自动控制原理4 第一节第二节根轨迹绘制的基本准则1

合集下载

自动控制原理 根轨迹法

自动控制原理 根轨迹法

n
i
|
注意
• 相角方程是决定系统闭环根轨迹的充分 必要条件 • 用相角方程绘制根轨迹; • 模值方程主要用来确定已知根轨迹上某 一点的K*值 • 例4-1,4-2
4.2 根轨迹绘制的基本法则
• 法则1: 根轨迹的分支数:根轨迹在[s]平面上的分支数 等于闭环 特征方程的阶数n,也就是分支数与闭环极点的 数目相同。
q
h
f
l
结论:1 零点、 2 极点、3 根轨迹增益
b0 ( s z1 )(s z 2 ) ( s zm ) G( s) H ( s ) K* a0 ( s p1 )(s p2 ) ( s pn )
• 根轨迹增益:
(s z ) (s p )
• 法则6: 根轨迹的起始角(从极点pk)和终止角(到零点zk) :
起始角:
例2 证2
m n
pk ( 2k 1) ( pk z j ) ( pk pi )
j 1 i 1 i k
终止角:
zk ( 2k 1) ( z k p i ) ( z k z j )
i
nm

0 ( 1) ( 2) 1 30
a
(2k 1)π π π , , π nm 3 3
d1 0.42, d 2 1.58(舍去)
s j
1 1 1 0 d d 1 d 2
1 G(s)H(s) 0即(s 3 3s 2 2s K * ) j 3 3 2 2 j K * 0
s2

0
常规根轨迹的绘制法则(P138) 终止于开环零点或。 1 根轨迹起始于开环极点或, 根轨迹对称实轴 2 根轨迹的条数为特征根的个数, 3 ∣n-m∣条渐近线对称于实轴,均起于实轴上的σa 点,

自动控制原理-第4章 根轨迹

自动控制原理-第4章 根轨迹

又 ∵ 根轨迹方程
n
n
(spi) sn( pi)sn 1L
n
m
Kim 1
i 1 m
snm( pi zj)snm 1L
(szj) sm( zj)sm 1L
i 1
j 1
j 1
j 1
n
m
∴ sn-m-1项系数对应相等
(nm)(a) pi zj
n
m
i1
j1
(2k 1) ,
nm
pi zi
闭环零、极点与开环零、极点的关系
闭环传递函数 (s) G(s)
1G(s)H(s)
开环传递函数 Gk(s)G(s)H(s)
f
l
(s zi)
(s z j)
G (s) KG
i 1 q
H
(s)
K
H
j 1 h
(s pi)
(s p j)
i 1
j 1
f
l
(szi)(szj)
Gk(s)G(s)H(s)K
如何应用根轨迹方程在[s]平面上找到闭环极点。
解: G ( s ) K 0 .5 K K * s(2 s 1) s(s 0.5) s(s 0.5)
K * 0.5 K 开 环 极 点 p1 0, p2 0.5 无开环零点 根据相角方程
s2
p2 4 5 o -0.5 s1
135o
p1 0
m
(s z j)
K j1 n
1
(s pi)
i1
m
n
(szj) (spi)(2k1)
j1
i1
k0,1,2,L
(1)相角条件是决定闭环根轨迹的充要条件; 在测量相角时,规定以逆

自动控制原理第四章 根轨迹

自动控制原理第四章  根轨迹
S ( S 2 )( S 4 )
① ∵有三个极点,根轨迹 有三条分支 ② ∵n=3, m=2 ∴有3-2=1条根 轨迹→∞, 2条终止于开环零点。 ③在实轴上不同段上取试 验点
-4 -3 -2 -1

×
o
×
o ×
σ
§4-2绘制根轨迹的基本规则
五.根轨迹的渐近线
1.根轨迹中(n-m)条趋向无穷远处的分支的 渐近线的倾角为
1 1
在根轨迹与虚轴的交点处,在系统中出现 虚根。因此可以根据这一特点确定根轨迹与虚 轴的交点。可以用 s j 代入特征方程求解, 或者利用劳斯判据确定。
§4-2绘制根轨迹的基本规则 续例4-2,将 s j 代入特征方程。
j ( j 1 )( j 2 ) K j ( j
§4-1根轨迹的基本概念 将开环传递函数写成下列标准的因子式
K1 G (S )H (S )

j 1 n
m
(s z
j
)

i 1
(s pi )
注意这个形式和求 稳态误差的式子不 同,需变换成这种 形式.
z j -开环零点.
p i -开环极点.
此时,幅值条件和相角条件可写成
K
1

j 1 n

s 2 .3
2 . 3 0 . 7 1 . 64 1 . 64 4 . 33
6.求根轨迹在
p3
的出射角
p 180 ( 135 90 26 . 6 ) 431 . 6
( 减去 360 ,为 71 . 6 )
§4-3反馈控制系统的根轨迹分析 7.求根轨迹与虚轴的交点.
K1=6

自动控制原理第第四章 线性系统的根轨迹法

自动控制原理第第四章 线性系统的根轨迹法

2
自动控制原理
§4.1 根轨迹的基本概念
例:开环传递函数
Gs
k1
ss
a
开环系统两个极点为:P1 0, P2 a R(s)
闭环传递函数为:
GB s
s2
k1 as
k1
-
k1
C(s)
ss a
闭环特征方程: s2 as k1 0
闭环特征根:s1,2
a 2
a 2
2
k1
(闭环极点)
3
自动控制原理
在p5附近取一实验点sd, 则∠sd-p5可以认为是p5点的出射角 Sd Z Sd P1 Sd P2 Sd P3 Sd P4 Sd P5 1800
近似为 P5 Z P5 P1 P5 P2 P5 P3 P5 P4 p 1800
p Sd P5 1800
法则4 实轴上存在根轨迹的条件——
这些段右边开环零极点个数之和为奇
数。
m
n
证明:根据相角条件 S Z j S Pi 18002q 1
j 1
i 1
p4
j s平面
例:sd为实验点
p3
z2 sd
p2 z1 p1
p5
① 实验点sd右侧实 轴上零极点提供 1800相角
③ 共轭复零点,复极点提供的相角和为 3600。
2
s1=-1.172,s2=-6.828
33
自动控制原理
法则6 开环复数极点处根轨迹出射角为
p 1800
开环复数零点处根轨迹入射角为:
Z 1800
其中 z p(不包括本点)
34
自动控制原理
j p5
p5
p3 p3
p2

根轨迹法(自动控制原理)ppt课件精选全文完整版

根轨迹法(自动控制原理)ppt课件精选全文完整版
1 K (s z1 )( s z2 )....( s zm ) 0 (s p1 )( s p2 )....( s pn )
课程:自动控制原理
第4章 根轨迹法
➢ 以K为参变量的根轨迹上的每一点都必须满足以上方程, 相应地,称之为‘典型根轨迹方程’。
也可以写成
m
n
(s zl ) K (s pi ) 0
可见,根轨迹可以清晰地描绘闭环极点与开环增益K之间的 关系。
课程:自动控制原理
第4章 根轨迹法
2.根轨迹的基本条件
❖ 考察图示系统,其闭环传递函数为:
Y(s) G(s) R(s) 1 G(s)H(s)
闭环特征方程为:
1 G(s)H(s) 0
➢ 因为根轨迹上的每一点s都是闭环特征方程的根,所以根轨 迹上的每一点都应满足:
l 1
i 1
对应的幅值条件为:
相角条件为:
n
( s pi ) K i1
m
(s zl )
l 1
m
n
(s zl ) (s pi ) (2k 1)180
k 1,2,
l 1
i 1
课程:自动控制原理
第4章 根轨迹法
❖ 上述相角条件,即为绘制根轨迹图的依据。具体绘制方法 是:在复平面上选足够多的试验点,对每一个试验点检查 它是否满足相角条件,如果是则该点在根轨迹上,如果不 是则该点不在根轨迹上,最后将在根轨迹上的试验点连接 就得到根轨迹图。
显然,位于实轴上的两个相邻的开环极点之间一定有分离 点,因为任何一条根轨迹不可能开始于一个开环极点终止 于另一个开环极点。同理,位于实轴上的两个相邻的开环 零点之间也一定有分离点。
课程:自动控制原理
第4章 根轨迹法

自动控制原理第四章 根轨迹法PPT

自动控制原理第四章 根轨迹法PPT

第二节 绘制根轨迹的基本方法
四、根轨迹的渐近线
趋于无穷远处的根轨迹的渐近线 由下式确定 渐近线与实轴的夹角: +(2k+1)π K= 0,1,2,3 θ= n-m 渐近线与实轴的交点: σ=
pj zi ∑ ∑ i =1 j=1 n-m
n m
第二节 绘制根轨迹的基本方法
例 已知系统的开环传递函数,试确定 系统的根轨迹图。 Kr G(s)H(s)= s(s+1)(s+2) 渐近线与实轴的夹角 : jω 解: 1)开环零、极点: +(2k+1)π O+ O p =-3 p =0 p =-2 + 180 60 = , θ= 1 3 2 3 p2 60 p p3 2 )实轴上的根轨迹段: 渐近线与实轴的交点 : 0 1 -1 -2 p ~ p1~p-1-2 3 -1 = σ= 2 3 n-m= 3 3 4)根轨迹的渐近线: )系统的根轨迹
‫ב‬-
‫ב‬
‫ב‬
‫ב‬
第二节 绘制根轨迹的基本方法
2) <T (1)开环零、极点分布 1 1 p1=0 p2=T z1= (2) 实轴上根轨迹段 p1~p2 z1~-∞ ‫ב‬ ‫ב‬

z1
1 ‫ב‬p2 1 -T p
1 0
(3)系统的根轨迹
p1和p2为根轨迹 的起点 Z1和-∞为根轨迹 的终点
第二节 绘制根轨迹的基本方法
五、根轨迹的分离点和会合点
闭环特征方程的根在 S 平面上的重合 闭环特征方程式: K B ( s)+A(s)=0 r 注意:只有位于根轨迹上的重根才是 点称为根轨迹的分离点或会合点。 重根必须同时满足以下两式 分离点或会合点。 一般将根轨迹 KrB'(s)+A'(s)=0 KrB(s)+ A(s)=0 若不在根轨迹上的分离点或会 离开实轴进入复平面的点称为分离点 即 A'(s) 合点应该舍去。 dB ( s ) dA ( s ) 离开复平面进入实轴的点称为会合点 Kr =K + =0 B'(s) ds ds r 设系统的开环传递函数为 解上式得 Kr B(s) G H((s A (s)B' s)= )=A' A((s s))B(s)

自动控制原理第四章根轨迹法


第四章 根轨迹法
第一节 根轨迹与根轨迹方程 根轨迹 系统的某个参数(如开环增益K)由0到∞变化时, 闭环特征根在S平面上运动的轨迹。
例: GK(S)= K/[S(0.5S+1)] = 2K/[S(S+2)] GB(S)= 2K/(S2+2S+2K) 特征方程:S2+2S+2K = 0
-P1)(S-P2)…(S-Pn)
单击此处可添加副标题
当n>m时,只有m条根轨迹趋向于开环零点,还有(n-m)条? m,S→∞,有: (S-Z1)(S-Z2)…(S-Zm) -1 -1 ———————-— = —— = —— P1)(S-P2)…(S-Pn) K* AK 可写成:左边 = 1/Sn-m = 0 当K=∞时,右边 = 0 K=∞(终点)对应于S→∞(趋向无穷远). 即:有(n-m)条根轨迹终止于无穷远。
分解为:
03
例:GK(S)= K/[S(0.05S+1)(0.05S2+0.2S+1)] 试绘制根轨迹。 解: 化成标准形式: GK(S)= 400K/[S(S+20)(S2+4S+20)] = K*/[S(S+20)(S+2+j4)(S+2-j4)] K*=400K——根迹增益 P1=0,P2=-20,P3=-2+j4,P4=-2-j4 n=4,m=0
一点σa。
σa= Zi= Pi
ΣPi-ΣZi = (n-m)σa
σa= (ΣPi-ΣZi)/(n-m)
绘制根轨迹的基本法则
K*(S-Z1)(S-Z2)…(S-Zm)
—————————— = -1 (S-P1)(S-P2)…(S-Pn)

孙炳达 自动控制原理第4章


D(s) Kg N(s) 0
K g1 2.74
j
K g 2 0.06
S1=-1.67 Kg1=2.74
σ
S1=-0.33 Kg1=0.06
15
7.渐近线
根轨迹沿渐近线倾角方向趋向无穷远的直线。
(1)渐近线条数:n-m条 (2)渐近线会与实轴交于一点(交点): 坐标为(-σ,j0)
n
m
( p0 ) (z j )
去判断;系统静态性能,由“系统型号” 即开环极点的个数和放大系数值决定, 在根轨迹图中“坐标原点上的开环极点个数”,就反映了“系统型号” ;利用根轨 迹分析动态特性时,往往采用“闭环主导极点”的思想,即认为系统的性能主要 由一对“闭环主导极点” 来决定,从而利用二阶系统相关的公式去分析或综合 系统。下面通过例题说明。
1948年伊文思根据反馈系统开环和闭环传递函数之间的关系,提出了 求解特征方程根的图解方法——根轨迹法。根轨迹法是分析、设计线性定 常系统的一种图解方法。
2
第一节 根轨迹的基本概念
定义: Gk(s)的某个参数由0→∞时,系统的闭环特征根在S平 面上的变化轨迹。
例 已知系统的结构图如下图所示,请绘出K由0→∞时的根轨迹。
5
一般而言,绘制根轨迹时的可变参量可以是系统的任意参量。但 最常用的可变参量是系统的开环传递函数Kg(也称为根轨迹增益)
Kg——常规根轨迹 Kg以外的参数——参量根轨迹 以上二阶系统的根轨迹可以用解析法来求得,但对于高阶系统来说, 解析法就不适用了,工程上常采用图解的方法来绘制。
6
第二节 绘制根轨迹的基本条件和基本规则
i1
j 1
nm
180 (2k 1) nm
16
例 已知系统的开环传递函数如下所示,请求出根轨迹的渐近线。

自动控制原理

已知系统的开环传递函数,试确定实轴上的根轨迹。
[-4,-6] 右侧实零、极点数=7。
渐近线与实轴的倾角(k=0,1,2,…) :
渐近线与实轴交点的坐标值:
沿着渐近线趋于无限远处, 当系统n>m时,有(n-m)条根轨迹分支终止于无限远零点。 渐近线也对称于实轴(包括与实轴重合)。
五、根轨迹的渐近线
证明
根轨迹上,靠近起点p1处取一点s1 相角方程 s1p1 起始角p
四条分支
起始点p1=0、 p2、3=―0.5+j1.5 、 p4=―2.5
终止点z1=-1.5、z2,3 =-2±j、-∞
实轴上0~-1.5和-2.5~-∞两区段是根轨迹
取k=0
p3和p2为共轭复数, 根轨迹起始角对称。

两式相除

即得
解出s1,即为分离点b
3
2
1
4
5
6
已知某一系统的开环零极点分布,试概略画出其根轨迹。
规则1、2、3
根轨迹有三条分支,分别起始于开环极点0、-2、-3,终止于一个开环有限零点-1和二个无限零点。 根轨迹对称于实轴。
规则4实轴上0到-1和-2到-3两个区域段为根轨迹
规则5根轨迹有两条渐近线(n-m=2), 令k=0
K=0时
两个负实根
K值增加
相对靠近移动
离开负实轴,分别s=-1/2 直线向上和向下移动。
一对共轭复根
根轨迹图系统的相关动静态性能信息
过阻尼系统,阶跃响应为非周期过程;
临界阻尼系统,阶跃响应为非周期过程;
欠阻尼系统,阶跃响应为阻尼振荡过程。
1)当K值确定之后,根据闭环极点的位 置,该系统的阶跃响应指标便可求出。
根轨迹的分离点 证明 例 证明 例

自动控制原理4.2 绘制根轨迹的基本法则


§4—2 绘制根轨迹的基本法则
绘制根轨迹的基本法则(续)
根轨迹在s平面上的分支数=闭环特征方程的阶 数。即:分支数=闭环极点数=开环极点数n(n≥m) 或=开环零点数m(m>n)。
二、根轨迹的起点和终点:
根轨迹起始于开环极点,终止于开环零点。 若n>m,则有(n-m)条终止于无穷远处。 若m>n,则有(m-n)条起始于无穷远处。
同理可得 :
zk
2k 1

n

z
k
i 1

pi
m


zk
j 1
zj
jk
共轭复数的开环零极点才需计算出射角和入射角,
实数开环零极点不用计算,一般为:0°, 180°,
±90°, ±60°与±120°, ±45°与±135°等.
§4—2 绘制根轨迹的基本法则
sd sd
1 2

0.473
3.527舍
j
-5
sd2
sd1
-1
0
§4—2 绘制根轨迹的基本法则
六、根轨迹与虚轴的交点:
根轨迹与虚轴相交,表示闭环极点中有一部分 位于虚轴上,即闭环特征方程有纯虚根±jω, 系统 处于临界稳定。
1、将s j,代入1 G( j)H( j) 0
3
2

Kg

0
Kg

6,
Kc 3
2、用劳斯判据:
§4—2 绘制根轨迹的基本法则
s3 1
2
s2 3
Kg
s1 6 K g
0
3
s0 K g
当 s1 行 等 于0时 , 可 能 出现共轭虚根,令
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

对如下结构图的系统:
R(s)
C(s)
G(s)
-
(s) G(s) G(s) 1 G(s)H (s) 1 Gk (s)
令闭环传递函数的分母为零,
得闭环系统的特征方程
H (s)
1 Gk (s) 0
若用开环传递函数来讨论,则满足 Gk (s) 1 的点就是闭环系 统特征方程的根。也就是说满足 Gk (s) 1的s值必定是根轨迹 上的点,故称 Gk (s) 1为根轨迹方程。若令
渐近线与实轴的交点: pi zi 1 5 2
nm
30
渐近线与实轴的倾角: q (2k 1) 60,180
nm
零极点分布和渐近线(红线)
如图所示。
5
规定:相角逆时针为正,顺时针为负。
18
180
60
2
1
0
60
4.2 根轨迹绘制的基本准则
实轴上的根轨迹
6、实轴上的根轨迹:
实轴上具有根轨迹的区间是:其右方开 环系统的零点数和极点数的总和为奇数。
z1
p3
q3
q1
[证明]:例如在实轴上有两个开环极点-p1、-p2, 复平面上有一对共轭极点-p3、 -p4和一对共轭零
点-z1 、 -z2 。
先看试验点s1点: ①成对出现的共轭极点-p3、 -p4对实轴上任意试 探点构成的两个向量的相角之和为0°;
p2
s2
s1
p 1
q4
z2
q
2
p4
迹8 上各点的Kg值时,才使用幅值条件。
4.1 根轨迹的基本概念
例:如图所示二阶系统,
R(s) -
K
C(s)
s(0.5s 1)
闭环传递函数:
(s)
s2
2K 2s
2K
特征方程为: s2 2s 2K 0
特征根为: s1,2 1 1 2K
采用试探法可以确定根轨迹上的点。 在实际绘制根轨迹时不采用试探法。 而是应用以根轨迹方程为基础建立起 来的绘制根轨迹的基本法则。
(1 x 1)
2!
I!
当 x 1时,(1 x)K 1 Kx ,令 x an1 bm1 , K 1
s
nm
15
s(1
n
1 m
an1
bm1 ) s
(K g
1
) nm
4.2 根轨迹绘制的基本准则
s
an1 bm1 nm
1
(K g ) nm
根轨迹的渐近线
设s=x+jy, 利用-1=cos(2k+1)π+j sin(2k+1)π,并根据德莫弗(De Moive)代数定理(cosq +j sinq )n= cos(nq )+j sin(nq ),上式可写为
90
90 0 nm2
180 60
0
n m 3 60
180
45
45 0
nm4
4.2 根轨迹绘制的基本准则
[例4-2]系统开环传递函数为:Gk (s)
s(s
Kg 1)( s
5)
,试确定根
轨迹支数,起点和终点。若终点在无穷远处,求渐近线与实轴
的交点和倾角。
[解]:根轨迹有3支。起点为开环极点 p1 0, p2 1, p3 5, 无有限值零点,所以三支根轨迹都趋向无穷远。
其中相角条件是零点到根轨迹上的某点的向量的相角之和减去极点
到根轨迹上的某点的向量的相角之和等于180度的奇数倍,因此也称
满足上述条件的根轨迹为180度等相角根轨迹。
根据上述两个条件,可以完全确定s平面上的根轨迹和根轨迹上对应
的Kg值。应当指出,相角条件是确定s平面上的根轨迹的充分必要条件。 这就是说,绘制根轨迹时,只需要使用相角条件;而当需要确定根轨
根轨迹的渐近线
snm (an1 bm1)snm1 Kg
当Kg→∞,由于m<n,故s→∞满足根轨迹方程,上式近似为
snm (an1 bm1)snm1 Kg
snm
(1
an1
s
bm1
)
Kg
两边开n-m次方
s(1
an1
bm1
)
1 nm
s
1
(K g ) nm
利用二项式定理
(1 x)K 1 Kx K (K 1) x2 K (K 1) (K I 1) xI
4.1 根轨迹的基本概念
根轨迹的幅值和相角条件
由于Gk (s)是复数,上式可写成 : | Gk (s) | Gk (s) 1
m
| (s zi ) |

K i1 gn
1
|(s pj) |
m j1
n
(s zi ) (s p j ) (2k 1),k 0,1,2...
i 1
j 1
上述两式分别称为满足根轨迹方程的幅值条件和相角条件。
20
4.2 根轨迹绘制的基本准则
实轴上的会合点和分离点
7、根轨迹的会合点和分离点:
若干根轨迹在复平面上某一点相遇后又分开,称该点为分 离点或会合点。
如图所示某系统的根轨迹,由开环极
点 p1, p2 出发的两支根轨迹,随着
Kg
B
Kg Kg 0 Kg 0
z p2 A p1
K g 的增大在实轴上A点相遇再分离进 入复平面。随着K g 的继续增大,又在
j 1
Kg K g
我们称系统有n-m个无限远零点。有限值零点加无穷远零点 的个数等于极点数。
那么,n-m支根轨迹是如何趋于无限远呢?
13
4.2 根轨迹绘制的基本准则
根轨迹的渐近线
5.根轨迹的渐近线: 若开环零点数m小于开环极点数n,则当系统的开环增益
Kg→∞时趋向无穷远处的根轨迹共有n-m条。这n-m条根轨迹 趋向无穷远的方位可由渐近线决定。
上的箭头表示随着K 值的增加,根轨迹
的变化趋势,而标注的数值则代表与闭
环极点位置相应的参数K 的数值。
4
根轨迹定义
j
K 5
3
2
K 1
1
K 0
K 0
2 1
0
K 1 K 0.5 1
2
K 5
3
4.1 根轨迹的基本概念
根轨迹图直观全面地描述了参数K 对闭环特征根分布
的影响。可据此分析系统性能。
9
根轨迹的幅值和相角条件
j
3
2 1
2 1
0
1
2
3
第二节 根轨迹绘制的基本准则
10
4.2 根轨迹绘制的基本准则
根轨迹的连续性和对称性
用解析法或试探法绘制根轨迹很烦琐。下面讨论的内容通 过研究根轨迹和开环零极点的关系,根轨迹的特殊点,渐近线 和其他性质将有助于减少绘图工作量,能够较迅速地画出根轨 迹的大致形状和变化趋势。以下的讨论是针对参数 Kg 的180度 根轨迹的性质。
由根轨迹方程可得:
n
(s p j )
j 1 m
Kg
(s zi )
n
i 1
(s p j )
j 1
m
(s zi )
sn an1sn1 a1s a0 sm bm1sm1 b1s b0
Kg
i 1
n
m
式中 an1 p j ,bm1 zi
j 1
i 1
14
4.2 根轨迹绘制的基本准则
x
jy
an1 bm1 nm
K
1 nm g
c
os
(2k n
1)
m
j sin
(2k 1)
nm
x
an1 bm1 nm
1
K
n g
m
cos
(2k 1)
nm
y
1
K
nm g
sin
(2k 1)
nm
y x an1 bm1
பைடு நூலகம்g (2k 1)
nm
nm
16
4.2 根轨迹绘制的基本准则
根轨迹的渐近线
y tg (2k 1) x an1 bm1 tg (2k 1) x
m
(s zi )
Gk (s) Kg
i 1 n
(s pj)
j 1
6
m
(s zi )

Kg
i1 n
1 为根轨迹方程。
(s pj)
j1
4.1 根轨迹的基本概念
根轨迹方程
m
(s zi )
Kg
i 1 n
1
(s pj)
j1
式中,-zi、-pj为已知的开环零极点;Kg从零变到无穷。
7
1、根轨迹的连续性:
闭环系统特征方程的某些系数是增益 K g的函数。当K g从0到 无穷变化时,这些系数是连续变化的。故特征方程的根是连续 变化的,即根轨迹曲线是连续曲线。
2、根轨迹的对称性:
一般物理系统特征方程的系数是实数,其根必为实根或共轭 复根。即位于复平面的实轴上或对称于实轴。
11
4.2 根轨迹绘制的基本准则
19
4.2 根轨迹绘制的基本准则
实轴上的根轨迹例题
[例4-3]设系统的开环传递函数为:Gk (s)
试求实轴上的根轨迹。
s2 (s
Kg (s 2) 1)(s 5)(s
10)
[解]:零极点分布如下:
10
5
2 1 0
红线所示为实轴上根轨迹,为:[-10,-5]和[-2,-1] 。注意
在原点有两个极点,双重极点用“ ”表示。
根轨迹的支数和起始点
3、根轨迹的支数: n阶特征方程有n个根。当 K g从0到无穷大变化时,n个根在复
平面内连续变化组成n支根轨迹。即根轨迹的支数等于系统阶数。
相关文档
最新文档