腰梯形的上底长为4cm,下底长为8cm,高为3cm,求等腰梯形的对称轴。

2. 如果一个矩形的长为10cm,宽为6cm,求矩形关于x轴对称后,新的矩形的长和宽。

3. 已知一个正方形的边长为5cm,求正方形关于y轴对称后,新正方形的边长。

答案:一、选择题1. A2. D3. A4. A5. A二、填空题1. 连线中点2. (-x,y)3. (-x,-y)三、解答题1. 点A关于x轴的对称点的坐标为(3,-4)。

人教版小学数学五年级轴对称和平移(经典例题含答案)

人教版小学数学五年级轴对称和平移(经典例题含答案)

轴对称和平移经典例题答案班级小组姓名成绩(满分120)一、轴对称再认识(一)(一)轴对称图形的认识(共4小题,每题3分,共计12分)例1.找一找,哪些是轴对称图形?请在下面的()里面打“√”。

(√)()(√)(√)()(√)(√)(√)例1.变式1.下面是轴对称图形的一半,猜猜这些图形是什么?(蝴蝶)(上衣)(瓶子)(树)例1.变式2.填一填。

如果一个图形沿着一条直线对折,两侧的图形能够完全重合,这样的图形就叫(轴对称)图形,那条直线就是(对称轴)。

例1.变式3.画出下面图形的对称轴。

(二)对称轴(共4小题,每题3分,共计12分)例2.选择。

(1)下列图形中,对称轴最多的是(C )。

A.等边三角形B.正方形C.圆D.长方形(2)下面不是轴对称图形的是(B )。

A.长方形B.平行四边形C.圆D.半圆(3)要使大小两个圆有无数条对称轴,应采用第(B)种画法。

(4)下列选项中右边图形与左边图形成轴对称的是(B )。

AB C D例2.变式1.这些图形中哪些是轴对称图形?画出它们的对称轴。

例2.变式2.先画一画,再数一数各有几条对称轴?圆有无数条对称轴24无数136例2.变式3.用三个同样大小的正方形互相连接可以组成各种不同的轴对称图形,如图:(1)还可以怎样连接组成不同的轴对称图形?你可以试着画一画。

(2)如果用四个同样大小的小正方形怎样连接能成为轴对称图形?试着画一画。

(三)轴对称概念理解(共4小题,每题3分,共计12分)例3.在方格纸上按照图上给出的对称轴画出对称图形。

例3.变式1.在方格纸上画出轴对称图形。

例3.变式2.在方格纸上画出图形的另一半。

例3.变式3.在方格图里按给定的对称轴画出对称图形。

(四)画对称轴(共4小题,每题3分,共计12分)例4.在方格纸上画出轴对称图形。

例4.变式1.在点子图上画出轴对称图形。

例4.变式2.画出下面图形的另一半。

例4.变式3.在方格纸上画出轴对称图形。

(五)根据平移的方向和距离画平移后的图形(共4小题,每题3分,共计12分)例5.画一画。

典型的轴对称图形练习题(带答案)

典型的轴对称图形练习题一、选择题1.下列命题中:①两个全等三角形合在一起是一个轴对称图形;②等腰三角形的对称轴是底边上的中线;③等边三角形一边上的高就是这边的垂直平分线;④一条线段可以看着是以它的垂直平分线为对称轴的轴对称图形. 正确的说法有( )个 A .1个 B .2个 C .3个 D .4个 2.下列图形中:①平行四边形;②有一个角是30°的直角三角形;③长方形;④等腰三角形. 其中是轴对称图形有( )个 A .1个 B .2个 C .3个 D .4个 3.已知∠AOB =30°,点P 在∠AOB 的内部,P 1与P 关于OA 对称,P 2与P 关于OB 对称,则△P 1OP 2是 ( ) A .含30°角的直角三角形; B .顶角是30的等腰三角形;C .等边三角形D .等腰直角三角形.4.如图:等边三角形ABC 中,BD =CE ,AD 与BE 相交于点P ,则 ∠APE 的度数是 ( ) A .45° B .55° C .60° D .75°5. 等腰梯形两底长为4cm 和10cm ,面积为21cm 2,则 这个梯形较小的底角是( )度. A .45° B .30° C .60° D .90° 6.已知点P 在线段AB 的中垂线上,点Q 在线段AB 的中垂线外,则 ( ) A .PA+PB >QA+QB B .PA+PB <QA+QB D .PA+PB =QA+QB D .不能确定7.已知△ABC 与△A 1B 1C 1关于直线MN 对称,且BC 与B 1C 1交与直线MN 上一点O , 则 ( ) A .点O 是BC 的中点 B .点O 是B 1C 1的中点 C .线段OA 与OA 1关于直线MN 对称 D .以上都不对8.如图:已知∠AOP=∠BOP=15°,PC ∥OA ,PD ⊥OA ,若PC=4,则PD= ( ) A .4 B .3C .2D .1 9.∠AOB 的平分线上一点P 到OA 的距离 为5,Q 是OB 上任一点,则 ( ) A .PQ >5 B .PQ≥5C .PQ <5D .PQ≤510.等腰三角形的周长为15cm ,其中一边长为3cm .则该等腰三角形的底长为 ( ) A .3cm 或5cm B .3cm 或7cm C .3cm D .5cm 二.填空题11.线段轴是对称图形,它有_______条对称轴. 12.等腰△ABC 中,若∠A=30°,则∠B=________.AO PAECB D13.在Rt △ABC 中,∠C=90°,AD 平分∠BAC 交BC 于D ,若CD=4,则点D 到AB 的距离是__________. 14.等腰△ABC 中,AB=AC=10,∠A=30°,则腰AB 上的高等于___________. 15.如图:等腰梯形ABCD 中,AD ∥BC ,AB=6,AD=5,BC=8,且AB ∥DE ,则△DEC的周长是____________.16.等腰梯形的腰长为2,上、下底之和为10且有一底角为60°,则它的两底长分别为____________.17.若D 为△ABC 的边BC 上一点,且AD=BD ,AB=AC=CD , 则∠BAC=____________.18.△ABC 中,AB 、AC 的垂直平分线分别交BC 于点E 、F ,若∠BAC=115°,则∠EAF=___________. 三.解答题19.如图:已知∠AOB 和C 、D 两点,求作一点P ,使PC=PD ,且P 到∠AOB 两边的距离相等.20.如图:AD 为△ABC 的高,∠B=2∠C ,用轴对称图形说明:CD=AB+BD .21.有一本书折了其中一页的一角,如图:测得AD=30cm,BE=20cm ,∠BEG=60°,求折痕EF 的长.OB22.如图:△ABC中,AB=AC=5,AB的垂直平分线DE交AB、AC于E、D,①若△BCD的周长为8,求BC的长;②若BC=4,求△BCD的周长.23.等边△ABC中,点P在△ABC内,点Q在△ABC外,且∠ABP=∠ACQ,BP=CQ,问△APQ是什么形状的三角形?试说明你的结论.参考答案第一章轴对称图形1.A 2.B 3.C 4.C5.A6.D7.C8.C9.B10.C 11.212.30°、75°、120°13.414.515.1516.4、617.72°18.50°19.提示:作CD的中垂线和∠AOB的平分线,两线的交点即为所作的点P;20.提示:在CD上取一点E使DE=BD,连结AE;21.EF=20㎝;22.①BC=3,②9;23.提示:△APQ为等边三角形,先证△ABP≌△ACQ得AP=AQ,再证∠PAQ=60°即可.。

轴对称图形练习题及答案

轴对称图形练习题及答案轴对称图形是一种在几何学中常见的图形,它具有对称轴,使得图形的任何一部分都可以沿着这条轴对折,与另一部分完全重合。

下面是一些轴对称图形的练习题及答案,供学生练习和理解轴对称图形的概念。

练习题1:在下列图形中,哪一个是轴对称图形?A. 正方形B. 圆形C. 五角星D. 所有选项答案:D. 所有选项解析:轴对称图形的定义是:如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴。

正方形、圆形和五角星都满足这个条件,因此它们都是轴对称图形。

练习题2:如果一个轴对称图形的对称轴是垂直于地面的直线,那么这个图形的对称轴与地面的夹角是多少度?答案:90度解析:垂直于地面的直线与地面的夹角是90度,这是根据垂直的定义得出的。

练习题3:在平面直角坐标系中,如果点A(2,3)关于x轴对称的点是B,求点B的坐标。

答案:点B的坐标是(2,-3)解析:在平面直角坐标系中,如果一个点关于x轴对称,那么这个点的x坐标保持不变,而y坐标的值变为其相反数。

因此,点A(2,3)关于x轴对称的点B的坐标是(2,-3)。

练习题4:给定一个轴对称图形,如果图形的对称轴是y=x,那么这个图形的中心点是什么?答案:图形的中心点是(0,0)解析:如果一个图形的对称轴是y=x,这意味着图形关于这条直线对称。

对于任何点(x,y)在图形上,其对称点是(y,x)。

因此,图形的中心点是对称轴与原点的交点,即(0,0)。

练习题5:在一个轴对称图形中,如果图形的对称轴是一条斜线y=mx+b,那么这个图形的中心点坐标是什么?答案:图形的中心点坐标是(-b/m, b)解析:对于斜线y=mx+b,这条直线与x轴的交点是(-b/m, 0),与y轴的交点是(0, b)。

由于图形是轴对称的,图形的中心点将位于这两个交点的中点,即(-b/m, b)。

通过这些练习题,学生可以加深对轴对称图形的理解,并掌握如何识别和应用对称轴。

八年级轴对称典型例题

八年级轴对称典型例题一、等腰三角形与轴对称性质相关例题例题1:已知等腰三角形ABC中,AB = AC,∠A = 36°,请找出这个等腰三角形的所有对称轴。

解析:1. 因为等腰三角形ABC中,AB = AC,等腰三角形是轴对称图形,对称轴是底边上的高(或顶角平分线或底边的中线)所在的直线。

作AD⊥BC于D点,由于AB = AC,根据等腰三角形三线合一的性质,AD所在直线就是等腰三角形ABC的对称轴。

因为∠A=36°,AB = AC,所以∠B=∠C=(180° 36°)/2 = 72°。

这条对称轴将等腰三角形ABC分成两个全等的直角三角形ABD和ACD。

2. 总结:等腰三角形ABC有1条对称轴,即底边上的高AD所在的直线。

二、线段垂直平分线与轴对称例题例题2:如图,在△ABC中,DE是AC的垂直平分线,AE = 3cm,△ABD的周长为13cm,求△ABC的周长。

[此处可自行画一个简单的三角形ABC,其中DE是AC的垂直平分线,D在AC上,E在BC上]解析:1. 因为DE是AC的垂直平分线,根据线段垂直平分线的性质,可得AD = CD。

2. 已知△ABD的周长为AB+BD + AD = 13cm,由于AD = CD,所以AB+BD+CD = 13cm,即AB + BC = 13cm。

3. 又因为AE = 3cm,且DE垂直平分AC,所以AC = 2AE = 6cm。

4. 那么△ABC的周长为AB+BC + AC=13 + 6 = 19cm。

三、角平分线与轴对称例题例题3:如图,OP平分∠AOB,PC⊥OA于C,PD⊥OB于D,连接CD,求证:OP垂直平分CD。

[画一个∠AOB,OP为角平分线,PC垂直OA于C,PD垂直OB于D,连接CD]解析:1. 因为OP平分∠AOB,PC⊥OA,PD⊥OB,根据角平分线的性质,可得PC = PD。

2. 在Rt△OPC和Rt△OPD中,OP = OP(公共边),PC = PD,所以Rt△OPC≌Rt △OPD(HL)。

轴对称测试题及答案

轴对称测试题及答案一、选择题(每题3分,共30分)1. 下列图形中,哪一个是轴对称图形?A. 不规则多边形B. 等腰三角形C. 任意四边形D. 圆形答案:B、D2. 轴对称图形的定义是什么?A. 一个图形关于某条直线对称B. 一个图形关于某点对称C. 一个图形关于某面对称D. 一个图形关于某曲线对称答案:A3. 一个图形关于一条直线对称,那么这条直线被称为什么?A. 对称轴B. 对称中心C. 对称面D. 对称点答案:A4. 下列哪个图形不是轴对称图形?A. 正方形B. 等边三角形C. 半圆形D. 非等腰的梯形答案:D5. 一个图形关于某点对称,那么这个点被称为什么?A. 对称轴B. 对称中心C. 对称面D. 对称点答案:B6. 一个图形关于某面对称,那么这个面被称为什么?A. 对称轴B. 对称中心C. 对称面D. 对称点答案:C7. 轴对称图形的对称轴可以有多少条?A. 0条B. 1条C. 2条D. 无数条答案:D8. 一个图形关于某条直线对称,那么这条直线将图形分成的两部分是:A. 完全相同B. 完全相反C. 部分相同D. 完全不同答案:A9. 轴对称图形的对称轴一定是:A. 直线B. 曲线C. 点D. 面答案:A10. 下列哪个图形不是轴对称图形?A. 正五边形B. 正六边形C. 正七边形D. 正八边形答案:C二、填空题(每题4分,共20分)1. 一个图形关于一条直线对称,那么这条直线被称为______。

答案:对称轴2. 轴对称图形的定义是:一个图形关于某条直线对称,那么这条直线将图形分成的两部分是______。

答案:完全相同3. 一个图形关于某点对称,那么这个点被称为______。

答案:对称中心4. 轴对称图形的对称轴可以有______条。

答案:无数5. 一个图形关于某面对称,那么这个面被称为______。

答案:对称面三、简答题(每题5分,共10分)1. 请说明什么是轴对称图形,并给出一个例子。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

轴对称图形典型例题例1 如下图,已知,PB ⊥AB ,PC ⊥AC ,且PB =PC ,D 是AP 上一点.求证:∠BDP =∠CDP .证明:∵ PB ⊥AB ,PC ⊥AC ,且PB =PC ,∴ ∠PAB =∠PAC (到角两边距离相等的点在这个角平分线上),∵ ∠APB +∠PAB =90°,∠APC +∠PAC =90°,∴ ∠APB =∠APC ,在△PDB 和△PDC 中,⎪⎩⎪⎨⎧=∠=∠= PD PD APC APB PC PB .,,∴ △PDB ≌△PDC (SAS ),∴ ∠BDP =∠CDP .(图形具有明显的轴对称性,可以通过利用轴对称的性质而不用三角形的全等)注 利用角平分线定理的逆定理,可以通过距离相等直接得到角相等,而不用再证明两个三角形全等.例2 已知如下图(1),在四边形ABCD 中,BC >BA ,AD =CD ,BD 平分∠ABC .求证:∠A +∠C =180°.(1)证法一:过D 作DE ⊥AB 交BA 的延长线于E ,DF ⊥BC 于F ,∵ BD 平分∠ABC ,∴ DE =DF ,在Rt △EAD 和Rt △FCD 中,⎩⎨⎧==.DF DE DC AD ,(角平分线是常见的对称轴,因此可以用轴对称的性质或全等三角形的性质来证明.) ∴ Rt △EAD ≌Rt △FCD (HL ),∴ ∠C =∠EAD ,∵ ∠EAD +∠BAD =180°,∴ ∠A +∠C =180°.证法二:如下图(2),在BC 上截取BE =AB ,连结DE ,证明△ABD ≌△EBD 可得.(2)证法三:如下图(3),延长BA 到E ,使BE =BC ,连结ED ,以下同证法二.(3)注 本题考察一个角平分线上的任意一点到角的两边距离相等的定理来证明线段相等,关键是掌握遇到角的平分线的辅助线的不同的添加方法.例3 已知,如下图,AD 为△ABC 的中线,且DE 平分∠BDA 交AB 于E ,DF 平分∠ADC 交AC 于F .求证:BE +CF >EF .证法一:在DA 截取DN =DB ,连结NE 、NF ,则DN =DC ,在△BDE 和△NDE 中, ⎪⎩⎪⎨⎧=∠=∠=.DE DE NDE BDE ND BD ,,(遇到角平分线可以考虑利用轴对称的性质或全等三角形的性质来解题)∴ △BDE ≌△NDE (SAS ),∴ BE =NE (全等三角形对应边相等),同理可证:CF =NF ,在△EFN 中,EN +FN >EF (三角形两边之和大于第三边),∴ BE +CF >EF .证法二:延长ED 至M ,使DM =ED ,连结CM 、MF ,在△BDE 和△CDM 中,⎪⎩⎪⎨⎧=∠=∠=.DM DE CDM BDE CD BD ,,(从另一个角度作辅助线)∴ △BDE ≌△NDE (SAS ),∴ CM =BE (全等三角形对应边相等),又∵ ∠BDE =∠A DE ,∠ADF =∠CDF ,而∠BDE +∠ADE +∠ADF +∠CDF =180°,∴ ∠ADE +∠ADF =90°,即∠EDF =90°,∴ ∠FDM =∠EDF =90°,在△EDF 和△MDF 中,⎪⎩⎪⎨⎧=∠=∠=.DF DF MDF EDF MD ED ,,∴ △EDF ≌△MDF (SAS ),∴ EF =MF (全等三角形对应边相等),在△CMF中,CF+CM >EF,∴BE+CF >EF.注本题综合考察角平分线、中线的意义,关键是如何使题中的分散的条件集中.例4 已知,如下图,P、Q是△ABC边BC上的两点,且BP=PQ=QC=AP=AQ.求:∠BAC的度数.解:∵AP=PQ=AQ(已知),∴∠APQ=∠AQP=∠PAQ=60°(等边三角形三个角都是60°),∵AP=BP(已知),(注意观察图形和条件)∴∠PBA=∠PAB(等边对等角),∴∠APQ=∠PBA+∠PAB=60°(三角形的一个外角等于和它不相邻的两个内角和),∴∠PBA=∠PAB=30°,同理∠QAC=30°,∴∠BAC=∠BAP+∠PAQ+∠QAC=30°+60°+30°=120°.注本题考察等腰三角形、等边三角形的性质,关键是掌握求角的步骤:(1)利用等边对等角得到相等的角;(2)利用三角形的一个外角等于和它不相邻的两个内角和得各角之间的关系;(3)利用三角形内角和定理列方程.例5 已知,如下图,在△ABC中,AB=AC,E是AB的中点,以点E为圆心,EB为半径画弧,交BC于点D,连结ED,并延长ED到点F,使DF=DE,连结FC.求证:∠F=∠A.证明:∵AB=AC,∴∠B=∠ACB(等边对等角),∵EB=ED,∴∠B=∠EDB,∴∠ACB=∠EDB(等量代换),∴ED∥AC(同位角相等,两直线平行),在△BDE和△AED中,BE=AE=ED,连结AD可得,∠EAD=∠EDA,∠EBD=∠EDB,∠EDA+∠EDB=90°,即AD⊥BC,∴∠EDA+∠EDB=90°,即AD⊥BC,(用什么定理判定三角形全等的?)∴D为BC的中点,∴△BDE≌△CDF,∴∠BED=∠F,而∠BED=∠A,∴∠F=∠A.例6 已知,如下图,△ABC中,AB=AC,E在CA的延长线上,∠AEF=∠AFE.求证:EF⊥BC.证法一:作BC边上的高AD,D为垂足,∵AB=AC,AD⊥BC,∴∠BAD=∠CAD(等腰三角形三线合一),又∵∠BAC=∠E+∠AFE,∠AEF=∠AFE,∴∠CAD=∠E,∴AD∥EF,∵AD⊥BC,∴EF⊥BC.证法二:过A作AG⊥EF于G,∵∠AEF=∠AFE,AG=AG,∠AGE=∠AGF=90°,∴△AGE≌△AGF (ASA),∵AB=AC,∴∠B=∠C,又∠EAF=∠B+∠C,(请对比多种证法的优劣)∴∠EAG+∠GAF=∠B+∠C,∴∠EAG=∠C,∴AG∥BC,∵AG⊥EF,∴EF⊥BC.证法三:过E作EH∥BC交BA的延长线于H,∵ AB =AC ,∴ ∠B =∠C ,∴ ∠H =∠B =∠C =∠AEH ,∵ ∠AEF =∠AFE ,∠H +∠AFE +∠FEH =180°,∴ ∠H +∠AEH +∠AEF +∠AFE =180°,∴ ∠AEF +∠AEH =90°,即∠FEH =90°,∴ EF ⊥EH ,又EH ∥BC ,∴ EF ⊥BC .证法四:延长EF 交BC 于K ,∵ AB =AC ,∴ ∠B =∠C ,∴ ∠B =21(180°-∠BAC ),∵ ∠AEF =∠AFE ,∴ ∠AFE =21(180°-∠EAF ),∵ ∠BFK =∠AFE ,∴ ∠BFK =21(180°-∠EAF ),∴ ∠B +∠BFK =21(180°-∠BAC )+21(180°-∠EAF )∵ =21[360°-(∠EAF +∠BAC )],∴ ∠EAF +∠BAC =180°,∴ ∠B +∠BFK =90°,即∠FKB =90°,∴ EF ⊥BC .注 本题考察等腰三角形性质的应用,解题的关键是通过添加辅助线,建立EF 与BC 的联系,仔细体会以上各种不同的添加辅助线的方法.例7 如下图,AB =AC ,DB =DC ,P 是AD 上一点.求证:∠ABP =∠ACP .证明:连结BC ,∵ AB =AC (已知),∴ ∠ABC =∠ACB (等边对等角),又∵ 点A 、D 在线段BC 的垂直平分线上(与线段两个端点的距离相等的点在这条线段的垂直平分线上),而两点确定一条直线, ∴ AD 就是线段BC 的垂直平分线,∴ PB =PC (线段垂直平分线上的点到线段两个端点的距离相等),∴ ∠PBC =∠PCB (等边对等角),(线段垂直平分线的性质)∴∠ABC-∠PBC=∠ACB-∠PCB(等式性质),即∠ABP=∠ACP.注本题若用三角形全等,至少需要证两次,现用线段垂直平分线的判定和性质,就显得比较简洁.例8 如下图,AB=AC,DE垂直平分AB交AB于D,交AC于E,若△ABC的周长为28,BC=8,求△BCE的周长.解:∵等腰△ABC的周长=28,BC=8,∴2AC+BC=28,∴AC=10,(理由是什么?)∵DE垂直平分AB,∴AE=BE,∴△BCE的周长=BE+EC+BC=AE+EC+BC=AC+BC=10+8=18.注本题考察线段垂直平分线的性质定理的运用,关键是运用线段垂直平分线的性质得到线段的等量关系.例9 已知,如下图,△ABC中,AB=AC,∠BAC=120°,EF为AB的垂直平分线,EF交BC于F,交AB于E,求证:FC BF21.证法一:连结AF,则AF=BF,∴∠B=∠FAB(等边对等角),∵AB=AC,∴∠B=∠C(等边对等角),∵∠BAC=120°,∴∠B=∠C=ο302180=∠-BAC(三角形内角和定理),∴∠FAB=30°,∴∠FAC=∠BAC-∠FAB=120°-30°=90°,又∵∠C=30°,(线段的垂直平分线是常见的对称轴之一)∴FCAF21=(直角三角形中30°角所对的直角边等于斜边的一半),∴FC BF21=.证法二:连结AF,过A作AG∥EF交FC于G,∵EF为AB的垂直平分线,∴AF=BF,又∵∠B=30°,∴∠AFG=60°,∠BAG=90°,∴∠A G B=60°,△AFG为等边三角形,又∵∠C=30°,∴∠G AC=30°,∴AG=GC,(构造等边三角形是证明线段相等的一种好方法)∴BF=FG=GC=FC21.例10 已知,如下图,AB⊥BC,CD⊥BC,∠AMB=75°,∠DMC=45°,AM=MD.求证:AB=BC.思路分析从结论分析,要证AB=BC,可连结AC,使BC与AB能落在一个三角形内,再看∠BAC 与∠BCA能否相等?证明:连结AC,交DM于H,∵∠AMB=75°,∠DMC=45°(已知),∴∠AMD=60°(平角定义)又∵AM=MD,∴△AMD为等边三角形(有一个角是60°的等腰三角形是等边三角形),∴AM=AD(等边三角形三边相等),∵CD⊥BC,∴∠DCM=90°,∵∠DMC=45°,∴∠MDC=45°(三角形内角和定理),∴CD=CM(等角对等边),∴AC是DM的垂直平分线(和线段两端点等距离的点,在线段的垂直平分线上),∴∠MHC=90°,∴∠HCM=45°,∵∠B=90°,∴∠BAC=45°,∴AB=BC(等角对等边).【典型热点考题】例1 如图7—15,等腰△ABC的对称轴与底边BC相交于点D,请回答下列问题:(1)AD是哪个角的平分线;(2)AD是哪条线段的垂直平分线;(3)有哪几条相等的边;(4)有哪几对相等的角.点悟:本题主要考查等腰三角形的所有特征.所以应该根据等腰三角形是轴对称图形的性质来解答问题.解:等腰三角形是轴对称图形,直线AD是它的对称轴.(1)AD是顶角∠BAC的平分线.(2)AD 是线段BC 的垂直平分线.(3)AB =AC ,BD =DC .(4)∠BAD=∠CAD,∠ABC=∠ACB,∠ADB=∠ADC.例2 如图7—16,已知PB⊥AB,PC⊥AC,且PB =PC ,D 是AP 上一点.求证:∠BDP =∠CDP.点悟:利用三角形全等证明两个角相等最直观,但因为图形具有明显的轴对称性,可以通过利用轴对称的性质而不用三角形全等同样可以,证明:∵ PB⊥AB,PC⊥AC,且PB =PC ,∴ ∠PA B =∠PAC(到角两边距离相等的点在这个角的平分线上).∵ ∠APB+∠PAB=90°,∠APC+∠PAC=90°,∴ ∠APB=∠APC.在△PDB 和△PDC 中,⎪⎩⎪⎨⎧=∠=∠=PD PD APCAPB PC PB ∴ △PDB≌△PDC(SAS)∴ ∠BDP=∠CDP.例3 如图7—17,先找出下列各图形中的轴对称图形,再画出它们的对称轴(有几条,画几条).点悟:先确定是否是轴对称图形,如果是轴对称图形,就将它们的对称轴全部画出来.解:(1)是,它有3条对称轴.(2)是,它有2条对称轴.(3)是,它有2条对称轴.(4)是,它只有一条对称轴.(5)它不是轴对称图形,故没有对称轴.(6)它是轴对称图形,有一条对称轴.图均略.例4 如图7—18,△ABC中,AB=AC,D在BC上,且BD=AD,DC=AC,将图中的等腰三角形全部写出来,并求出∠B的度数.点悟:图中共有三个等腰三角形,要将它们一一写出来,不能遗漏.在计算∠B的度数时,要充分利用三角形的一个外角等于它的两个不相邻的两个内角的和.解:图中共有三个等腰三角形,它们分别是:△ABC,△ABD,△CAD.设∠B=x ,则∠C=x =∠BAD,∠ADC=∠DAC=2x .∴ ∠B+∠C+∠BAC=∠B+∠C+∠BAD+∠DAC=x +x +x +2x =5x =180°∴︒=︒==∠365180x B .例5 如图7—19,在金水河的同一侧居住两个村庄A 、B .要从河边同一点修两条水渠到A 、B 两村浇灌蔬菜,问抽水站应修在金水河MN 何处两条水渠最短?点悟:先将具体问题抽象成数学模型.河流为直线MN ,在直线MN 的同一侧有A 、B 两点.在直线MN 上找一点P ,使P 点到A 、B 两点的距离之和为最小.这里就要充分运用轴对称图形的性质加以解决.解:如图7—19所示.作B 点关于直线MN 的对称点B′,连结AB′,与MN 相交于P ,则P 点即为所求.事实上,如果不是P 点而是P '点时,则连结B P 、P A ''和B P ''.由轴对称性知道,B P PB B P B P '=''=',,所以P '到A 、B 的距离之和,B P P A B P P A ''+'='+',而P 到A 、B 的距离之和B A B P AP PB AP '='+=+在'P B A '∆中,三角形两边之和大于第三边,B A B P P A '>''+'所以P 点即为所求的点.例6 如图7—20,已知,AD 为△ABC 的中线,且DE 平分∠BDA 交AB 于E ,DF 平分∠ADC 交AC 于F .求证:BE +CF >EF .点悟:遇到角平分线就可以考虑利用轴对称的性质或全等三角形的性质来解决问题. 证法一:在DA 上截取DN =DB .连结NE 、NF .则DN =DC .在△BDE 和△NDE 中,⎪⎩⎪⎨⎧=∠=∠=,,,DE DE NDE BDE ND BD ∴ △BDE≌△NDE.∴ BE=NE .同理可得,CF =NF .在△EFN 中,EN +FN >EF(三角形两边之和大于第三边).∴ BE+CF >EF .证法二:如图7—21,延长DE 至M ,使DM =ED ,连结CM 、MF .在△BDE 和△CDM 中,⎪⎩⎪⎨⎧=∠=∠=,,,DM DE CDM BDE CD BD∴ △BDE≌△CDM(SAS).∴ CM=BE(全等三角形对应边相等)又∵ ∠BDE=∠ADE,∠ADF=∠CDF,而∠BDE+∠ADE+∠ADF+∠CDF=180°∴ ∠ADE+∠ADF=90°,即∠EDF=90°.∴ ∠FDM=∠EDF=90°.在△EDF 和△MDF 中,⎪⎩⎪⎨⎧=∠=∠=,,,DF DF MDF EDF MD ED ∴ △EDF≌△MDF(SAS)∴ EF=MF(全等三角形对应边相等).在△CMF 中,CF +CM >MF ,∴ BE+CF >EF .点拨:本题综合考查角平分线,中线的意义,三角形全等及线段之间的等量关系,关键是要把题目中的已知条件集中巧妙应用.【易错例题分析】例已知如图7—22,在四边形ABCD中,BC>BA,AD=CD,BD平分∠ABC.求证:∠A+∠C=180°.证法一:如图7—22,过D作DE⊥AB交BA的延长线于E,DF⊥BC于F.∵ BD平分∠ABC,∴ DE=DF在Rt△EAD和Rt△FCD中,∵ AD=DC,DE=DF,∴ Rt△EAD≌Rt△FCD(HL)∴ ∠C=∠EAD,∵ ∠EAD+∠BAD=180°,∴ ∠A+∠C=180°.证法二:如图7—23,在BC上截BE=AB,连结DE,证明△ABD≌△EBD可得.证法三:延长BA到E,使BE=BC,连结ED,以下同证法二,如图7—24.警示:本题直接加以证明则不可能,需要巧妙的添加适当的辅助线,不会添加辅助线或添加不适当的辅助线则是最常见的误区.本题是用一个角的平分线上任意一点到角的两边距离相等的定理来证明线段相等,添加辅助线的方法有多种情况,应该很好感悟尽快掌握.。

相关文档
最新文档