浅谈氢化物发生-原子荧光光谱法HG-AFS

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

浅谈氢化物发生-原子荧光光谱法HG-AFS

9090722*

1、原理

原子荧光光谱分析法是20世纪六十年代中期以后发展起来的一种新的痕量分析方法。原子蒸气受到具有特征波长的光源照射后,其中一些自由原子被激发跃迁到较高能态,然后活回到某一较低能态(常常是基态)而发射出的特征光谱叫做原子荧光。各种元素都有起特定的原子荧光光谱,根据原子荧光强度的高低可测得试样中待测元素的含量,这就是原子荧光光谱分析(AFS)。

根据Beer-Lambert’s Law和泰勒级数展开,可得:在实验条件固定,原子化效率固定时,原子荧光强度I f 和低浓度的试样浓度C成正比。即:

I f =αC (α为常数)

所以,AFS法是一种痕量元素的分析方法。。

HG-AFS是基于以下反应将分析元素转化为室温下的气态氢化物:

NaBH4 + 3H2O + HCl == H3BO3 + NaCl + 8H

(2+n)H + E m+== EH n + H2

式中的E m+ 是指可以形成氢化物元素的离子,如砷、锑、铋、硒、碲、锡、锗等,另外汞可以形成气态原子汞,镉和锌可生成气态组分,均可以用本方法分析。生成的氢化物被引入特殊设计的石英炉中,在此被原子化,然后受光源激发产生原子荧光。

2、仪器装置

AFS法的仪器装置主要由3各部分组成,即激发光源、原子化器以及检测部分。检测部分又包括分光系统、光电转化装置以及放大系统和输出装置。

激发光源是AFS的主要部分,可用连续光源和锐线光源。前者稳定、操作简便、寿命长,能用于多元素分析,但检出限较差,常见的有氙弧灯。常见的锐线光源如高强度空心阴极灯等,具有辐射强度高、稳定、可得出更好的检出限等优点。利用氢化物法的原子化器,是一个电加热的石英管,当NaBH4与酸性溶液反应生成氢气并被氩气带入石英炉时,氢气被点燃并形成氩氢焰。

3、特点

HG-AFS法的特点主要体现在以下两个方面:

一、氢化物的发生进样具有一下有点:

(1)分析元素能够与可能引起干扰的样品基本分离,消除光谱干扰;

(2)与溶液直接喷雾进样相比,氢化物法能将待测元素充分预富集,进样效率接近100%;(3)连续氢化物发生装置易于实现自动化;

(4)不同价态的元素氢化物的生成条件不同,所以可据此进行价态分析。

二、HG-AFS法对于HG-AAS法具有以下优点:

(1)采用无色散系统的HG-AFS仪光路简单、光程短,因而光损失少,还可同时测量几条荧光谱线。此外,处于200~290nm的谱线,正是日盲光电倍增管灵敏度最好的波段,大大提高了方法的灵敏度。

(2)HG-AFS法可以同时测定两种或两种以上可形成氢化物的元素,不仅大大提高了工作效率,成本也大为降低。

(3)目前是用的原子化器有一下优点:有二次原子化的机会,石英炉内表面性质对原子化过程影响较小,不需经常处理,原子化充分等。

(4)在气相中,HG-AFS的干扰要比HG-AAS小很多,对于复杂的样品一般不经分离就可以直接测定。

(5)除上述所说优点外,HG-AFS法还有线性范围大,在As、Se 的测定上占有优势。

4、应用

HG-AFS法自提出以来,就因为其对于较难分析的无机污染物,如砷、锑、铋、硒、碲、锡、锗、汞等所显示出的独特优点而备受分析工作者的青睐。经过研究人员的不断努力,目前该方法已经成为食品卫生、饮用水、矿泉水中重金属检测的国家标准方法,在环境保护、水质分析、地质等领域有了很多应用。

在这里将列举几个典型的例子,用具体例子显现HG-AFS法的优点。

一、断续流动氢化物发生原子荧光法测定食品中的微量硒

微量元素硒在医学领域中有着十分重要的生物学意义,目前测硒的方法有比色法、电化学法、氢化物原子吸收法、氢化物原子荧光法、断续流动进样方式等。比色法灵敏度低,试剂不稳定;电化学方法干扰严重;氢化物原子吸收法灵敏度

高,但是线性范围窄;而AFS法具有灵敏度高、共存元素干扰小、线性范围宽、方法简便快速等优点;而断续流动进样方式的应用,克服连续进样浪费试液、流动注射装置复杂等缺点,利用计算机控制,具有稳定性好、精密度高、采样量小、易于操作等优点。【1】

基本原理是在盐酸介质中,用硼氢化钠还原四价硒为硒化氢,以氩气作载气将硒化氢从母液中分离,并导入石英炉原子化器中原子化。以硒特种空心阴极灯做激发光源,是硒原子发出荧光,荧光强度在一定范围内与硒的含量成正比。

二、HG-AFS法对中药材中Hg的形态的分析

不同形态汞的化合物毒性差别较大,有机汞较其相应价态无机汞的毒性大。除大分子络合物如蛋白质-汞外,比较稳定的小分子络合物,如半胱氨酸汞、谷胱甘肽汞等有显著的药理作用。上述络合物可能是朱砂在人体内的主要有效成分,而且其毒性远远小于处方中的HgCl2。中药中不同形态的汞含量较低,因此,利用AFS区分中药中的汞形态有重要意义。

有文献报道称,采用断续流动蒸气发生-AFs法成功地对牛黄清心复方剂中的原生药、残渣、悬浮态、可溶态无机汞和有机汞进行了测定,用硫脲一柠檬酸作掩蔽剂消除干扰。这种连续萃取方法分析水相和乙醇相中的汞,和传统的连续萃取法、聚焦微波萃取法和索氏萃取法相比较,HG—AFs测定不同形态的汞具有很高的灵敏度和准确性。【2】

5、问题与展望

根据文献报道,HG-AFS主要在中药中砷、汞、硒、镉、铅、锑和锗的分析中得到了应用,但由于许多试样(如中药)中金属元素含量较低,且基体较为复杂,还需要进一步提高检测方法的灵敏度和重现性;而对中药中铋、锡和碲等元素的分析尚未见报道,其应用技术还需进一步研究。

样品的污染和损失是元素形态分析中的一个共同问题。一方面在待测样品的制备、分离过程中,由于样品容易受到试剂和环境中的元素污染,使检测误差增大;另一方面由于微量元素与有机配体的结合较弱,在处理和分离过程中容易发生元素吸附或配体交换等现象,造成微量元素的损失而使回收率降低。而微型分离技术及联用技术的发展和应用,将有望解决这些问题。

将电化学氢化物发生技术与AFS联用,用于分析中药中的微量金属元素,可

相关文档
最新文档