1.3.2 球的体积和表面积PPT教学课件
合集下载
1.3.2_球的表面积和体积_课件

品质来自专业 信赖源于诚信
掌握球的表面积公式、体积公式的推导过程及主要思 想进一步理解分割→近似求和→精确求和的思想方法.
会用球的表面积公式、体积公式解快相关问题,培养 学生应用数学的能力. 能解决球的截面有关计算问题及球的“内接”与“外 切”的几何体问题.
3
金太阳教育网
金太阳教育网
品质来自专业 信赖源于诚信
1.3.2《球的表面积和体积》
1
金太阳教育网
品质来自专业 信赖源于诚信
教学目标
重点难点
球的体积
球表面积
退出
2
例题讲解
课堂练习
课堂小结
课堂作业 封底
金太阳教育网
教学目标
掌握球的体积、表面积公式.
1 1 1 1 V S1h1 S2 h2 S3 h3 Sn hn 3 3 3 3
15
金太阳教育网
球的表面积
品质来自专业 信赖源于诚信
第 三 步: 化 为 准 确 和
O
hi
S i
Vi
如果网格分的越细,则: “小锥 体”就越接近小棱锥
那么圆的面积就近似等 于R .
2
6
Hale Waihona Puke 金太阳教育网球的体积
品质来自专业 信赖源于诚信
当所分份数不断增加时,精确程度就越来越高;当 份数无穷大时,就得到了圆的面积公式. 分割 求近似和 化为准确和
下面我们就运用上述方 法导出球的体积公式
即先把半球分割成n部分,再求出每一部分的近似体积, 并将这些近似值相加,得出半球的近似体积,最后考虑n变 为无穷大的情形,由半球的近似体积推出准确体积.
品质来自专业 信赖源于诚信
新人教球的体积PPT教学课件

(3)长度为1的向量叫单位向量。
思考:把所有单位向量的
起点集中于一点o,问它
o
们终点的轨迹是什么?
答:如图:轨迹是以o为圆 心,半径为1的圆。
我们知道:对于一个向量,只要不改
变它的大小和方向,是可以任意平行移动
的,与起点无关。这就是常说的:自由向 量。
例子
任一组平行向量都可以移到同一直线上, 因此,平行向量也叫共线向量。
<>
返回
退出
例2:如图设o是正六边形ABCDEF的中
心,分别写出图中与OA向、O量B
(1)相等的向量; (2)共线的向量
解:
B
A
(1)OA CB DO C
OB DC EO
D
O
F
E
(2)OA、CB、DO、EF 为一组共线向量,
OB、DC、EO、AF 为一组共线向量,
<>
返回
退出
练习:已知D、E、F分别是 △ABC各边的终点,
B(终点)
注意字母的顺序是:起点在前,终点在后.
有向线段AB的长度:|AB|
有向线段的三要素:起点、方向、长度.
<>
返回
退出
2)向量的表示法:
yB
①几何表示法:用有向线段表示向量
有向线段的方向表示向量的方向
有向线段的长度表示向量的大小. 0
②字母表示:
a
A x
Ⅰ、用有向线段的起点和终点的大写字母加箭
1.球的直径伸长为原来的2倍,体积变为原来
的几倍?
8倍
2.一个正方体的顶点都在球面上,它的棱长是
4cm,求这个球的体积.
32 3
变式3.有三个球,一球切于正方体的各面, 一球切于正方体的各侧棱,一球过正方体 的各顶点,求这三个球的体积之比.
思考:把所有单位向量的
起点集中于一点o,问它
o
们终点的轨迹是什么?
答:如图:轨迹是以o为圆 心,半径为1的圆。
我们知道:对于一个向量,只要不改
变它的大小和方向,是可以任意平行移动
的,与起点无关。这就是常说的:自由向 量。
例子
任一组平行向量都可以移到同一直线上, 因此,平行向量也叫共线向量。
<>
返回
退出
例2:如图设o是正六边形ABCDEF的中
心,分别写出图中与OA向、O量B
(1)相等的向量; (2)共线的向量
解:
B
A
(1)OA CB DO C
OB DC EO
D
O
F
E
(2)OA、CB、DO、EF 为一组共线向量,
OB、DC、EO、AF 为一组共线向量,
<>
返回
退出
练习:已知D、E、F分别是 △ABC各边的终点,
B(终点)
注意字母的顺序是:起点在前,终点在后.
有向线段AB的长度:|AB|
有向线段的三要素:起点、方向、长度.
<>
返回
退出
2)向量的表示法:
yB
①几何表示法:用有向线段表示向量
有向线段的方向表示向量的方向
有向线段的长度表示向量的大小. 0
②字母表示:
a
A x
Ⅰ、用有向线段的起点和终点的大写字母加箭
1.球的直径伸长为原来的2倍,体积变为原来
的几倍?
8倍
2.一个正方体的顶点都在球面上,它的棱长是
4cm,求这个球的体积.
32 3
变式3.有三个球,一球切于正方体的各面, 一球切于正方体的各侧棱,一球过正方体 的各顶点,求这三个球的体积之比.
人教版高中数学课件-球的表面积和体积

球的體積
已知球的半徑為R,用V表示球的體積.
A
A
r3
O
C2
r2
B2
O
r1
r1
R2 R,
r2
R2 (R)2 , n
r3
R2 (2R)2 . n
球的體積 A
ri
O
R (i 1) n
R
O
第i层“小圆片”下底面的半径:
ri
R2 [ R (i 1)]2 , i 1,2, n. n
球的體積
1.3.2球的表面積和體積
球
人類的家--地球
人類未來的家--火星
探索火星的航太飛船
實際問題
如果用油漆去塗一個乒乓球和一個籃球,且塗 的油漆厚度相同,問哪一個球所用的油漆多?為 什麼?
實際問題
一個充滿空氣的足球和一個充滿空氣的籃球, 球內的氣壓相同,若忽略球內部材料的厚度,則 哪一個球充入的氣體較多?為什麼?
(n
1) n (2n 6
1) ]
12 22 (n 1)2 (n 1)n(2n 1)
6
R 3[1
1 n2
(n
1)(2n 6
1) ]
球的體積
1
1
(1 )(2 )
V半球 R 3 [1
n
n]
6
当n 时, 1 0. n
V半 球
2 R3
3
从而V 4 R3 .
3
定理:半径是R的球的体积为:V 4 R3
解: 3設球 2的 內徑是2xcm,那麼球的品質為:
7.9 4 50 517054 (g) 3
x 11239.42, 3
解得: x 22.4.
2x 44.8.
《球的表面积和体积》人教版高中数学必修二PPT课件(第1.3.2课时)

(3)若两球表面积之比为1:2,则其体积之比是 1: 2 2 .
(4)若两球体积之比是1:2,则其表面积之比是 1: 3 4 .
2、若一个圆锥的底面半径和一个半球的半径相等,体积也相等,则它们的高度之比为( A )
(A)2:1 (B) 2:3 (C) 2:
(D) 2:5
随堂练习
立体图形的内切和外接问题 例4:求球与它的外切圆柱、外切等边圆锥的体积之比。
初态温度T1=(273+27) K=300 K
由 p1V1 p2V2
T1
T2
V2 =
p1T2 p2T1
V1
6.25 m3
课堂训练
3.如图所示,粗细均匀一端封闭一端开口的U形玻
璃管,当t1=31 ℃,大气压强p0=76 cmHg时,
两管水银面相平,这时左管被封闭的气柱长L1=8
10.9150 1635(朵)
答:装饰这个花柱大约需要1635朵鲜花.
新知探究
例3、如图,圆柱的底面直径与高都等于球的直径,求证:
(1)球的体积等于圆柱体积的 2 ; 3
(2)球的表面积等于圆柱的侧面积.
RO
随堂练习
(1)若球的表面积变为原来的2倍,则半径变为原来的 2 倍.
(2)若球半径变为原来的2倍,则表面积变为原来的 4 倍.
3、从微观上说:分子间以及分子和器壁间,除碰撞外无其他作用力,分子本身没有体积,即它 所占据的空间认为都是可以被压缩的空间。
4、从能量上说:理想气体的微观本质是忽略了分子力,没有分子势能,理想气体的内能只有分 子动能。
一、理想气体
一定质量的理想气体的内能仅由温度决定 ,与气体的体积无关.
例1.(多选)关于理想气体的性质,下列说法中正确的是( ABC )
人教版数学高一必修二1.3.2 球的体积和表面积 (共29张PPT)

球半径的求法
——数学必修2
球的概念
•球的旋转定义
半圆以它的直径为旋转轴,旋 转所成的曲面叫做球面.球面所 围成的几何体叫做球体.
•球的集合定义
与定点的距离等于定长的点的集
合,叫做 球面 。
与定点的距离等于或小于定长的
点的集合,叫做球体。
球表面积公式: S 4 R2
球体积公式:
V 4 R3
A C
P
O B
变式:已知球O的面上四点A、B、C、D,DA 平面 ABC,AB BC, DA AB BC a,则球O的体积等于
类型二、直棱柱
例2:已知三棱锥P-ABC中,三角形ABC为等边三角形, 且PA=8,PB=PC= 73,AB=3,则其外接球的体积为
类型三、对棱相等
r 6a 12
6 r内 12 a
R棱=
2a 4
R外=
6 4
a
正四面体的外接球和内切球的球心一定重合
课后练习:利用直角三角形勾股定理求正四面体 的外接球、内切球半径。
P
R A
R O
M B
C D
练习一
课堂练习
1.球的直径伸长为原来的2倍,体积变为原来的_8 倍.
2.一个正方体的顶点都在球面上,它的棱长是4cm, 这个球的体积为___cm3.
R= 2 a 4
正四面体的外接球和棱切球的球心重合。
3.求棱长为a的正四面体的内切球的半径r.
1
1
P
V 3 S底面积 h 3 S全面积 r
S底面积 h S全面积 r
O
S底面积 r 1 S全面积 h 4
A
C M
D
B
r1h 4
——数学必修2
球的概念
•球的旋转定义
半圆以它的直径为旋转轴,旋 转所成的曲面叫做球面.球面所 围成的几何体叫做球体.
•球的集合定义
与定点的距离等于定长的点的集
合,叫做 球面 。
与定点的距离等于或小于定长的
点的集合,叫做球体。
球表面积公式: S 4 R2
球体积公式:
V 4 R3
A C
P
O B
变式:已知球O的面上四点A、B、C、D,DA 平面 ABC,AB BC, DA AB BC a,则球O的体积等于
类型二、直棱柱
例2:已知三棱锥P-ABC中,三角形ABC为等边三角形, 且PA=8,PB=PC= 73,AB=3,则其外接球的体积为
类型三、对棱相等
r 6a 12
6 r内 12 a
R棱=
2a 4
R外=
6 4
a
正四面体的外接球和内切球的球心一定重合
课后练习:利用直角三角形勾股定理求正四面体 的外接球、内切球半径。
P
R A
R O
M B
C D
练习一
课堂练习
1.球的直径伸长为原来的2倍,体积变为原来的_8 倍.
2.一个正方体的顶点都在球面上,它的棱长是4cm, 这个球的体积为___cm3.
R= 2 a 4
正四面体的外接球和棱切球的球心重合。
3.求棱长为a的正四面体的内切球的半径r.
1
1
P
V 3 S底面积 h 3 S全面积 r
S底面积 h S全面积 r
O
S底面积 r 1 S全面积 h 4
A
C M
D
B
r1h 4
课件3:1.3.2 球的体积和表面积

4π5hπ2h2=
25.
跟踪训练4 若两球的表面积之差为48π,它们的半径之和 为6,求两球的体积之差.
解 设两个球的半径分别为 R,r(R>r),
则由题意得 4πR2-4πr2=48π, R+r=6,
∴(R+r)·(R-r)=12, ∴R-r=2, ∴R=4,
R+r=6,
R+r=6, r=2.
两球的体积之差43π×43-43π×23=43π(43-23)=2234π.
∴该圆锥的体积和此球体积的比值为4338ππrr33=392.
答案:
9 32
跟踪训练2 在球面上有四个点P、A、B、C,如果PA、PB、 PC两两垂直,且PA=PB=PC=a,求这个球的体积. 解 ∵PA、PB、PC 两两垂直,PA=PB=PC=a, ∴以 PA、PB、PC 为相邻三条棱可以构造正方体. 又∵P、A、B、C 四点是球面上四点, ∴球是正方体的外接球,正方体的体对角线是球的直径.
(3)∵V 球=43πR3=5030π,∴R3=125,R=5, ∴S 球=4πR2=100π.
跟踪训练 1 如果两个球的体积之比为8∶27,那么这两个球的 表面积之比为________. 解析 根据球的体积及表面积公式可知,两个球的体积之比等 于半径之比的立方,表面积之比等于半径之比的平方. ∵两个球的体积之比为8∶27,∴两个球的半径之比为2∶3, ∴两个球的表面积之比为4∶9. 答案:4∶9
谢 谢!
将球取出后,设容器中水的深度为 h,则水面圆的半径为 33h, 水的体积恒定, 则容器内水的体积是 V′=13π·( 33h)2·h=19πh3. 由 V=V′,得 h=3 15r. 即这时容器中水的深度为3 15r.
跟踪训练 3 将棱长为 2 的正方体木块削成一个体积最大的球,
1.3.2球的体积和表面积 课件

的正视图和俯视图如图所示.若该几何体的表面积
为16+20π ,则r=( B )
A.1
B.2
C.4
D.8
【解析】由正视图和俯视图知,该几何体是半球
与半个圆柱的组合体,圆柱的底面半径与球的半 径都为r,圆柱的高为2r,其表面积为 1 ×4πr2+
2
πr×2r+πr2+2r×2r=5πr2+4r2=16+20π,
R=6,
则球 O 的表面积为 S=4πR2=144π.
5.一个球的半径扩大到原来的3倍,则其表面积扩大 到原来的__9_倍,体积扩大到原来的_2_7_倍.
【解析】设球原来的半径为R,表面积为S表,体积为
V,则扩大后的半径为3R,表面积为 S表,体积为V′,
所以
S表 S表
=
4π(3R)2 4πR2
体积的最大值为 36,则球 O 的表面积为 ( C )
A.36π B.64π C.144π D.256π
【解析】如图所示,当点 C 位于垂直
于面 AOB 的直径端点时,三棱锥 O-ABC
的体积最大,设球 O 的半径为 R,此时
V =V = O-ABC C-AOB
1 3
×
1 2
R2×R=
1 6
R3=36,故
球的表面积是大圆 面积的4倍
球的体积与表面积
1.球的体积公式: V = 4 R 3. 3
2.球的表面积公式: S = 4 R 2 .
例1 如图,圆柱的底面直径与高都等于球的直径.
求证:
(1)球的体积等于圆柱体积的 2. 3
(2)球的表面积等于圆柱的侧面积.
证明:(1)设球的半径为R,则圆柱的底面半径为R,
人教A版高中数学必修二课件第一章1.3.2球的体积和表面积(共41张PPT)

3
答案:288πcm3
5.(2013·新课标全国卷Ⅱ)已知正四棱锥O-ABCD的体积为
底3面2边,长为,则以O为3 球心,OA为半径的球的表面积为
2
_______.
【解析】设正四棱锥的高为h,则 1
3
2
h
3
2,
3
2
解得高h=则3 底2 .面正方形的对角线长为
2
2 3 6,
所以OA=所(3以2球)2的 (表6面)2积为6,
(3)此类问题的具体解题流程:
【变式训练】正方体的内切球和外接球的半径之比为()
A.∶31B.∶2C.2∶3 D.∶3
3
3
【解析】选D.设正方体的棱长为a,则内切球半径为 a ,
2
外接球半径为所以3a 半, 径之比为1∶=∶3. 3 3
2
【规范解答】有关球的计算问题 【典例】【条件分析】
【规范解答】设圆锥的底面半径为r,高为h,母线长为l,
3
3
答案:(1)√(2)√(3)×(4)√
【知识点拨】 1.对球的三点说明 (1)球的表面是曲面,不能展开在一个平面上,因此没有展开图. (2)球既是中心对称的几何体,又是轴对称的几何体,它的任何 截面均为圆面,它的三视图也都是圆. (3)球是一个封闭的几何体,既包括球的表面,又包括球面所包 围的空间.
【解题探究】1.求球的体积和表面积的关键是什么? 2.两个球的体积之比和表面积之比分别与半径有何关系? 3.两个铁球熔化为一个球后,哪一个量是不变的? 探究提示: 1.关键是确定球的半径. 2.两个球的体积之比等于两个球的半径比的立方,表面积之比 等于两个球的半径比的平方. 3.体积不变,即两个小球的体积和应与大球的体积相同.
答案:288πcm3
5.(2013·新课标全国卷Ⅱ)已知正四棱锥O-ABCD的体积为
底3面2边,长为,则以O为3 球心,OA为半径的球的表面积为
2
_______.
【解析】设正四棱锥的高为h,则 1
3
2
h
3
2,
3
2
解得高h=则3 底2 .面正方形的对角线长为
2
2 3 6,
所以OA=所(3以2球)2的 (表6面)2积为6,
(3)此类问题的具体解题流程:
【变式训练】正方体的内切球和外接球的半径之比为()
A.∶31B.∶2C.2∶3 D.∶3
3
3
【解析】选D.设正方体的棱长为a,则内切球半径为 a ,
2
外接球半径为所以3a 半, 径之比为1∶=∶3. 3 3
2
【规范解答】有关球的计算问题 【典例】【条件分析】
【规范解答】设圆锥的底面半径为r,高为h,母线长为l,
3
3
答案:(1)√(2)√(3)×(4)√
【知识点拨】 1.对球的三点说明 (1)球的表面是曲面,不能展开在一个平面上,因此没有展开图. (2)球既是中心对称的几何体,又是轴对称的几何体,它的任何 截面均为圆面,它的三视图也都是圆. (3)球是一个封闭的几何体,既包括球的表面,又包括球面所包 围的空间.
【解题探究】1.求球的体积和表面积的关键是什么? 2.两个球的体积之比和表面积之比分别与半径有何关系? 3.两个铁球熔化为一个球后,哪一个量是不变的? 探究提示: 1.关键是确定球的半径. 2.两个球的体积之比等于两个球的半径比的立方,表面积之比 等于两个球的半径比的平方. 3.体积不变,即两个小球的体积和应与大球的体积相同.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.3.2 球的体积和表面积PPT名师课件
1.3.2 球的体积和表面积PPT名师课件
两个几何体相切:一个几何体的各个面与另 一个几何体的各面相切.
两个几何体相接:一个几何体的所有顶点都 在另一个几何体的表面上
1.3.2 球的体积和表面积PPT名师课件
1.3.2 球的体积和表面积PPT名师课件
复习回顾
1.3.2 球的体积和表面积PPT名师课件
第二步:求近似和
Si
hi
O
O
Vi
Vi 13Sihi
由第一步得: V V 1 V 2 V 3 . . V .n
V 1 3 S 1 h 1 1 3 S 2 h 2 1 3 S 3 h 3 . .1 3 .S n h n
1.3.2 球的体积和表面积PPT名师课件
1.3.2 球的体积和表面积PPT名师课件
第三步:转化为球的表面积
Si
hi
如果网格分的越细,则: “小锥体”就越接近小棱锥。 hi 的值就趋向于球的半径R
Vi
Si
R
O Vi
V 1 3 S iR V1 3 i S 2 R 13 S1 3 iRS 3 R . .1 3 . S n R
1 3 R ( S i S 2 S 3 .. .S n ) 1 3 R①S
2x4.5
答:空心钢球的内径约为4.5cm.
1.3.2 球的体积和表面积PPT名师课件
1.3.2 球的体积和表面积PPT名师课件
(变式2)把钢球放入一个正方体的有盖纸 盒中,至少要用多少纸? 用料最省时,球与正方体有什么位置关系?
球内切于正方体 侧棱长为5cm
S侧65215c0m 2
1.3.2 球的体积和表面积PPT名师课件
V半球 V 1V2 Vn n R3[n1222 n2(n1)2]
n R3[nn 12(n1)n 6(2n1)] R3[1n 12(n1)62 (n1)]
1.3.2 球的体积和表面积PPT名师课件
1.3.2 球的体积和表面积PPT名师课件
定理:半径是R的球的体积 V 4 R3 3
例1.钢球直径是5cm,求它的体积. V4R34(5)312c5m 3 3 32 6
1.3.2 球的体积和表面积PPT名师课件
1.3.2 球的体积和表面积PPT名师课件
1.两种方法:化整为零的思想方法和“分割,求 和,取极限”的数学方法.
2.一个观点:在一定条件下,化曲为直的辨证观
点.
3.一个公式:半径为R的球的体积是V
4
R 3
3
4.解决两类问题:两个几何体相切和相接
作适当的轴截面
球面:半圆以它的直径为旋转轴,旋转所成的曲面。 球(即球体):球面所围成的几何体。
它包括球面和球面所包围的空间。
半径是R的球的体积: V 4R3
3
推导方法:
分割 求近似和 化为准确和
1.3.2 球的体积和表面积PPT名师课件
2、球的表面积 1.3.2 球的体积和表面积PPT名师课件
第一步:分割
O
球的体积: V 4 R3 ②
由①② 得:
3
S4π2R
1.3.2 球的体积和表面积PPT名师课件
1.3.2 球的体积和表面积PPT名师课件
练习一:
(1)若球的表面积变为原来的2倍,则半径变为原来的—2倍。
(2)若球半径变为原来的2倍,则表面积变为原来的—4倍。
(3)若两球表面积之比为1:2,则其体积之比是———。
1.3.2 球的体积和表面积PPT名师课件
Si
O
Vi
球面被分割成n个网格, 表面积分别为:
S 1 , S 2 , S 3 . .S n . 则球的表面积:
S S 1 S 2 S 3 . . S . n
设“小锥体”的体积为:Vi 则球的体积为:
V V 1 V 2 V 3 . . V .n
1.3.2 球的体积和表面积PPT名师课件
1.3.2 球的体积和表面积
学科网,zxxk.fenghuangxueyi
1.3.2 球的体积和表面积PPT名师课件
1、球的A体积 1.3.2 球的体积和表面积PPT名师课件
已知球的半径为R A
ri
Ci
ቤተ መጻሕፍቲ ባይዱ
Bi
O
O.
C2 O
B2
r1 R2 R,
r2
R2 (R)2 , n
1.3.2 球的体积和表面积PPT名师课件
1.3.2 球的体积和表面积PPT名师课件
变式1:一种空心钢球的质量是142g,外径 是5cm,求它的内径.(钢的密度是7.9g/cm2) 解:设空心钢球的内径为2xcm,则钢球
的质量是 7.9[4(5)34x3]142
3 23
x3(5 2)371.94 42 3 1.1 3 由计算器算得: x2.24
1.3.2 球的体积和表面积PPT名师课件
1.球的直径伸长为原来的2倍,体积变为原来
的几倍?
学科网,zxxk.fenghuangxueyi
8倍
2.一个正方体的顶点都在球面上,它的棱长是
4cm,求这个球的体积.
32 3
1.3.2 球的体积和表面积PPT名师课件
1.3.2 球的体积和表面积PPT名师课件
1: 2 2
(4)若两球体积之比是1:2,则其表面积之比是—1—: 3 —4。
1.3.2 球的体积和表面积PPT名师课件
1.3.2 球的体积和表面积PPT名师课件
例1、如图表示一个用鲜 花作成的花柱,它的下面 是一个直径为1m、高为3m 的圆柱形物体,上面是一 个半球形体。如果每平方 米大约需要鲜花150朵, 那么装饰这个花柱大约需 要多少朵鲜花(π取3.1)?
变式3.有三个球,一球切于正方体的各面, 一球切于正方体的各侧棱,一球过正方体 的各顶点,求这三个球的体积之比.
作轴截面
1.3.2 球的体积和表面积PPT名师课件
1.3.2 球的体积和表面积PPT名师课件
例2、某街心花园有许多钢球(钢的密度 是7.9g/cm3),每个钢球重145kg,并且外 径等于50cm,试根据以上数据,判断钢 球是实心的还是空心的。如果是空的,请 你计算出它的内径(π取3.14,结果精确 到1cm)。
r3
R2 (2R)2, n
ri
R2[R(i1)2 ],i1,2 ,n n
1.3.2 球的体积和表面积PPT名师课件
1.3.2 球的体积和表面积PPT名师课件
问题:已知球的半径为R,用R表示球的体积.
V rii R ri22 [R n R n (i 1 n R )学3 科2 ]网[ ,,1 zixxk.f enghu1 ( an,gix2 uey, n i 1 ) ,n 2]i, 1 ,2 ,n