七年级数学42直线射线线段(1)分解
人教版2020-2021学年七年级数学上册4.2直线、射线、线段(第一课时)课件

小试牛刀
2.下列写法正确的是( A.直线A,B相交于点M C.直线a,b相交于点M
C) B.过a,b两点画直线l D.直线a,b相交于点n
3.按下列语句画出图形:
(1) 直线 EF 经过点C; (2) 点 A 在直线 l 外.
解: (1)
E
F (2)
A
l
C
合作探究
探究1. 射线和线段都是直线的一部分,类比直
这醉人春芬去芳春的又季回节,,新愿桃你换生旧活符像。春在天那一桃样花阳盛光开,的心地情方像,桃在 54、少海不壮内要不存为努知它力已的,结老天束大涯而徒若哭伤比,悲邻应。当为Su它nd的ay开, J始u而ly 笑12。, 270.2102J.2u0ly20270.S1u2n.2d0a2y0, 0J9u:l0y51029,:200520097:0/152:0/230290:05:03 这醉人芬芳的季节,愿你生活像春天一样阳光,心情像桃 65、莫吾愁生生前命也路的有无成涯知长,已而,需知天要也下吃无谁饭涯人,。不还识需9时君要5。吃分苦99时时,55吃分分亏91时2。-5JSu分ul-n12d20a-7Jy.u1,l2J-2.u20ly0721.1022,.2020July 20Sunday, July 12, 20207/12/2020
A B
F
E
D
C
直线射线线段(1)课件人教版数学七年级上册

(5)延长线段AB和延长线段BA一样
3、按语句画图:
(1)直线EF 经过点C ; (2)点A在直线l外;
(3)过点O的三条直线a、b、c ;
(4)直线AB、CD相交于点B.
解: 依题意作图如下:
ab
(1). E
C F (3). A
Hale Waihona Puke (4).·O c(2).
C
l
A DB
4、指出下图中线段、射线、直线分别有多少条?
解:画图如图所示:
A
O
C
B
1、请用两种方式表示图中的两条直线:
解: (1) 直线 AO、直线 BO; (2) 直线 m、直线 n
m
n
A
O
B
2、判断下列说法是否正确 (1)线段AB和射线AB都是直线AB的一部分 (2)直线AB和直线BA是同一条直线; (3)射线AB和射线BA是同一条射线; (4)把线段向一个方向无限延伸可得到射线,
A
B
C
答: 有3条线段; 有6条射线; 一条直线.
找射线方法:先找端点,再确定每个端点处射线数量
画 (1)经过一点O可以画几条直线?
一 (2)经过两点A、B可以画直线吗?可以画几条?
画
·A
B
·o
·
性质1:经过一点可 画无数条直线
性质2:经过两点有一条直线, 并且只有一条直线
基本事实:两点确定一条直线
向两端无限延伸
可否度量 可度量 不可度量 不可度量
A
B
线段 AB(或线段BA)
O
A
射线 OA
第一个字母O表示端点,射线OA和射线AO不一样
ACB
人教版七年级数学上册《几何图形初步——直线、射线、线段》教学PPT课件(4篇)

4.2 直线、射线、线段
知识回顾 你还记得这些朋友吗?
直线
射线
线段
知识回顾
概念 名称 直线
射线
线段
延伸方向
可以向两个相反 方向无限延伸 可以向一方无限延伸
不能向任何一方延伸
端点 个数
能否度量
无
不能
一个
不能
两个
能
探究一
如果你想将一根细木条固定在墙上, 至少需要几个钉子?
探究四 由直线可以得到线段、 射线
线段是直线上两个点和它们之间的部分
●
●
射线是直线上的一点和它一旁的部分
●
射线、线段、都是直线的一部分.
探究四
试着描述下图中点与直线的位置关系.
l P· O·
a 点 O 在直线 l 上;点 P不在直线 l 上. b 直线 l 经过点 O;直线 l 不经过点 P.
探究四
两点确定一条直线可以用来说明生活中的现象: 2. 植树时,只要定出两个树坑的位置,就能使同一行 树坑在一条直线上.
两点确定一条直线可以用来说明生活中的现象: 3. 射击的时候,你知道是如何瞄准目标的吗?
如图,有哪些方法可以表示下列直线? m
CE 直线 m、直线 CE、直线 EC
表示直线的方法 ①用一个小写字母表示,如直线m; ②用两个大写字母表示,注:这两个大写字
·A ·O
·B
经过两点有一条直线,并且只有一条直线. 简述为:两点确定一条直线.
如果你想将一根木条固定在墙上并使其不能转动,至少 需要几个钉子?你知道这样做的依据是什么吗?
两点 依据:两点确定一条直线
两点确定一条直线可以用来说明生活中的现象: 1. 建筑工人砌墙时,会在两个墙角的位置分别插一根 木桩,然后拉一条直的参考线.
人教版七年级数学上册:第四章4.2《直线、射线、线段》例题与讲解

4.2 直线、射线、线段1.直线(1)概念:直线是最简单、最基本的几何图形之一,是一个不作定义的原始的概念,直线常用“一根拉得很紧的细线”,“一张纸的折痕”等实际事物进行描述.(2)特点:直线向两方无限延伸,不可度量,没有粗细;并且同一平面内的两条相交直线只有一个交点.(3)直线的基本性质:经过两点有一条直线,并且只有一条直线.即“两点确定一条直线”.(4)直线的两种表示法:一是用一个小写字母表示:如直线a,b,c或直线l等.另一个是用直线上两个点的大写字母表示,如:直线AB或直线BA.如图:表示为直线l或直线AB(点的字母位置可以交换).(5)直线与点的位置关系:一是点在直线上,也叫做直线经过这点;另一种是点在直线外,也叫做直线不经过这个点.【例1-1】下面几种表示直线的写法中,错误的是().A.直线a B.直线MaC.直线MN D.直线MO解析:直线的表示法有两种,一种是用一个小写字母表示,另一种是用直线上两个点的大写字母表示,所以直线Ma这种表示法不正确,故选B.答案:B【例1-2】如图,下列说法错误的是().A.点A在直线m上B.点A在直线l上C.点B在直线l上D.直线m不经过B点解析:点与直线有两种位置关系,一是点在直线上,也称作直线过这点,另一种是点在直线外.所以C错误.答案:C2.射线(1)定义:直线上一点和它一旁的部分,叫做射线.它是直线的一部分.如图就是一条射线,其中O是射线的端点.(2)表示法:同直线一样,射线也有两种表示方法,一种是用一个小写字母表示:如射线a,b,c或射线l等,另一个是用射线上两个点的大写字母表示,其中前面的字母表示的点必须是端点.如图:表示为射线l或射线OA.注意:表示射线端点的字母一定要写在前面.(3)特点:射线只有1个端点,向一方无限延伸,因此不可度量.【例2-1】如图,若射线AB上有一点C,下列与射线AB是同一条射线的是().A.射线BA B.射线ACC.射线BC D.射线CB解析:端点相同,在同一条直线上,且方向一致,就是同一条射线,所以B正确.答案:B3.线段(1)定义:直线上两点和它们之间的部分,叫做线段.它是直线的一部分.(2)特点:有两个端点,不能向两方无限延伸,因此它有长度,有大小.(3)表示法:同直线一样,线段也有两种表示法,一种是用一个小写字母表示,如线段a,b,c.另一种是用线段两个端点的大写字母表示.如图:可以表示为:线段AB或线段BA,或线段a.(4)线段的基本性质:两点的所有连线中,线段最短,简单的说成:“两点之间,线段最短.”意义:选取最短路线的原则和依据.(5)两点间的距离:连接两点的线段的长度,叫做这两点间的距离.破疑点线段的表示表示线段的两端点的字母可以交换,如线段AB也是线段BA,但端点字母不同线段就不一样.【例3】如图有几条直线?几条射线?几条线段?并写出.分析:直线主要看有几条线向两方无限延伸,图中只有一条;射线主要看端点,再看延伸方向,3个端点,所以有6条,线段主要是看端点,3个端点,所以有3条.解:有一条直线AB(或AC,AD,AE,BE,BD,CD,…);射线有6条:CA,CB,DA,DB,EA,EB.线段有3条:CD,CE,DE.4.线段的画法(1)画一条线段等于已知线段画法:①测量法:用刻度尺先量出已知线段的长度,画一条等于这个长度的线段;②尺规法:如图:画一条射线AB,在这条射线上截取(用圆规)AC=a.(2)画线段的和差测量法:量出每一条线段的长度,求出它们的和差,画一条线段等于计算结果的长度.如:已知线段a,b(a>b),画线段AB=a-b,就是计算出a-b的长度,画出线段AB等于a-b 的长度即可.尺规法:如图,已知线段a,b,画一条线段,使它等于2b-a.画法:如图,①画一条射线AB,在这条射线上连续截取(用圆规)AC=2b,②再以A为一个端点,截取AD=a,那么DC=2b-a.【例4】如图,已知线段a,b,c,画一条线段,使它等于a+b-c(用尺规法).画法:如图,①画射线(直线也可)AB,在射线AB上分别截取AC=a,CD=b.②以D为一个端点在AD上截取DE=c,线段AE即为所求.5.线段的比较(1)测量法:就是用刻度尺测量出两条线段的长度,再比较它们的大小.(2)叠合法:把两条线段的一端对齐,放在一起进行比较.如图:①若C 点落在线段AB 内,那么AB >AC ;②若C 点落在线段AB 的一个端点上,那么AB =AC ;③若C 点落在线段AB 外(准确的说是AB 的延长线上),那么AB <AC .谈重点 线段的比较 用叠合法比较两条线段的大小,一端一定要对齐,看另一个端点的落点,测量法要注意单位的统一.【例5】 已知:如图,完成下列填空:(1)图中的线段有________、________、________、________、________、________共六条.(2)AB =________+________+________;AD =________+________;CB =_______+__________.(3)AC =AB -__________;CD =AD -__________=BC -__________;(4)AB =__________+__________.解析:根据图形和线段间的和差关系填空,注意(4)题有两种可能.答案:(1)AC AD AB CD CB DB(2)AC CD DB AC CD CD DB(3)CB AC DB(4)AD DB 或AC CB6.线段中点、线段等分点(1)定义:点M 把线段AB 分成相等的两条线段AM 与MB ,点M 叫做线段AB 的中点.(2)拓展:把一条线段分成相等的三条线段的点叫做这条线段的三等分点….(3)等量关系:在上图中:AM =BM =12AB ;2AM =2BM =AB . 【例6】 如图,点C 是线段AB 的中点.(1)若AB =6 cm ,则AC =__________cm.(2)若AC =6 cm ,则AB =__________cm.解析:若AB =6 cm ,那么AC =12AB =3(cm). 若AC =6 cm ,那么AB =2AC =2×6=12(cm).答案:3 127.关于延长线的认识延长线是重要的,也是应用较多的几何术语,是初学者最易错,最不好理解的地方,下面介绍几种关于延长线的术语:如图(1)延长线段AB ,就是由A 往B 的方向延长,并且延长线一般在作图中都用虚线表示;如图(2)叫做反向延长线段AB ,就是由B 向A 的方向延长;如图(3)延长AB 到C ,就是到C 不再延长;如图(4)延长AB 到C ,使AB =BC ;如图(5)点C 在AB 的延长线上等.几种常见的错误,延长射线AB 或延长直线AB ,都是错误的,图(6)中只能反向延长射线AB .【例7-1】 若AC =12AB ,那么点C 与AB 的位置关系为( ). A .点C 在AB 上 B .点C 在AB 外C .点C 在AB 延长线上D .无法确定答案:D【例7-2】 画线段AB =5 cm ,延长AB 至C ,使AC =2AB ,反向延长AB 至E ,使AE =13CE ,再计算: (1)线段AC 的长;(2)线段AE ,BE 的长.分析:按要求画图.由画图过程可知:AC =2AB ,且C 在AB 的延长线上,所以AB =BC =12AC ,E 在AB 的反向延长线上,且AE =13CE ,所以AB =BC =AE =5 c m.解:如图:(1)因为AC =2AB ,所以BC =AB =5 cm ,所以AC =AB +BC =5+5=10 (cm).(2)因为AE =13CE ,所以AE =AB =BC =5 cm , 所以BE =AB +AE =5+5=10 (cm).8.线段的计数公式及应用一条直线上有n 个点,如何不重复不遗漏地数出该直线上分布着多少条线段呢?以下图为例:为避免重复,我们一般可以按以下方法来数线段的条数:即A →AB ,AC ,AD ,B →BC ,BD ,C →CD ,线段总数为3+2+1=6,若是更多的点,由以A 为顶点的线段的条数可以看出,每个点除了自身以外,和其他任何一个点都能组成一条线段,因此当有n 个点时,以A 为顶点的线段就有(n -1)条,同样以B 为顶点的线段也有(n -1)条,因此n 个顶点共有n (n -1)条线段;但由A 到B 得到的线段AB 和由B 到A 得到的线段BA 是同一条,而每条线段的数法都是如此,这样对于每一条线段都数了2次,所以除以2就是所得线段的实际条数,即当一条直线上有n 个点时,线段的总条数就等于12n (n -1). 【例8-1】 从秦皇岛开往A 市的特快列车,途中要停靠两个站点,如果任意两站之间的票价都不相同,那么有多少种不同的票价?有多少种车票?分析:这个问题相当于一条直线上有4个点,求这条直线上有多少条线段.因为任意两站之间的票价都不相同,因此有多少条线段就有多少种票价,根据公式我们很快可以得出有6种不同的票价,因为任意两站往返的车票不一样,所以,从秦皇岛到达目的地有12种车票.解:当n =4时,有n (n -1)2=4×(4-1)2=6(种)不同的票价.车票有6×2=12(种).答:有6种不同的票价,有12种车票.【例8-2】 在1,2,3,…,100这100个不同的自然数中任选两个求和,则不同的结果有多少种?分析:本题初看似乎和线段条数的计数规律无关,但事实上,若把每个数都看成直线上的点,而把这两个数求和得到的结果看成是1条线段,则其中的道理就和直线上线段的计数规律是完全一致的,因而解法一样,直接代入公式计算即可求出结果.解:不同的结果共有:12n (n -1)=12×100×(100-1)=4 950(种). 答:共有4 950种不同的结果. 9.与线段有关的计算和线段有关的计算主要分为以下三种情况:(1)线段的和差及有关计算,一般比较简单,根据线段间的和差由已知线段求未知线段.(2)有关线段中点和几等分点的计算,是本节的重点,其中以中点运用最多,这也是用数学推理的方式进行运算的开始.(3)综合性的运算,既有线段的和差,也有线段的中点,综合运用和差倍分关系求未知线段.解技巧 线段的计算 有关线段的计算都是由已知,经过和差或中点进行转化,求未知的过程,因此要结合图形,分析各段关系,找出它们的联系,通过加减倍分的运算解决.【例9-1】 如图,线段AB =8 cm ,点C 是AB 的中点,点D 在CB 上且DB =1.5 cm ,求线段CD 的长度.分析:根据中点关系求出CB ,再根据CD =CB -DB 求出CD .解:CB =12AB =12×8=4(cm),CD =CB -DB =4-1.5=2.5(cm). 答:线段CD 的长度为2.5 cm.【例9-2】 如图所示,线段AB =4,点O 是线段AB 上一点,C ,D 分别是线段OA ,OB 的中点,求线段CD 的长.解:由于C ,D 分别是线段OA ,OB 的中点,所以OC =12OA ,OD =12OB ,所以CD =12(OA +OB )=12AB =12×4=2. 答:线段CD 的长为2.10.直线相交时的交点数两条直线相交有1个交点,三条直线两两相交最多有3个交点,那么n 条直线两两相交最多有多少个交点?下面以5条直线两两相交最多有多少个交点为例研究:如图,当有5条直线时,每条直线上有4个交点,共计有(5-1)×5个交点,但图中交点A ,既在直线e 上也在直线a 上,因而多算了一次,其他交点也是如此,因而实际交点数是(5-1)×5÷2=10个,同样的道理,当有n 条直线时,在没有共同交点的情况下,每条直线上有(n -1)个交点,共有n 条直线,交点总数就是n (n -1)个,但由于每一个点都数了两次,所以交点总数是12n (n -1)个. 【例10-1】 三条直线a ,b ,c 两两相交,有__________个交点( ).A .1B .2C .3D .1或3解析:三条直线a ,b ,c 两两相交的情形有两种,如图.答案:D【例10-2】 同一平面内的12条直线两两相交,(1)最多可以有多少个交点?(2)是否存在最多交点个数为10的情况?分析:(1)将n =12代入12n (n -1)中求出交点个数.(2)交点个数为10,也就是12n (n -1)=10,即n (n -1)=20,没有两个相邻整数的积是20,所以不存在最多交点个数是10的情况.解:(1)12条直线两两相交,最多可以有:12n (n -1)=12×12×(12-1)=66(个)交点. (2)不存在最多交点个数为10的情况.11.最短路线选择“两点之间,线段最短”是线段的一条重要性质,运用这个性质,可以解决一些最短路线选择问题.这类问题一般分两类:一类是选择路线,选择从A 到B 的最短路线,连接AB 所得到的线段就是;另一类是选择一个点,使这个点到A ,B 的距离之和最小,根据“两点之间,线段最短”这条线段上的任一点到A 到B 的距离之和都等于这条线段的长度,所以这条线段上的任一点都符合要求.但这类问题往往还有附加条件,如:这点还要在某条公路上,某条河上等,所以要满足所有条件.解技巧 求最短路线 对于第一类问题,只要将A ,B 放到同一个平面上,连接AB 即可得到所需线路.对于第二类问题,连接AB ,它们的交点一般就是所求的点.【例11】 如图(1),一只壁虎要从圆柱体A 点沿着表面尽可能快的爬到B 点,因为B 点处有它要吃的一只蚊子,则它怎样爬行路线最短?分析:要想求最短路线,必须将AB 放置到一个平面上,根据“两点之间,线段最短”,连接AB ,所得路线就是所求路线,因此将圆柱体的侧面展开如图(2)所示,连接AB ,则AB 是壁虎爬行的最短路线.解:在圆柱上,标出A ,B 两点,将圆柱的侧面展开(如图(2)),连接AB ,再将圆柱复原,会得到围绕圆柱的一条弧线,这条线就是所求最短路线.析规律 立体图形中的最短路线 在立体图形中研究两点之间最短路径问题时,通常把立体图形展开成平面图形,转化为平面图形中的两点间的距离问题,再用平面内“两点之间,线段最短”求解.。
七年级数学上册教学课件《直线、射线、线段》

课堂小结
平面图形
直线 射线 线段
没有端点 1个端点 2个端点
课后作业
1.从课后习题中选取; 2.完成练习册本课时的习题。
强化练习 1.按下列语句画出图形: a.点A在线段MN上 b.射线AB不经过点P
c.经过点O的三条线段a、b、c
随堂演练
1.下列语句准确规范的是( D)
A.直线 a,b 相交于一点 m B.延长直线 AB
C.延长射线 AD 到点 B ( A是端点) D.直线 AB、CD 相交于点 M
【课本P126 练习 第1题】
4.2 直线、射线、线段 第1课时 直线、射线、线段
七年级上册
新课导入
我们在小学就已经学过线段、射线和直 线,你能形象地说出它们的意义吗?你还 能说说它们的联系与区别吗?这节课我们 就开始进一步对它们的意义、表示法及联 系进行研究.
(1)知道直线公理,知道点和直线的位置关系. (2)知道直线、射线、线段的表示方法. (3)初步体会几何语言的应用.
推进新课
知识点1 直线 思考 经过一点画直线,能画几条?经过两 点呢?动手试一试.
· 无数条
O
A·
1条
B·
经过两点有一条直线,并且只有一条直 线.即两点确定一条直线.
思考 你能找出生活中应用“两点确定一条直线”原 理的例子吗?
砌墙时常在墙角分别 固定一木桩,可以拉 一条直的参照线.
做家具时弹墨线.
判断下列说法是否正确: a.线段 AB 与射线 AB 都是直线 AB 的一部分. b.直线 AB 与直线 BA 是同一条直线.
c.射线 AB 与射线 BA 是同一条射线. × d.端点重合的两条射线一定是同一条射线. ×
根据前面的讨论,你能总结出直线、 射线、线段之间的关系吗?
部编版数学七年级上册24-第四章直线、射线、线段

当BN=
1 3
BC时,有MN=13
BC-
1 2
AB=4-3=1;
图4-2-14
②如图4-2-15所示,
2
21
当BN= 3 BC时,有MN=3 BC-2 AB=8-3=5.
综上所述,MN的长为7或11或1或5.
图4-2-15
点拨 在求解没有图形的几何题时,应根据题意画出图形,同时注意图形的多样 性,以免漏解.
知识点二 射线
定义
表示方法
图形示例
射线
直线上一点和它一 (1)用表示射线的
旁的部分叫做射 端点和射线上另一 射线OA或射线l 线,这一点叫做射 点的大写字母表示
线的端点
(2)用一个小写字
母表示
特征
①有一个端点; ②有方向; ③无长短
例2 图4-2-2中有几条射线?其中可表示的是哪几条?
图4-2-2
知识点三 线段 8.如图4-2-5所示,线段AB=DE,点C为线段AE的中点,下列式子不正确的是 ( )
A.BC=CD B.CD= 1 AE-AB
2
C.CD=AD-CE D.CD=DE
图4-2-5
答案 D 因为点C为线段AE的中点,且线段AB=DE,所以BC=CD,故A选项正确,不
符合题意;CD=CE-DE= 1 AE-DE= 1 AE-AB,故B选项正确,不符合题意;CD=AD-AC=
5.如图4-2-3:
(1)试验观察: 如果经过两点画直线,那么:
图4-2-3
第1个图形最多可以画
条直线;第2个图形最多可以画
条直线;
第3个图形最多可以画
条直线;
(2)探索归纳:
如果平面上有n(n≥3)个点,且任意3个点均不在一条直线上,那么经过两点最多可
初一数学(人教版)直线、射线、线段(一)

O c
课堂小结
1.基本事实: 经过两点有一条直线,并且且只有一条
直线.(两点确定一条直线)
课堂小结
2.直线、射线、线段的表示方法: (1)用一个小写英文字母表示; (2)用线上的两个点表示.
A a
A
O
l 直线l或直线 AB(BA)
B
线段 a或线段 AB(BA)
B
l 射线l或射线OA
A
经过两点有一条直线, 并且只有一条直线. (两点确定一条直线)
“有”——存在, “只有”——唯一, “确定”——“有且仅有”.
新课讲解
思考: (4)在日常生活和生产中常常用到这个 基本事实.想一想生活中你见过运用这 个基本事实的例子吗?
新课讲解
如 用一个钉子把一根细木条钉在墙 上,木条能绕着钉子转动,这表明
区别 端点 长度 两个 有限
一个 无限
无 无限
新课讲解
思考: (1)经过一个点能画几条直线?
A
经过一个点能画无数条直线.
新课讲解
思考: (2)经过两个点能画出几条直线呢?
B
A
A
A
B B
新课讲解
基本事实: 经过两点有一条直线,并且只有一条直线.
B A
简单说成:两点确定一条直线.
思考: (3)经过两个点能画出几条曲线或折线呢?
直线a和直线
a
b
b相交于点O.
O
例题讲解
例1 读下列语句,分别画出图形. (1)直线AB经过点M ,点N在直线AB外;
N
B M A
例题讲解
例1 读下列语句,分别画出图形. (2)直线AB与CD相交于点O;
A D
O C
人教版七年级数学上册直线、射线、线段课件(1)

6. 常用几何语句: (1)如图4-2-4,点A在直线m上或直线m经过点A; (2)如图4-2-5,点B不在直线n上或直线n不经过 点B; (3)两条不同的直线不可能有两个或两个以上的公共点, 如果有两个公共点,这两条直线就相互重合,两条直线有
一个公共点,叫做这两条直线相交,这个公共点叫做这两 条直线的交点. 如图4-2-6,可以说成直线a与直线b相交 于点O.
A. 直线AB与直线BA是同一条直线 B. 射线OA与射线OB是同一条射线 C. 射线OA与射线AB是同一条射线 D. 线段AB与线段BA是同一条线段
5. 如图4-2-21,共有线段
()
A. 3条
B. 4条
C. 5条
D. 6条
6. 如图4-2-22,AB=CD,则AC与BD的大小关系是 ( )
A. AC>BD C. AC=BD
线段的中点及等分点
1. 线段的中点及等分点的概念:如图4-2-26①所示,点B把线 段AC分成两条相等的线段,点B叫做线段AC的中点. 有AB=BC= AC. 如图4-2-26②所示,点B和点C把线段AD分成三条相等的线 段,点B、点C叫做线段AD的三等分点,有AB=BC=CD= AD.
类似的还有线段的四等分点、五等分点等.
4. 线段的特点:有两个端点,不能向任何一方延伸, 可以度量,可以比较长短.
5. 常用几何语句; (1)连接AB,就是指画出以A,B为端点的线段; (2)延长线段AB,是指按照从A到B的方向画出的不属 于原线段的几何图形,如图4-2-11,线段的延长线一般 用虚线表示. 延长线段AB可以看作反向延长线段 BA.
点,就有AB=2AM=2MB,AM=MB= AB. 反过
来,如果点M在线段AB上,且有同样的数量关系,那么 点M是线段AB的中点,这对于以后的学习(用符号表示推 理)是很有帮助的.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
练习2、按下列语句画出图形
(1)直线 EF经过点 C
F
E
C
(2)点A在直线 l外 A
l
两直线相交
当两条不同的直线有一个公共点时,称这两 条直线相交。这个公共点叫做它们的交点。
O
a
b
直线a和b相交于点O
练习3、按下列语句画出图形 (1)经过点O的三条线段a,b,c
比较线段长短的两种方法
叠合法——从“形”的角度比较. 度量法——从“数值”的角度比较.
Company Logo
比较两条线段大小(长短)的方法:
目测法; 直接观察,目测判断。 (不准确,也不十分可靠,不建议采用)
度量法; 用刻度尺分别量出线段AB、线段CD的长度,再比较线段AB、
画一画
1.过一点A画一条直线.
请问可以画几条?
2.过两点A、B可以画几条直线?
·A
请动手试一试.
A
B
过一点A可以画 无数条直线
感悟数学事实 直线的基本性质/直线公理
经过两点有一条直线,并且只有一条直线。 简述为: 过两点有且只有一条直线。 或简述为: 两点确定一条直线。
建筑工人在砌墙时会在墙的两头分别固定一根木桩, 然后拉一条直的参照线,这样砌出的墙就是直的
A
B
直线AB
线段的表示
A
B
线段AB
射线的表示
O
A
射线OA
l
直线l
a
线段a
l
射线l
Company Logo
如何比较两个人的身高?
我身高1.53米, 比你高3厘米。
我身高1.5米。
Company Logo
Company Logo
②用一个小写英文字母表示
射线m
直线
①用直线上任意两点的大写字母表示
l 直线MN(或直线NM)
MN
②用一个小写英文字母表示 直线l
下列图形的表示方法是否正确?若错误,请改正
1: A 2: O
B 可以表示为AB(× )
线段AB
Aa
可以表示为射线Oa( ×)
射线OA
射线AO ×
3:
Aa
可以表示为直线A(×)
4.2 直线、射线、线段
以下三个箱子中各有一个数学谜语,你能选择一 个猜出谜底吗?
有始有终——
有始无终——
无始无终——
打一线的名称。 打一线的名称。 打一线的名称。
线段
射线
直线
输油管
铁轨
数学来源于生活
探照灯光
人行横道
联系:线段、射线是直线的一部分
议一议它们之间的区别:
端点数 延伸性
能否度 量
线段CD的长短(大小)。 (近似值)
叠合法。 将一条线段放在另一条线段上,使它们的一个端点重合,观察
另一个端点的位置关系。
看下面这三幅图片谁高谁矮?你是 依据什么判断的 ?
Company Logo
怎样比较两条线段的大小(长短)?
A
B
C
D
两条线段的大小(长短)关系:
(1)AB > CD; (2)AB = CD; (3)AB < CD;
合作学习:
怎样比较两根细木条的长短?
Company Logo
Company Logo
观察下列三组图形,你能看出每组图 形中线段a与b的长短吗?
bab(1)来自aa (2) b
(3)
Company Logo
第一种方法: 度量法 用一把尺子量出两根绳子的长度,再进行比较.
直线a
图形 线
段 .A a B.
射
· A
线
· O
直. a·
A
B
线
表示法
线段AB 线段BA 线段a
端点 延伸 个数 方向
2
无
度量
可 度 量
方向性
无
不
射线OA
1 一方 可
有
度
量
直线AB 直线BA 直线a
0
不
两方
可 度
无
量
用两种方式表示图中的两条直线
m A
n O
B
解 直线OB(也可以表示直线m), 直线OA(也可以表示直线n)
线段 2个 不能延伸 可度量
射线
1个
向一个方向 不可 无限延伸 度量
向两个方向 不可 直线 无端点 无限延伸 度量
线段、射线、直线的表示方法
线段 A
a
①用两个端点的大写字母表示 线段AB(或线段BA)
B
②用一个小写英文字母表示
线段a
射线
O
m
P
①用端点字母和射线上另一个字母表示 射线OP 注:端点字母必须写在前面
a O
b c (2)线段AB,CD相交于点B C B A
D
尺规作图 用无刻度的直尺和圆规作图
Company Logo
直线公理
经过两点有一条直线,并且只有一条 直线。
(两点确定一条直线。)
直线、线段、射线的表示 用两个大写字母表示;
用一个小写字母表示。
直线的表示
3.1cm 4.1cm
0
11
22
33
44
55
66
77
88
第二种:
叠合法
先把两根绳子的一端重合,另一端落在同侧,
根据另一端落下的位置来比较.
试比较绳子AB与绳子CD、绳子EF、绳子MN的大小?
A
BC
E
FM
D N
①C ②E ③M
D
F N
AB=CD AB>EF AB<MN
Company Logo
木工师傅经过刨平的木板上的两个点,能弹出一条笔 直的墨线
点和直线的位置关系
1、点在直线上或直线经过点
A
l
点A在直线 l上 或 直线 l 经过点 A 2、点在直线外或直线不经过点
B
l
点B在直线 l外 或 直线 l 不经过点 B
练习1、用适当的语言描述图中点与直线的关系 P
A
B
l
点A、B在直线 l上(或直线 l 经过点 A、B)