必修教案222对数函数及其性质(二)

合集下载

《2.2.2对数函数及其性质》教案

《2.2.2对数函数及其性质》教案

对数函数及其性质一、教材分析本节课选自《普通高中课程标准数学教科书-必修1》(人教A版)《2.2.2对数函数及其性质》共3课时,本节课是第1课时。

本节课主要内容是学习对数函数的定义、图象、性质及初步应用。

对数函数是继指数函数之后的又一个重要初等函数,无论从知识或思想方法的角度对数函数与指数函数都有许多类似之处。

与指数函数相比,对数函数所涉及的知识更丰富、方法更灵活,能力要求也更高。

学习对数函数是对指数函数知识和方法的巩固、深化和提高,也为解决函数综合问题及其在实际上的应用奠定良好的基础。

二、学生学习情况分析1.有利条件本节课是在学生学完了对数及其运算、并初步接触了一些对数应用问题的基础上进行的,同时前面指数函数的研究也为本课学习提供了范例,这些都是学生学习本节课的有利条件。

2.不利条件学生初中也已经学习过整数指数幂及其运算,因些学生对指数函数的学习有一定的基础可寻。

但对数和对数函数,对学生来说都是新知识,对学生来说更抽象和陌生,同时前面3节课的大量的对数运算公式的学习,也可能使学生对本节课的学习产生一些为难情绪。

克服不利因素的关键是紧紧抓住指数与对数的联系,利用它们在形式上的相互转化,并结合函数的概念进行教学。

三、教学目标分析课标要求:初步理解对数函数的概念,体会对数函数是一类重要的函数模型;能借助计算器或计算机画出具体对数函数的图像,探索并了解对数函数的单调性与特殊点。

1.知识与技能目标⑴理解指数函数与对数函数的内在关系;⑵掌握对数函数的概念、图象和性质;2.过程与方法目标⑴能借助计算器或计算机画出具体对数函数的图象,引导学生结合图象类比指数函数,探索研究对数函数的性质.⑵通过具体实例,直观了解对数函数模型所刻画的数量关系,体会对数函数是一类重要的函数模型.3.情感、念度与价值观目标在指数函数与对数函数相互类比与转化的学习中,体会转化的转想和对立统一的辩证关系。

四、教学重点、难点分析重点:对数函数的定义、图象和性质难点:对数函数概念的理解,底数a的范围对对数函数图象、性质的影响.突破难点的关键:从指数函数与对数函数联系的角度来引出和分析对数函数的概念,发挥数形结合的直观特点,进行操作、猜想的验证,在学生原有的知识基础上来进行本节课的教学。

高中数学必修一课件:2.2.2 对数函数及其性质(二)

高中数学必修一课件:2.2.2 对数函数及其性质(二)

loga M loga N loga MN
判断对数函数奇偶性: f ( x) f ( x) 0或f ( x) f ( x) 0
(2) g ( x) lg
解:

x 1 x
2

x2 1 x
2 2
定义域为 R
2 lg ( x ) 1 x lg g ( x) g ( x)
3 2
3
u g ( x) x ax a 在 (, 1 3)上是减函数,
2 且当 x (, 1 3) 时, g ( x) x ax a 0
2 f ( x ) log x 0 a 1 时, a 4x 3
在 (3, ) 上递减, 在 (, 1) 上递增
2 f ( x ) log ( x ax a) 在区间 (, 1 3) 6 、若 2
上是增函数, 求 a 的取值范围?
解: 由于 y log 2 u 在 (0, )上是减函数, 则
解之,得函数定义域为
1 3 {x | x 2且x 1且x } 2 2
2 y log ( x 4 x 7) 的值域? 2:求 3, 定义域: R 值域:
{x | x R且x 2} 值域: R 定义域:
2″
y log 2 ( x 2 4 x 4)

求 a的取值范围?
二次项系数 是否为0?
解得 0 a 1
故函数定义域为R时, 0 a 1.
改变条件为:
3′已知函数 若 值域 为 值域 y lg(ax2 2ax 1), 求 a 的取值范围?
R
解: (1) a 0 时, y lg 1 ,此时不 × 满足题设条件 ; (2) a 0 时,设 u ax2 2ax 1, 因为函数 y的值域是R, 则 a 0 解得 a 1 4a2 4a 0

高中高一数学2.2.2对数函数及其性质教案2新人教A版必修1

高中高一数学2.2.2对数函数及其性质教案2新人教A版必修1

对数函数及其性质教学设计1. 教学方法建构主义学习观,强调以学生为中心,学生在教师指导下对知识的主动建构。

它既强调学习者的认知主体作用,又不忽视教师的指导作用。

高中一年级的学生正值身心发展的过渡时期,思维活跃,具有一定的独立性,喜欢新鲜事物,敢于大胆发表自己的见解,不过思维还不是很成熟.在目标分析的基础上,根据建构主义学习观,及学生的认知特点,我拟采用“探究式...”教学方法。

将一节课的核心内容通过四个活动的形式引导学生对知识进行主动建构。

其理论依据为建构主义学习理论。

它很好地体现了“学生为主体,教师为主导,问题为主线,思维为主攻”的“四为主”的教学思想。

2. 学法指导新课程强调“以学生发展为核心”,强调培养学生的自主探索能力与合作学习能力。

因此本节课学生将在教师的启发诱导下对教师提供的素材经历创设情境→获得新知→作图察质→问题探究→归纳性质→学以致用→趁热打铁→画龙点睛→自我提升的过程,这一过程将激发学生积极参与到教学活动中来。

3. 教学手段本节课我选择计算机辅助教学。

增大课堂容量,提高课堂效率;激发学生的学习兴趣,展示运动变化过程,使信息技术真正为教学服务.4. 教学流程创设情境获得新知作图察质问题探究归纳性质由“考古问题”引入对数函数定义列表、描点、连线底数a对图象的影响分析归纳函数性质学以致用例题分析解答二、形成概念、获得新知 定义:一般地,我们把函数叫做对数函数。

其中x 是自变量,定义域为例1求下列函数的定义域: (1);(2).解:(1)函数的定义域是。

(2)函数的定义域是。

归纳:形如的的函数的定义域要考虑— 三、探究归纳、总结性质 活动1:小组合作,每个组内分别利用描点法画和的图象,组长合理分工,看哪个小组完成的最好。

选取完成最好、最快的小组,由组长在班内展示。

活动2:小组讨论,对任意的a 值,对数函数图象怎么画? 教师带领学生一起举手,共同画图。

活动3:对a >1时,观察图象,你能发现图象有哪些图形特征吗?然后由学生讨论完成下表左边: 函数的图象特征 函数的性质 图象都位于y 轴的右方 定义域是图象向上向下无限延展 值域是R图象都经过点(1,0)当x=1时,总有y=0log a y x =≠(a>0,且a 1)()0,+∞2log a y x =log (4)a y x =-200x x >∴≠∴2log a y x ={}0x x ≠404x x ->∴<∴log (4)a y x =-{}4x x <log ()a y f x =()0.f x >23log ,log y x y x ==1123log ,log y x y x ==log a y x =log a y x =()0,+∞))注:底数非常数,要分类讨论当a>1时,且3.4<8.50.3log y x =————————————————以下无正文————————————————以上高中数学必修教学课程教案均为word文字可编辑版,如果刚好符合你要求,欢迎下载使用。

高中数学 2.2.2对数函数及其性质(二)全册精品教案 新人教A版必修1

高中数学 2.2.2对数函数及其性质(二)全册精品教案 新人教A版必修1

2.2.2 对数函数及其性质(二)(一)教学目标1.知识技能(1)掌握对数函数的单调性.(2)会进行同底数对数和不同底数的对数的大小比较.2.过程与方法(1)通过师生双边活动使学生掌握比较同底对数大小的方法.(2)培养学生的数学应用的意识.3.情感、态度与价值观(1)用联系的观点分析、解决问题.(2)认识事物之间的相互转化.(二)教学重点、难点1、重点:利用对数函数单调性比较同底对数大小.2、难点:不同底数的对数比较大小.(三)教学方法启发式教学a>和利用对数函数单调性比较同底对数的大小,而对数函数的单调性对底数分1<<两种情况,学生应能根据题目的具体形式确定所要考查的对数函数;如果题目中a01含有字母,即对数底数不确定,则应该分两种情形讨论.对于不同底数的对数大小的比较,应插入中间数,转化为两组同底数的对数大小的比较,从而使问题得以解决.(四)教学过程;;堂评价,师生共同讨论完成第四题)判断函数)上是减函数还是增函数?≠1.)是奇函数;.备选例题例1 比较下列各组数的大小:(1)log0.7 1.3和log0.71.8;(2)log35和log64.(3)(lg n)1.7和(lg n)2 (n>1);【解析】(1)对数函数y= log0.7x在(0, +∞)内是减函数. 因为1.3<1.8,所以log0.71.3>log0.71.8.(2)log35和log64的底数和真数都不相同,需找出中间量“搭桥”,再利用对数函数的单调性即可求解.因为log35>log33 = 1 = log66>log64,所以log35>log64.(3)把lg n看作指数函数的底,本题归为比较两个指数函数的函数值的大小,故需对底数lg n讨论.若1>ln n>0,即1<n<10时,y = (lg n)x在R上是减函数,所以(lg n)1.7>(lg n)2;若lg n>1,即n>10时,y = (lg n)2在R上是增函数,所以(lg n)1.7<(lg n)2.若ln n = 1,即n = 10时,(ln n)1.7 = (ln n)2.【小结】两个值比较大小,如果是同一函数的函数值,则可以利用函数的单调性来比较.在比较时,一定要注意底数所在范围对单调性的影响,即a >1时是增函数,0<a <1时是减函数,如果不是同一个函数的函数值,就可以对所涉及的值进行变换,尽量化为可比较的形式,必要时还可以“搭桥”——找一个与二者有关联的第三量,以二者与第三量(一般是–1、0、1)的关系,来判断二者的关系,另外,还可利用函数图象直观判断,比较大小方法灵活多样,是对数学能力的极好训练.例2 求证:函数f (x ) =xx-1log 2在(0, 1)上是增函数. 【分析】根据函数单调性定义来证明. 【解析】设0<x 1<x 2<1, 则f (x 2) – f (x 1) = 212221log log 11x xx x --- 21221(1)log (1)x x x x -=-=.11log 21122x x x x --⋅ ∵0<x 1<x 2<1, ∴12x x >1,2111x x -->1.则2112211log x x x x --⋅>0, ∴f (x 2)>f (x 1). 故函数f (x )在(0, 1)上是增函数.。

2.2.2 对数函数及其性质(第2课时)

2.2.2 对数函数及其性质(第2课时)

函数的值域为 [0, log a 8).
当0 a 1时,函数y loga x在(0, )上是减函数; 又 Q 1 x 8,
例题讲解
1、解下列不等式、 (1)log3 ( 2 x 1) log3 (5 x 6) ( 2)log 0.3 ( 4 x 1) log 0.3 (5 x 6) (3)log3 ( 2 x 1) 1 (
(3)函数y a
x2
x
(2,4) 3(a 0且a 1)图象恒过定点______
a 1
0
一、课前复习
2、判断下列数值大小 (1) ln 5 _____ ln 0.3
(3) log 7 6 _____ log 6 7

(2) log 2 5 _____ log 0.2 7
(1)同底对数值比较大小:利用对数函数单调性比较 (2)同底对数值比较大小:若底数未确定,需分类讨论
例3、求下列函数的值域
解: (3)当a 1时,函数y loga x在(0, )上是增函数; 又 Q 1 x 8,
(3) y loga x, x [1,8),其中a 0且a 1的值域 ____
log a 1 log a x log a 8,即0 log a x log a 8;
(3)底数不同,真数不同对数比较大小: 借助中间量“0” ( log a 1),或“1” ( loga a)
1 2.5 练习、已知a log 4 5, b ( ) , c log 3 0.4, 2 则a, b, c的大小关系为(A) A.a b c B.b a c C .a c b D.c a b
例3、求下列函数的值域
[2, 3] (1) y log 3 x , x [9, 27] 的值域是_________

高一数学 《对数函数及其性质(2)》公开课教案(教学反思、点评)

高一数学 《对数函数及其性质(2)》公开课教案(教学反思、点评)

对数函数及其性质(2)一、教学内容分析函数是高中数学的主体内容——变量数学的主要研究对象之一,是中学数学的重点知识,研究函数的一般理论和基本方法,用函数的思想方法解决实际问题,是函数教学的主要目标。

本节课教学是学生在学过正比例函数、一次函数、二次函数、反比例函数和指数函数的基础上进一步学习的一种新函数,对对数函数概念的理解,图象和性质的掌握和应用有利于学生对初等函数认识的系统性,有利于进一步加深对函数思想方法的理解。

为后面进一步探究对数函数的应用及指数函数、对数函数的综合应用起到承上启下的作用。

二、学情与教材分析对数函数是高中引进的第二个初等函数,是本章的重点内容。

学生在前面的函数性质、指数函数学习的基础上,用研究指数函数的方法,进一步研究和学习对数函数的概念、图象和性质以及初步应用,有利于学生进一步完善初等函数的认识的系统性,加深对函数的思想方法的理解,在教学过程中,虽然学生的认知水平有限,但只要让学生体验对数函数来源于实践,通过教师课件的演示,通过数形结合,让学生感受y=log a x(a>0且a≠1)中,a取不同的值时反映出不同的函数图象,让学生观察、小组讨论、发现、归纳出图象的共同特征、函数图象的规律,进而探究学习对数函数的性质。

最后将对数函数、指数函数的图象和性质进行比较,以便加深对对数函数的概念、图象和性质的理解,同时也为后面教学作准备。

三、设计思想在本节课的教学过程中,通过古遗址上死亡生物体内碳14含量与生物死亡年代关系的探索,引出对数函数的概念。

通过对底数a的分类讨论,探究总结出对数函数的图象与性质,使学生经历从特殊到一般的过程,体验知识的产生、形成过程,通过例题的分析与练习,进一步培养学生自主探索,合作交流的学习方式,通过学生经历直观感知,观察、发现、归纳类比,抽象概括等思维过程,落实培养学生积极探索学习习惯,提高学生的数学思维能力的新课程理念。

四、教学目标1、通过对对数函数概念的学习,培养学生实践能力,使学生理解对数函数的概念,激发学生的学习兴趣。

对数函数及其性质的教学设计【2篇】

对数函数及其性质的教学设计【2篇】篇一:高中数学对数函数教案篇一教学目标1、在指数函数及反函数概念的基础上,使学生掌握对数函数的概念,能正确描绘对数函数的图像,掌握对数函数的性质,并初步应用性质解决简单问题。

2、通过对数函数的学习,树立相互联系,相互转化的观点,渗透数形结合,分类讨论的思想。

3、通过对数函数有关性质的研究,培养学生观察,分析,归纳的思维能力,调动学生学习的积极性。

教学重点,难点重点是理解对数函数的定义,掌握图像和性质。

难点是由对数函数与指数函数互为反函数的关系,利用指数函数图像和性质得到对数函数的图像和性质。

教学方法启发研讨式教学用具投影仪教学过程一。

引入新课今天我们一起再来研究一种常见函数。

前面的几种函数都是以形式定义的方式给出的,今天我们将从反函数的角度介绍新的函数。

反函数的实质是研究两个函数的关系,所以自然我们应从大家熟悉的函数出发,再研究其反函数。

这个熟悉的函数就是指数函数。

提问:什么是指数函数?指数函数存在反函数吗?由学生说出是指数函数,它是存在反函数的。

并由一个学生口答求反函数的过程:由得。

又的值域为,所求反函数为。

那么我们今天就是研究指数函数的反函数__对数函数。

2.8对数函数(板书)一。

对数函数的概念1、定义:函数的反函数叫做对数函数。

由于定义就是从反函数角度给出的,所以下面我们的研究就从这个角度出发。

如从定义中你能了解对数函数的什么性质吗?最初步的认识是什么?教师可提示学生从反函数的三定与三反去认识,从而找出对数函数的定义域为,对数函数的值域为,且底数就是指数函数中的,故有着相同的限制条件。

在此基础上,我们将一起来研究对数函数的图像与性质。

二。

对数函数的图像与性质(板书)1、作图方法提问学生打算用什么方法来画函数图像?学生应能想到利用互为反函数的两个函数图像之间的关系,利用图像变换法画图。

同时教师也应指出用列表描点法也是可以的,让学生从中选出一种,最终确定用图像变换法画图。

2_2_2对数函数及其性质(二)教案

3.2.2对数函数(二)教学目标:进一步理解对数函数的定义,掌握对数函数的图象和性质 教学重点:掌握对数函数的图象和性质.教学过程:1、 复习对数函数的概念2、 例子:(一)求函数的定义域1. 已知函数)23lg()(2+-=x x x f 的定义域是F,函数)2lg()1lg()(-+-=x x x g 的定义域是N,确定集合F 、N 的关系?2.求以下函数的定义域:(1)3)1log(1)(-+=x x f (2)2312log )(--=x x x f(二)求函数的值域]2,1[log )(2∈=x xx f 2.]2,1[log )(∈=x xx f a 3.2log )(22+=x x f 4.求函数(1))2(log )(22+=x x f (2)21log )(22+=x x f 的值域 (三)函数图象的应用 x y a log = x y b log = x y c log =的图象如下列图,那么a,b,c 的大小关系是2.已知0)3(log )3(log <-<-=ππn m y ,m,n 为不等于1的正数,则以下关系中准确的是( )(A )1<m<n (B)m<n<1 (C)1<m<n (D)n<m<12.画出以下函数的图象(1)|lg |x y = (2)||lg x y =(四)函数的单调性1、 求函数)2(log 22x x y +=的单调递增区间。

2、 求函数)2(log 221--=x x y 的单调递减区间(五)函数的奇偶性1、函数))(1(log 22R x x x y ∈++=的奇偶性为[ ] A .奇函数而非偶函数 B .偶函数而非奇函数 C .非奇非偶函数 D .既奇且偶函数(五)综合1.若定义在区间(-1,0)内的函数)1(log )(2+=x x f a 满足0)(>x f , 则a 的取值范围 ( ))21,1)((A ]21,1)((B ),21)((+∞C ),0)((+∞D课堂练习:略小结:本节课进一步复习了对数函数的定义、图象和性质 课后作业:略。

2.2.2对数函数及其性质(二)


例5:已知函数 f ( x) log 2 (3x 1), 若 f ( x) 0, 求 x 的取值范围.
总结点评:注意对数函数定义中定义域限制 (3x-1>0)
变式1:已知函数 y log 2 (2x 1), 求满足 f ( x) 1 的 x 的取值范围.
变式2:已知 log a (3a 1) 恒为正数, 求 a 的取值范围.
x
探 究:
么 x 是 y 的函数吗?如果是,那么对应关系是
什么?如果不是,请说明理由。 y=2x x log2 y y 0,
xR
指数函数y=2x(x ∈R)与对数函数y=log2x (x∈(0,+∞)) 互为反函数. 一般地,指数函数y=ax(x ∈R)与对数函数 y=logax (x∈(0,+∞)) 互为反函数.
得到:log 0.35>log 0.37
(3)log a5 与log a7 ( a>0 且 a≠1 )
对数函数的增减性决定于对数的底数是大于1还 是小于1.而已知条件中并未指出底数a与1哪个大? 因此需要对底数a进行讨论:
y 0 1 x y 0 x
1
当a>1时,函数y=log ax在(0,+∞)上是增函数,故 log a5<log a7 当0<a<1时,函数y=log ax在(0,+∞)上是减函数,故 log a5>log a7
(6) loga x2与 loga (x2+1) (x≠0)
练习
1995年我国人口总数是12亿,如果人口的自然增长率 控制在1.25%,问哪一年我国人口总数将大约等于14亿? 解: 设 X年后人口总数超过14亿,依题意得 12.(1+0.0125)X=14 即 1.0125X=14/12,两边取常用对数, 得:X.lg1.0125=lg14-lg12 即:X= (lg14-lg12)/ lg1.0125≈12.4

高中数学 2.2.2对数函数及其性质(二)教案 新人教A版必修1

3.2.2对数函数(二)教学目标:进一步理解对数函数的定义,掌握对数函数的图象和性质 教学重点:掌握对数函数的图象和性质.教学过程:1、 复习对数函数的概念2、 例子:(一)求函数的定义域1. 已知函数)23lg()(2+-=x x x f 的定义域是F,函数)2lg()1lg()(-+-=x x x g 的定义域是N,确定集合F 、N 的关系?2.求下列函数的定义域:(1)3)1log(1)(-+=x x f (2)2312log )(--=x x x f(二)求函数的值域]2,1[log )(2∈=x xx f 2.]2,1[log )(∈=x xx f a 3.2log )(22+=x x f 4.求函数(1))2(log )(22+=x x f (2)21log )(22+=x x f 的值域 (三)函数图象的应用 x y a log = x y b log = x y c log =的图象如图所示,那么a,b,c 的大小关系是2.已知0)3(log )3(log <-<-=ππn m y ,m,n为不等于1的正数,则下列关系中正确的是( )(A )1<m<n (B)m<n<1 (C)1<m<n (D)n<m<12.画出下列函数的图象(1)|lg |x y = (2)||lg x y =(四)函数的单调性1、 求函数)2(log 22x x y +=的单调递增区间。

2、 求函数)2(log 221--=x x y 的单调递减区间(五)函数的奇偶性1、函数))(1(log 22R x x x y ∈++=的奇偶性为[ ] A .奇函数而非偶函数 B .偶函数而非奇函数C .非奇非偶函数D .既奇且偶函数(五)综合1.若定义在区间(-1,0)内的函数)1(log )(2+=x x f a 满足0)(>x f , 则a 的取值范围 ( )课堂练习:略小结:本节课进一步复习了对数函数的定义、图象和性质 课后作业:略。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2.2.2 对数函数及其性质(二)(一)教学目标1.知识技能(1)掌握对数函数的单调性.(2)会进行同底数对数和不同底数的对数的大小比较.2.过程与方法(1)通过师生双边活动使学生掌握比较同底对数大小的方法.(2)培养学生的数学应用的意识.3.情感、态度与价值观(1)用联系的观点分析、解决问题.(2)认识事物之间的相互转化.(二)教学重点、难点1、重点:利用对数函数单调性比较同底对数大小.2、难点:不同底数的对数比较大小.(三)教学方法启发式教学利用对数函数单调性比较同底对数的大小,而对数函数的单调性对底数分1a>和01a<<两种情况,学生应能根据题目的具体形式确定所要考查的对数函数;如果题目中含有字母,即对数底数不确定,则应该分两种情形讨论.对于不同底数的对数大小的比较,应插入中间数,转化为两组同底数的对数大小的比较,从而使问题得以解决.(四)教学过程教学环节教学内容师生互动设计意图复习引入回顾对数函数的定义、图象、性质. 师:上一节,大家学习了对数函数y=log a x的图象和性质,明确了对数函数的单调性,即当a>1时,在(0,+∞)上是为学习新课作增函数;当0<a<1时,在(0,+∞)上是减函数.这一节,我们主要通过对数函数的单调性解决有关问题.好了知识上的准备.应用举例例1 比较下列各组数中两个值的大小:(投影显示)(1)log23.4,log23.8;(2)log0.51.8,log0.52.1;(3)log a5.1,log a5.9;(4)log75,log67.请同学们回顾一下我们利用指数函数的有关性质比较大小的方法和步骤,并完成以下练习.(生板演前三题,师组织学生进行课堂评价,师生共同讨论完成第四题)例1解:(1)对数函数y=log2x在(0,+∞)上是增函数,且3.4<3.8.于是log23.4<log23.8.(2)对数函数y=log0.5x在(0,+∞)上是减函数,且1.8<2.1,于是log0.51.8>log0.52.1.(3)当a>1时,对数函数y=log a x在(0,+∞)上是增函数,于是log a5.1<log a5.9;当0<a<1时,对数函数y=log a x在(0,+∞)上是减函数,于是log a5.1>log a5.9.(4)因为函数y=log7x和函数y=log6x都是定义域上的增函数,所以log75<log77=1=log66<log67.所以log75<log67.小结:本例是利用对数函数的单调性来比较两个对数式的大小的问题,一般是根据所给对数式的特征,确定一个目标函数,把需要比较大小的对数式看作是对应函数中两个能比较大小的自变量的值对应的函数值,再根据所确定的目标函数的单调性比较两个对数式的大小.当底数为变量时,要分情况对底数进行讨论来比较两个对数的大小.掌握对数函数知识的应用.例2 判断函数f (x )=ln (21x +-x )的奇偶性.若题中所给的对数式的底数和真数都不相同时,可以找一个中间量作为桥梁,通过比较中间量与这两个对数式的大小来比较对数式的大小,一般选择“0”或“1”作为中间量进行比较.例2解:∵12+x >x 恒成立,故(x )的定义域为(-∞,+∞), 又∵f (-x )=ln (21x ++x )=-lnxx ++211=-ln2222)1(1xx x x -+-+=-ln (21x +-x )=-f (x ),∴f (x )为奇函数.在根据函数的单调性的定义判断函数单调性的时候,首先应该根据函数的解析式确定函数的定义域,当所给函数的定义域关于原点对称时,再判断f (x )和f (-x )之间的关系.f (x )为奇函数⇔f (-x )=-f (x )⇔f (x )+f (-x )=0⇔)()(x f x f -=-1〔f (x )≠0〕, f (x )为偶函数⇔f (-x )=f (x )⇔f (-x )-f (x )=0⇔ )()(x f x f -=1〔f (x )≠0〕.例3(1)证明函数f (x )=log 2(x 2+1)在(0,+∞)上是增函数;(2)问:函数f (x )=log 2(x 2+1)在(-∞,0)上是减函数还是增函数?例4 已知f (log a x )=)1()1(22--a x x a ,其中a >0,且a ≠1.(1)求f (x );(2)求证:f (x )是奇函数;在解决具体问题时,可以根据函数解析式的具体特点选择不同的方式来判断.例3分析:此题目的在于让学生熟悉函数单调性证明通法,同时熟悉利用对数函数单调性比较同底数对数大小的方法.(1)证明:设x 1、x 2∈(0,+∞),且x 1<x 2,则f (x 1)-f (x 2)=log 2(x 12+1)-log 2(x 22+1),∵0<x 1<x 2,∴x 12+1<x 22+1.又∵y =log 2x 在(0,+∞)上是增函数,∴log 2(x 12+1)<log 2(x 22+1), 即f (x 1)<f (x 2).∴函数f (x )=log 2(x 2+1)在(0,+∞)上是增函数.(2)解:是减函数,证明可以仿照上述证明过程.小结:利用定义证明函数的单调性是研究单调性问题的重要方法.例4分析:利用换元法,可令t =log a x ,求出f (x ),从而求出f (x ).证明奇函数及增函数可运用定义.(1)解:设t =log a x ,则t ∈R ,∴x =a t (x >0).(3)求证:f(x)在R上为增函数.课堂练习课本P85练习3.则f(t)=)1()1(22--aaaatt=12-aa(a t-a-t).(2)证明:∵f(-x)=12-aa(a-x-a x)=-12-aa(a x-a-x)=-f(x),∴f(x)为奇函数.(3)证明:设x1、x2∈R,且x1<x2,则f(x2)-f(x1)=12-aa[(a2x-a-2x)-(a1x-a-1x)]=12-aa[(a2x-a1x)+a-1x a-2x(a2x -a1x)]=12-aa(a2x-a1x)(1+a-1x a-2x).若0<a<1,则a2-1<0,a1x>a2x,∴f(x2)>f(x1).∴y=f(x)在R上为增函数;若a>1,则a2-1>0,a1x<a2x.∴f(x2)>f(x1).∴y=f(x)在R上为增函数.综上,a>0,且a≠1时,y=f(x)是增函数.课堂练习答案:(1)<(2)<(3)>(4)>备选例题例1 比较下列各组数的大小:(1)log0.7 1.3和log0.71.8;(2)log35和log64.(3)(lg n)1.7和(lg n)2 (n>1);【解析】(1)对数函数y= log0.7x在(0, +∞)内是减函数. 因为1.3<1.8,所以log0.71.3>log0.71.8.(2)log35和log64的底数和真数都不相同,需找出中间量“搭桥”,再利用对数函数的单调性即可求解.因为log35>log33 = 1 = log66>log64,所以log35>log64.(3)把lg n看作指数函数的底,本题归为比较两个指数函数的函数值的大小,故需对底数lg n讨论.若1>ln n>0,即1<n<10时,y = (lg n)x在R上是减函数,所以(lg n)1.7>(lg n)2;若lg n>1,即n>10时,y = (lg n)2在R上是增函数,所以(lg n)1.7<(lg n)2.若ln n = 1,即n = 10时,(ln n)1.7 = (ln n)2.【小结】两个值比较大小,如果是同一函数的函数值,则可以利用函数的单调性来比较. 在比较时,一定要注意底数所在范围对单调性的影响,即a>1时是增函数,0<a<1时是减函数,如果不是同一个函数的函数值,就可以对所涉及的值进行变换,尽量化为可比较的形式,必要时还可以“搭桥”——找一个与二者有关联的第三量,以二者与第三量(一般是–1、0、1)的关系,来判断二者的关系,另外,还可利用函数图象直观判断,比较大小方法灵活多样,是对数学能力的极好训练.例2 求证:函数f (x ) =xx-1log 2在(0, 1)上是增函数. 【分析】根据函数单调性定义来证明. 【解析】设0<x 1<x 2<1, 则f (x 2) – f (x 1) = 212221log log 11x xx x --- 21221(1)log (1)x x x x -=-=.11log 21122x x x x --⋅ ∵0<x 1<x 2<1, ∴12x x >1,2111x x -->1.则2112211log x x x x --⋅>0, ∴f (x 2)>f (x 1). 故函数f (x )在(0, 1)上是增函数.。

相关文档
最新文档