锐角三角函数(第1课时)教学设计
北师大版数学九年级下册1.1《锐角三角函数》教学设计1

北师大版数学九年级下册1.1《锐角三角函数》教学设计1一. 教材分析《锐角三角函数》是北师大版数学九年级下册第一章第一节的内容。
本节课的主要内容是引导学生通过锐角三角函数的定义,了解正弦、余弦、正切函数的概念,并会进行简单的计算。
这一节内容是初中数学的重要内容,也是高中数学的基础。
在教材中,通过大量的实例,让学生感受三角函数在实际问题中的应用,从而培养学生的数学应用能力。
二. 学情分析九年级的学生已经具备了一定的数学基础,对函数的概念有一定的了解。
但是,对于三角函数的定义和应用,可能还比较陌生。
因此,在教学过程中,需要引导学生通过实例,理解三角函数的概念,并能够运用三角函数解决实际问题。
三. 教学目标1.理解锐角三角函数的定义,掌握正弦、余弦、正切函数的概念。
2.能够运用三角函数解决实际问题。
3.培养学生的数学应用能力。
四. 教学重难点1.重点:锐角三角函数的定义,正弦、余弦、正切函数的概念。
2.难点:运用三角函数解决实际问题。
五. 教学方法1.实例教学:通过实际问题,引导学生理解三角函数的定义和应用。
2.小组讨论:让学生在小组内讨论,共同解决问题,培养学生的合作能力。
3.练习巩固:通过大量的练习,让学生巩固所学知识,提高解题能力。
六. 教学准备1.教材:北师大版数学九年级下册。
2.课件:相关的教学课件。
3.练习题:相关的练习题。
七. 教学过程1.导入(5分钟)通过一个实际问题,引入三角函数的概念。
例如,一个直角三角形,一个锐角为30度,斜边长为1,求这个三角形的两条直角边的长度。
让学生思考,如何解决这个问题。
2.呈现(10分钟)通过多媒体课件,呈现三角函数的定义和概念。
引导学生理解,三角函数是描述直角三角形中,角度和边长之间关系的一种数学工具。
讲解正弦、余弦、正切函数的定义,并通过动画演示,让学生直观地理解这三个函数的定义。
3.操练(10分钟)让学生进行一些相关的练习题,巩固所学的知识。
教师可以通过多媒体课件,展示解题过程,引导学生正确解题。
24.1锐角的三角函数(第一课时)教案

24.1锐角的三角函数——锐角的正切(第一课时)授课对象: 中学九年级班教学安排:一课时授课教师:一、教学背景分析(一)教材分析:1.教材的地位及作用《锐角的三角函数》是沪科版九年级数学上册第24章第一节的内容。
锐角的三角函数的概念是以前面学习的相似三角形、勾股定理的知识为基础的,本章内容是三角学中最基础的内容,也是今后进一步学习三角学的必要知识准备。
2.教材处理本节教材共分三课时完成,;第一课时是正切概念的建立及其简单应用;第二课时是正弦、余弦概念的建立及其简单应用;第三课时是综合应用。
(二)学情分析:九年级的学生具备了一定的逻辑思维能力和推理能力。
通过以前的合作学习,具备了一定的合作交流的能力.二、教学目标知识与技能: 1. 理解锐角正切(tanA)、坡度、坡角的意义;2.学会根据定义求锐角的正切值.过程与方法: 1. 经历锐角的正切的探求过程,体会数形结合的思想方法.2.三角函数的学习中,初步体验探索、讨论、论证对学习数学的重要性。
情感态度价值观:1. 在活动中培养学生乐于探究、合作交流的习惯。
2. 感受数学来源于生活又应用于生活,从而激发学生学习数学的兴趣。
三、教学重、难点教学重点:锐角的正切、坡度、坡角的定义。
教学难点:理解Rt△中一个锐角的对边与其邻边比值的对应关系。
四、教学用具多媒体课件(PPT)、几何画板五、教学过程(一)创设情境、导入新课(5分钟)利用多媒体播放“人民英雄纪念碑——民族的自豪”短片,引导学生思考:如何测量出人民英雄纪念碑的高度呢?要求学生自主探究,积极思考,回答测量高度的方法,教师引导学生分析,如直接测量法和相似法的弊端,从而导入新课——锐角的正切。
(板书课题)【设计意图】通过视频的展示,让学生身临其境地感受人民英雄纪念碑的雄伟,激发学生强烈的爱国热情和民族自豪感,同时,通过对纪念碑高度的测量自然地导入今天的教学重点。
体现新课标的要求:在关注学生数学学习水平的同时,关注学生德育教育和情感态度的发展。
锐角三角函数-正切教学设计

23.1锐角的三角函数1. 锐角的三角函数第一课时正切教学目标◆知识与技能1.初步了解角度与数值的一一对应的函数关系。
2.会求直角三角形中某个锐角的正切值。
3.了解坡度的有关概念。
◆过程与方法让学生经历操作、观察、思考、求解等过程,感受数形结合的数学思想方法,培养学生理性思维习惯,提高学生运用数学知识解决实际问题的能力。
◆情感态度通过探究活动激发学生学习的积极性和主动性,引导学生自主探索,合作交流,培养学生的创新意识。
教学重点:1.从现实情境中探索直角三角形的边角关系。
2.理解正切、倾斜程度、坡度的数学意义,密切数学与生活的联系。
教学难点:锐角三角函数的概念的理解。
教学准备多媒体课件制作教学设计一、导入新课导语:因为这座桥的设计让它成为了旅游新热点,火起来的原因不是因为怪异的设计或者美不胜收的景色,而是大家都很好奇这个桥的坡度到底有多陡?陡峭堪比过山车!不少人给这座桥赋予了极不靠谱的数据,实际上这个坡的斜率仅为6.1%,如果按咱们口头常用单位来讲还不足4度。
大家看到这个图片后一定很吃惊,那我们要想了解这副图的背景故事,我们就要来学习这里出现的数据6.1%和4度代表了什么?(导入课题锐角三角函数)二、推进新课1.交流合作【问题1】在图23-2中有两个直角三角形,直角边AC与A1C1表示水平面,斜边AB与A1B1分别表示两个不同的坡面,哪个更陡?你是怎么判断的?学生可由水平长度相等,铅直高度不同进行判断.【问题2】当水平长度和铅直高度都不相等时,类似的在图23-3中,坡面AB与A1B 1哪个更陡?你又是如何判断呢?设计意图:引发学生的争论,激发学生的求知欲.从而教师可提出能否用铅直高度与水平长度的比值进行衡量呢?【问题3】 如图,在锐角A 的一边上任取一点B ,自点B 向另一边作垂线,垂足为C ,得到Rt △ABC ;再任取一点B 1,自点B 1向另一边作垂线,垂足为C 1,得到Rt △33AB C ……,这样,我们可以得到无数个直角三角形.在这些直角三角形中,锐角A 的对边与邻边之比BC AC ,111B C AC ,222B C AC ……有怎样的关系?请同学们小组合作测量并计算它们的近似值,看看会有什么发现?同学们得到近似相等的值,我们猜测它们是相等的,是不是这样的呢,下面我们从理论角度来验证。
鲁教版数学九年级上册2.1《锐角三角函数》(第1课时)教学设计

鲁教版数学九年级上册2.1《锐角三角函数》(第1课时)教学设计一. 教材分析鲁教版数学九年级上册2.1《锐角三角函数》是初中的重要内容,主要介绍了锐角三角函数的定义、性质和应用。
本节课的内容是学生对锐角三角函数的初步了解,为后续的学习打下基础。
教材从实际问题出发,引导学生探究锐角三角函数的定义,并通过几何图形的变换,让学生理解锐角三角函数的性质。
二. 学情分析九年级的学生已经具备了一定的几何知识,对三角函数有一定的认知基础。
但是,对于锐角三角函数的定义和性质,学生可能还比较陌生。
因此,在教学过程中,需要引导学生从实际问题出发,逐步理解锐角三角函数的概念,并通过具体的例子,让学生感受锐角三角函数的性质。
三. 教学目标1.了解锐角三角函数的定义,掌握锐角三角函数的性质。
2.能够运用锐角三角函数解决实际问题。
3.培养学生的探究能力和合作精神。
四. 教学重难点1.锐角三角函数的定义。
2.锐角三角函数的性质。
五. 教学方法1.情境教学法:通过实际问题,引导学生探究锐角三角函数的定义。
2.几何画板:利用几何画板展示锐角三角函数的性质,增强学生的直观感受。
3.小组讨论:让学生在小组内讨论锐角三角函数的应用,培养学生的合作精神。
六. 教学准备1.课件:制作课件,包括锐角三角函数的定义、性质和应用。
2.几何画板:准备几何画板,用于展示锐角三角函数的性质。
3.练习题:准备相关的练习题,用于巩固所学知识。
七. 教学过程1.导入(5分钟)利用实际问题,引导学生思考锐角三角函数的定义。
例如,一个木工师傅要做一个30度角的三角形木块,他需要知道这个角的正弦、余弦和正切值,他应该如何计算?2.呈现(15分钟)通过几何画板,展示锐角三角函数的性质。
例如,正弦值随着角的增大而增大,余弦值随着角的增大而减小,正切值随着角的增大而增大。
3.操练(10分钟)让学生运用锐角三角函数解决实际问题。
例如,一个直角三角形,两个锐角的正弦、余弦和正切值分别是多少?4.巩固(10分钟)让学生完成相关的练习题,巩固所学知识。
人教版九年级数学下册《锐角三角函数(第1课时)》示范教学设计

锐角三角函数(第1课时)教学目标1.经历锐角的正弦的探究过程,感知当直角三角形的锐角角度一定时,它的对边与斜边的比是一个固定值这一事实,理解锐角的正弦的定义.2.能灵活应用锐角的正弦进行计算,感受数形结合的思想方法.教学重点探究锐角的正弦,理解锐角的正弦的定义,并能灵活应用锐角的正弦进行计算.教学难点研究内容提出过程(研究锐角的正弦定义前,先研究直角三角形中锐角的对边与斜边的比为定值)的必要性.教学过程知识回顾如图,在Rt△ABC中,两个锐角之间有什么关系?三边之间有什么关系?【师生活动】学生独立思考,得出答案:在Rt△ABC中,∠A+∠B=90°(两锐角互余);a2+b2=c2(勾股定理).教师提问:对于直角三角形,我们已经知道三边之间、两个锐角之间的关系,它的边角之间有什么关系呢?学生交流思考,教师讲解新课.【设计意图】回顾学过的直角三角形的边角关系,自然地引出本节课的学习内容,激发学生的学习兴趣.新知探究一、探究学习【问题】为了绿化荒山,某地打算从位于山脚下的机井房沿着山坡铺设水管,在山坡上修建一座扬水站,对坡面的绿地进行喷灌.现测得斜坡的坡角(∠A)为30°,为使出水口的高度为35 m,需要准备多长的水管?【师生活动】教师提问:你能用数学语言来表述这个实际问题吗?学生组织语言进行小组交流,教师巡视,并适时引导.把上述实际问题抽象成数学问题为:如图,在Rt△ABC中,∠C=90°,∠A=30°,BC=35 m,求AB.教师追问:如何解决这个问题?学生独立思考,完成作答.【答案】根据“在直角三角形中,30°角所对的边等于斜边的一半”,即A∠的对边斜边=BC AB =12,可得AB=2BC=70(m).也就是说,需要准备70 m长的水管.【思考】在上面的问题中,如果出水口的高度为50 m,那么需要准备多长的水管?【师生活动】学生独立思考、画图,完成作答.根据“在直角三角形中,30°角所对的边等于斜边的一半”,即A∠的对边斜边=B CAB'''=12,可得AB′=2B′C′=100(m).也就是说,如果出水口的高度为50 m,那么需要准备100 m长的水管.【思考】对于有一个锐角为30°的任意直角三角形,30°角的对边与斜边的比是多少?【师生活动】教师引导学生根据上面求AB(所需水管的长度)的过程,进行归纳:在直角三角形中,如果一个锐角等于30°,那么无论这个直角三角形大小如何,这个角的对边与斜边的比都等于12. 【设计意图】在学生用“在直角三角形中,30°角所对的边等于斜边的一半”解决问题的基础上,引出研究直角三角形中边角关系的具体内容和方式——研究锐角和它的对边与斜边之比之间的关系,为获得“角度固定,比值也固定”作铺垫.【问题】如图,任意画一个Rt △ABC ,使∠C =90°,∠A =45°,计算∠A 的对边与斜边的比BCAB.由此你能得出什么结论?【师生活动】教师提出问题,学生分组讨论,得出答案. 【答案】在Rt △ABC 中,∠C =90°, ∵∠A =45°,∴Rt △ABC 是等腰直角三角形.由勾股定理,得AB 2=AC 2+BC 2=2BC 2,∴AB .∴BCAB =.结论:在一个直角三角形中,当一个锐角等于45°时,无论这个直角三角形大小如何,. 【设计意图】强化学生对“对边与斜边的比”的关注,为获得“角度固定,比值也固定”作进一步铺垫.【问题】由上述两个结论可知,在Rt △ABC 中,∠C =90°,当∠A =30°时,∠A 的对边与斜边的比都等于12,是一个固定值;当∠A =45°时,∠A 的对边与斜边的比都等于,也是一个固定值.由此你能猜想出什么一般的结论呢? 【师生活动】教师引导学生思考、交流,并用准确的语言归纳猜想.【猜想】在Rt△ABC中,当锐角A的度数一定时,无论这个直角三角形大小如何,∠A的对边与斜边的比都是一个固定值.【设计意图】让学生体验合理的猜想是数学学习中研究问题的方法之一,同时为学生提供自主探究的空间,增强语言表达能力.【探究】如图,任意画Rt△ABC和Rt△A′B′C′,使得∠C=∠C′=90°,∠A=∠A′,那么BCAB与B CA B''''有什么关系?你能解释一下吗?【师生活动】学生先独立思考,得出BCAB与B CA B''''的关系,再小组讨论,完成证明.【答案】BCAB=B CA B''''.理由如下:∵∠C=∠C′=90°,∠A=∠A′,∴Rt△ABC∽Rt△A′B′C′.∴BCB C''=ABA B''.即BCAB=B CA B''''.【新知】这就是说,在Rt△ABC中,当锐角A的度数一定时,无论这个直角三角形大小如何,∠A的对边与斜边的比都是一个固定值.在Rt△ABC中,∠C=90°,我们把锐角A的对边与斜边的比叫做∠A的正弦,记作sin A,即sin A=A∠的对边斜边=ac.例如,当∠A=30°时,我们有sin A=sin 30°=12;当∠A=45°时,我们有sin A=sin 45∠A的正弦sin A随着∠A的变化而变化.正弦是一个比值,是两条线段长度的比,是没有单位的数值,只与角的大小有关,与三角形的大小无关.【提醒】(1)正弦是在直角三角形中相对于锐角定义的,反映了直角三角形边与角的关系,不能在非直角三角形中套用;(2)sin A是一个整体符号,不能写成乘积的形式,即sin·A的写法是错误的;(3)若角是用一个大写字母或一个小写希腊字母表示的,则正弦的写法中可省略“∠”,如sin α;若角是用三个大写字母或数字表示的,则不能省略“∠”,如sin∠ABC.【设计意图】培养学生的推理论证意识,让学生在一系列的问题解决中,经历从特殊到一般建立数学概念的过程,感受定义的方式:先研究合理性,再下定义.二、典例精讲【例1】如图,在Rt△ABC中,∠C=90°,求sin A和sin B的值.【师生活动】教师提示:求sin A就是要确定∠A的对边与斜边的比;求sin B就是要确定∠B的对边与斜边的比.学生根据提示作答,请两名学生代表板演,教师规范步骤.【答案】解:如图(1),在Rt△ABC中,由勾股定理得AB=5.∴sin A=BCAB=35,sin B=ACAB=45.如图(2),在Rt△ABC中,由勾股定理得AC=12.∴sin A=BCAB=513,sin B=ACAB=1213.【归纳】在直角三角形中,求锐角的正弦值时,如果没有给出锐角的对边长或斜边长,那么应先根据勾股定理求出所需的边长,再根据锐角的正弦的定义求解.【设计意图】通过例1,考察学生是否会根据直角三角形的边长求出锐角的正弦值.【例2】如图,在Rt△ABC中,∠C=90°,sin A=35.(1)若AB=10,求AC和BC;(2)若AC=8,求AB及AB边上的高CD.【师生活动】学生独立完成,教师指导、讲解.【答案】解:(1)∵在Rt△ABC中,sin A=BCAB=35,AB=10,∴BC=6.∴由勾股定理得AC8.(2)∵在Rt△ABC中,sin A=BCAB=35,AC=8,∴设BC=3x(x>0),则AB=5x.由勾股定理得AC=4x=8,解得x=2,∴BC=3x=6,AB=5x=10.∵在Rt△ACD中,sin A=CDAC=35,AC=8,∴CD=4.8.【归纳】用正弦值求直角三角形边长的两种方法:(1)在直角三角形中,若已知锐角的正弦值及该角的对边长或斜边长,则先直接根据正弦定义求斜边长或对边长,再根据勾股定理求第三边长;(2)在直角三角形中,若已知锐角的正弦值及该角的邻边长,则可根据正弦的定义确定对边长与斜边长的比值,结合勾股定理列方程求解.【设计意图】通过例2,考察学生是否会根据锐角的正弦值求出直角三角形的边长,加深学生对锐角的正弦定义的理解.课堂小结板书设计一、锐角的正弦的定义二、锐角的正弦的应用课后作业完成教材第64页练习第1~2题.。
冀教版九年级数学上册26.1锐角三角函数第1课时正切优秀教学案例

一、案例背景
本节课的教学内容是冀教版九年级数学上册26.1锐角三角函数第1课时正切。在教学案例中,我以学生已有的知识为基础,结合生活实际,引导学生探索新知,提高学生的数学素养。
在案例背景中,我了解到学生在八年级时已经学习了锐角三角函数的概念,并对特殊角的三角函数值有所了解。在此基础上,我以“切线与直角三角形的联系”为切入点,让学生通过观察、思考、探究,自主发现正切函数的定义,并理解其几何意义。
(四)总结归纳
1.引导学生总结正切函数的定义、性质和计算方法,巩固所学知识。
2.强调正切函数在实际生活中的应用,提高学生的数学应用能力。
3.总结本节课的学习方法,为学生课后学习提供指导。
在总结归纳环节,我引导学生总结正切函数的定义、性质和计算方法,巩固所学知识。强调正切函数在实际生活中的应用,提高学生的数学应用能力。同时,总结本节课的学习方法,为学生课后学习提供指导。
(三)小组合作
1.合理分组,营造积极的小组合作氛围,提高学生的合作能力。
2.设计具有挑战性的小组任务,鼓励学生的团队精神,提高学生的沟通能力。
在教学过程中,我合理分组,营造积极的小组合作氛围。设计具有挑战性的小组任务,鼓励学生发挥个体优势,实现共同进步。在小组合作过程中,关注学生的表现,培养学生的团队精神,提高学生的沟通能力。同时,引导学生进行小组交流与分享,促进学生之间的相互学习,提高学生的综合能力。
3.小组合作学习:在学生小组讨论环节,我合理分组,营造积极的小组合作氛围。设计具有挑战性的小组任务,鼓励学生发挥个体优势,实现共同进步。这种教学方式有助于培养学生的团队合作能力,提高学生的沟通能力。
4.及时反馈与指导:在教学过程中,我注重及时解答学生疑问,为学生提供有效的指导。在课后,及时批改作业,为学生提供反馈,帮助学生巩固所学知识,提高学习效果。
一堂课的设计 锐角三角函数(第一课时)教学设计

锐角三角函数(第一课时)教学设计教材版本:人民教育出版社 课型:新授 年级:九年级教学任务分析一、教学目标 (一)知识目标1.理解掌握锐角三角函数的定义及锐角三角函数的表示方法:Sin A =斜边的对边A ∠, cos A =斜边的邻边A ∠,tan A=的邻边的对边A A ∠∠2.掌握锐角三角函数的取值范围。
(二)能力目标1.能根据直角三角形的边长计算锐角三角函数值;2.培养学生从特殊到一般的分析能力。
3正确认识直角三角形中的边角关系 (三)情感态度通过三角函数概念的形成过程,增强数形结合的数学思想意识。
通过一系列的探究学习活动,培养学生合作交流的思想意识,感受数学知识的严谨性 二、教学重点:理解锐角三角函数的定义,计算锐角三角函数值。
三、教学难点:锐角三角函数概念的形成。
教学方法设计一、体现学生的主体地位:学生通过自主完成导学案中的学习任务,真正实现学生是学习的主体,切实提高学生的数学学习能力。
二、体现教师的主导作用:教师通过设计导学案体现教师的主导作用。
以PPT 多媒体课件的播放形式,展示知识的形成过程,体现数学思想方法,反应教学思路。
三、教前准备:(一)教具:三角板、直尺等。
(二)PPT 多媒体课件。
(三)导学案(附后)。
教学流程安排教学过程设计(一)创设情境1、情境之一: ——实际生活情境。
据研究,当高跟鞋的鞋底与地面的夹角为11度左右时,人脚的感觉最舒适。
假设某成年人脚前掌到脚后跟长为15厘米,可算出鞋跟高度在3厘米左右最佳。
怎样将11度的锐角、15厘米的边长用于计算鞋跟的高度呢?显然,高跟鞋的鞋底、鞋跟与地面围成了一个直角三角形,这就需要建立边与角的特殊联系。
由此情境引出课题——“锐角三角函数”2、情境之二:自主探究 ——本节课的新知情境。
探索的问题任务: 如图1, 在Rt △ABC 中,∠A 的度数不变时,斜边的邻边A ∠、斜边的对边A ∠、的邻边的对边A A ∠∠的值是否发生变化?探索的方式、方法:学生分成10个小组,实践一由5个小组完成,另外5个小组完成实践二。
1.1锐角三角函数第1课时正切(教案)

2.引导与启发:在讨论过程中,我将作为一个引导者,帮助学生发现问题、分析问题并解决问题。我会提出一些开放性的问题来启发他们的思考。
3.成果分享:每个小组将选择一名代表来分享他们的讨论成果。这些成果将被记录在黑板上或投影仪上,以便全班都能看到。
-正切表的使用:学会查找和利用正切表解决实际问题,这是进行进一步三角函数学习的基础。
-正切函数性质的探索:了解正切函数的周期性、奇偶性等性质,为学习其他三角函数性质打下基础。
举例:通过具体的直角三角形图形,引导学生理解正切值是如何计算的,以及如何判断正切值的正负。
2.教学难点
-正切概念的内化:学生需要将正切概念从具体的直角三角形中抽象出来,内化为一般的数学定义。
(五)总结回顾(用时5分钟)
今天的学习,我们了解了正切函数的基本概念、重要性和应用。同时,我们也通过实践活动和小组讨论加深了对正切的理解。我希望大家能够掌握这些知识点,并在日常生活中灵活运用。最后,如果有任何疑问或不明白的地方,请随时向我提问。
五、教学反思
在今天的课堂上,我们探讨了锐角三角函数中的正切概念。我发现学生们对于正切的定义和应用有着不错的理解和接受度,但在具体的计算和应用中,还存在一些困难。这让我意识到,在今后的教学中,我需要更加注重以下几个方面:
1.1锐角三角函数第1课时正切(教案)
一、教学内容
《人教版八年级下册数学》第十章“锐角三角函数”第1课时“正切”。本节课主要内容包括以下部分:
1.理解正切的概念:通过对直角三角形的观察,引导学生发现锐角与对边、邻边的比值关系,引出正切函数的定义。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
28.1锐角三角函数(第1课时)教学设计
【教学目标】
1、知识技能:初步了解锐角三角函数的意义,初步理解在直角三角形中一个锐角的对边与斜边的比值就是这个锐角的正弦的定义,并会根据已知直角三角形的边长求一个锐角的正弦值。
2、数学思考:在体验探求锐角三角函数的定义的过程中,发现对同一锐角而言它的对边与斜边的比值不变的规律,从中思考这种对应关系所揭示的数学内涵。
3、解决问题:从实际问题入手研究,经历从发现到解决直角三角形中的一个锐角所对应的对边与斜边之间的关系的过程,体会研究数学问题的一般方法以及所采用的思考问题的方法。
4、情感态度:在解决问题的过程中体验求索的科学精神以及严谨的科学态度,进一步激发学习需求。
学习重点:锐角正弦的定义
学习难点:理解直角三角形中一个锐角与其对边及斜边比值的对应关系。
【教学过程】
活动一、创设情境,导入新课
问题:为了绿化荒山,某地打算从位于山脚下的机井房沿着山坡铺设水管,•在山坡上修建一座扬水站,对坡面的绿地进行喷灌.现测得斜坡与水平面所成角的度数是30°,为使出水口的高度为35m,那么需要准备多长的水管?
(1)解决问题,初步体验
隐去引例中的背景材料后,直观显示出图中的直角三角形,
追问1:你能用数学语言来表述这个实际问题吗?如何解决这个问题?
师生活动:学生组织语言与同伴交流。
教师及时了解学生语言组织情况,并适时引导。
把上述实际问题抽象出数学问题为:
在Rt△ABC中,∠C=90°,∠A=30°,求AB。
C
B
A
设计意图:培养学生用数学语言表达的意识,提高数学表达能力。
追问2:在上面的问题中,如果使出水口的高度为50m ,那么需要准备多长的水管? 追问3:对于有一个锐角为30°的任意直角三角形,30°角的对边与斜边有怎样的数量关系?可以用一个怎样的式子表示?
设计意图:在学生用“直角三角形中,30°角所对的直角边是斜边的一半”解决问题的基础上,引出研究直角三角形中边角关系的具体内容和方式—研究锐角和它的对边与斜边之比之间的关系,为下一环节奠定基础。
(2)类比思考,进一步体验
问题:在直角三角形中,如果锐角的大小发生了改变,其对边与斜边的比值还
是吗?如图,任意画一个Rt △ABC ,使∠C=90°,∠A=45°,计算∠A 的对边
与斜边的比值,由此你能得出什么结论?
师生活动:教师提出问题,学生分组讨论,交流展示。
追问:从上面这两个问题的结论中可知,•在一个Rt △ABC 中,∠C=90°,当∠A=30°时,∠
A 的对边与斜边的比都等于,是一个固定值;•当∠A=45°时,∠A 的对边与斜边的比都等于
,也是一个固定值.这就引发我们产生这样一个疑问:当∠A 取其他一定度数的锐角时,•
它的对边与斜边的比是否也是一个固定值?
设计意图:强化学生对“对边与斜边的比”的关注。
为获得“角度固定,比值也固定”做进一步铺垫。
活动二、证明猜想,形成概念 (1)证明猜想
1
21
22
2
斜边c
对边a
b
C B 问题:任意画Rt △ABC 和Rt △A ′B ′C ′,使得∠C=∠C ′=90°,∠A=∠A ′=a ,那么
有什么关系.你能解释一下吗?
师生活动:教师引导学生将猜想“在Rt △ABC 中,当锐角A 的度数一定时,无论这个直角三角形的大小如何,•∠A 的对边与斜边的比都是一个固定值。
”用数学语言表示并画图,引导学生找到证明猜想的方法,投影显示证明过程。
设计意图:培养学生的推理论证意识,进一步熟悉发现几何结论的基本套路,未引出锐角的正弦概念奠定基础。
(2)形成概念
教师讲解:在直角三角形中,当锐角A 的度数一定时,不管三角形的大小如何,•∠A 的对边与斜边的比都是一个固定值。
这个固定值随锐角A 的度数的变化而变化,由此我们给这个“固定值”以专门名称。
如图:在Rt △BC 中,∠C=90°,
∠A 的对边记作a ,∠B 的对边记作b ,∠C 的对边记作c . 在Rt △ABC 中,∠C=90°,
我们把锐角A 的对边与斜边的比叫做∠A 的正弦,
sinA =A a
A c ∠=∠的对边的斜边
例如,当∠A=30°时,我们有sinA=sin30°= __________;
''''BC B C AB A B 与
(2)13
5
3C
B A
(1)
3
4C
B
A
当∠A=45°时,我们有sinA=sin45°=__________.
设计意图:让学生在一系列的问题解决中,经历从特殊到一般建立数学概念过程,感受定义的方式:先研究合理性,再下定义。
活动三、理解概念,应用提升 (1)例题示范,理解概念
【例1 】 如图,在Rt △ABC 中,∠C=90°,求sinA 和sinB 的值.
教师提问:(1)求sinA 实际上要确定什么?依据是什么?求sinB 呢? (2)它们的对边和斜边都已知吗?未知的怎么办呢? 学生思考作答,教师引导学生规范解题步骤。
设计意图:巩固锐角的正弦概念,规范学生的解题格式。
(2)课堂练习,提升能力 【小试牛刀】 1.判断对错:
1) 如图 (1) sinA=
AB BC
( ) (2)sinB= AB BC ( )
(3)sinA=0.6m ( )
A
10m
6
m
B
C
(4)SinB=0.8 ( )
2)如图,sinA=
AB
BC
( )
2.在Rt △ABC 中,锐角A 的对边和斜边同时扩大100倍,sinA 的值( ) A.扩大100倍 B.缩小 C.不变 D.不能确定
3.如图,∠A=30°,则 sinA=______
C
A B 【火眼金睛】
如图, 在△ABC 中,∠ACB=90°CD ⊥AB.sinB 可以由哪两条线段之比?
设计意图:进一步巩固锐角的正弦概念,加深对它的理解。
活动四、自我评价,总结反思
请同学们根据以下问题回顾本节课的内容: 什么叫锐角的正弦?
┌
A
B D
C
定义锐角正弦的过程、方式是什么?与以前下定义的方式有什么不同?
师生活动:引导学生思考、回答,注意学生语言的组织。
设计意图:引导学生梳理学习内容,提炼学习过程中的数学思想方法。
活动五、作业设置:
1、习题28.1第1题、第2题.(只做与正弦函数有关的部分)
2、拓展提高:
结合右图,思考∠A的其他两边的比值是不是也是唯一确定的?发挥你的聪明才智,动手试一试.。