小学数学:浓度问题

合集下载

完整版小学数学浓度问题

完整版小学数学浓度问题

小升初专题:浓度问题在百分数应用题中有一类叫溶液配比问题,即浓度问题。

我们知道,将糖溶于水就得到了糖水,其中糖叫溶质,水叫溶剂,糖水叫溶液。

如果水的量不变,那么糖加得越多,糖水就越甜,也就是说糖水甜的程度是由糖〔溶质〕与糖水〔溶液=糖+水〕二者质量的比值决定的。

这个比值就叫糖水的含糖量或糖含量。

类似地,酒精溶于水中,纯酒精与酒精溶液二者质量的比值叫酒精含量。

因而浓度就是溶质质量与溶液质量的比值,通常用百分数表示,即,溶质质量溶质质量浓度=溶液质量×100%=溶质质量+溶剂质量×100%解答浓度问题,首先要弄清什么是浓度。

在解答浓度问题时,根据题意列方程解答比拟容易,在列方程时,要注意寻找题目中数量问题的相等关系。

浓度问题变化多,有些题目难度较大,计算也较复杂。

要根据题目的条件和问题逐一分析,也可以分步解答。

浓度问题的内容与我们实际的生活联系很紧密,就知识点而言它包括小学所学2个重点知识:百分数,比例。

一、浓度问题中的根本量溶质:通常为盐水中的“盐〞,糖水中的“糖〞,酒精溶液中的“酒精〞等溶剂:一般为水,局部题目中也会出现煤油等溶液:溶质和溶剂的混合液体。

浓度:溶质质量与溶液质量的比值。

二、几个根本量之间的运算关系1、溶液=溶质+溶剂2、浓度=溶质溶质100%=100%溶液溶质+溶液三、解浓度问题的一般方法1、寻找溶液配比前后的不变量,依靠不变量建立等量关系列方程2、十字交叉法:(甲溶液浓度大于乙溶液浓度)甲溶液质量A B 甲溶液与混合溶液的浓度差形象表达:B A 乙溶液质量混合溶液与乙溶液的浓度差注:十字交叉法在浓度问题中的运用也称之为浓度三角,浓度三角与十字交叉法实质上是相同的.浓度三角的表示方法如下:1混合浓度z%x-z z-y甲溶液乙溶液浓度x%浓度y%z-y : x-z甲溶液质量: 乙溶液质量3、列方程解应用题也是解决浓度问题的重要方法.【例1】有含糖量为7%的糖水600克,要使其含糖量加大到 10%,需要再参加多少克糖?【思路导航】根据题意,在7%的糖水中加糖就改变了原来糖水的浓度,糖的质量增加了,糖水的质量也增加了,但水的质量并没有改变。

小学生奥数浓度问题五篇(最新)

小学生奥数浓度问题五篇(最新)

【#小学奥数# 导语】奥数是奥林匹克数学竞赛的简称。

1934年—1935年,前苏联开始在列宁格勒和莫斯科举办中学数学竞赛,并冠以数学奥林匹克竞赛的名称,1959年在布加勒斯特举办第一届国际数学奥林匹克竞赛。

以下是?无忧考网整理的《小学生奥数浓度问题五篇》相关资料,希望帮助到您。

1.小学生奥数浓度问题1、有甲乙两只桶,甲桶盛了半桶水,乙桶盛了不到半桶纯酒精,先将甲桶的水倒入乙桶,倒入的容量与乙桶的酒精量相等;再将乙桶的溶液倒入甲桶,倒入的容量与甲桶剩下的水相等;再将甲桶的溶液倒入乙桶,倒入的容量与乙桶剩下的溶液量相等;再将乙桶的溶液倒入甲桶,倒入的容量与甲桶剩下的溶液量相等。

此时,恰好两桶溶液的数量相等,求些时甲,乙两桶酒精溶液的浓度比。

2、甲桶中装有10升纯酒精,乙桶中装有6升纯酒精与8升水的混合物,丙桶中装有10升水,现在先从甲桶向乙桶倒入一定量的酒精,并搅拌均匀;然后从乙桶向丙桶倒入一定量的液体,并搅拌均匀;接着从丙桶向甲桶倒入一定是的液体,最后各桶中的酒精浓度分别为:甲桶75%,乙桶50%,丙桶25%,那么此时丙桶中有混合液体多少升?3、甲容器中有500克20%的盐水,乙容器中有500克水。

先将甲中一半的盐水倒入乙,充分搅拌;再将乙中一半的盐水倒入甲,充分搅拌;最后将甲中盐水的一部分倒入乙,使甲、乙的盐水重量相同。

求此时乙中盐水的浓度。

2.小学生奥数浓度问题1、甲容器中有浓度4%的盐水150克,乙容器中有某种浓度的盐水若干。

从乙中取出450克盐水,放入甲中混合成浓度为8.2%的盐水,再把水倒入乙容器中,使与甲的盐水一样多,现在乙容器中盐水浓度为1.12%,问原来乙容器中有多少克盐水?浓度的百分数是多少?2、甲容器中有8%的食盐水300克,乙容器中有12.5%的食盐水120克。

往甲、乙两个容器分别倒入等量的水,使两个容器的食盐水浓度一样。

问倒入多少克水?3、A种酒精中纯酒精含量为40%,B种酒精中纯酒精的含量为36%,C种酒精中纯酒精的含量为35%。

小学数学六年级第十一讲 浓度问题

小学数学六年级第十一讲 浓度问题

第十一讲浓度问题一、知识点:1、把糖溶解在水中就得到了糖水,其中糖叫溶质,水叫溶剂,糖水叫溶液。

如果水的量不变,那么糖加得越多,糖水就越甜,也就是说糖水甜的程度是由糖(溶质)与糖水(溶液=糖+水)二者质量的比值决定的。

这个比值就叫糖水的含糖率,也称为糖水的浓度。

2、溶液中,溶质质量与溶液质量的比值叫浓度,通常用百分数表示,即:浓度=溶质质量溶液质量×100%=溶质质量溶质质量+溶剂质量×100%3、溶液甲×浓度甲+溶液乙×浓度乙=甲乙混合液×混合后浓度二、解决问题。

例1、把5克糖放入195克水中,形成糖水。

求该糖水的含糖率。

例2、有含盐15%的盐水20千克,要使盐水的浓度为20%,需加盐多少千克?例3、甲容器中有浓度为8%的酒精溶液400克,乙容器中有浓度为12.5%的酒精溶液800克,把这两种酒精溶液混合,求混合后酒精溶液的浓度。

例4、现有浓度为10%的盐水20千克。

再加入多少千克浓度为30%的盐水,可以得到浓度为22%的盐水?例5、一种35%的农药,要稀释到1.75%时,治虫最有效。

用多少千克浓度为35%的农药加多少千克水,才能配成1.75%的农药80千克?例6、仓库存放了含水量为85%的一种水果100千克。

几天后再测,发现含水量降低到70%。

现在这批水果的质量是多少千克?例7、甲种酒含纯酒精40%,乙种酒含纯酒精36%,丙种酒含纯酒精35%。

将三种酒混在一起得到含酒精38.5%的酒11千克。

已知乙种酒比丙种酒多3千克,那么甲种酒有多少千克?课后练习1、现在有浓度为20%的糖水300克,要把它变成浓度为40%的糖水,需要加糖多少克?2、在10千克浓度为50%的硫酸溶液中,再加入多少千克浓度为5%的硫酸溶液就可以配制成25%的硫酸溶液?3、仓库运来含水量为90%的一种水果200千克。

一星期后再测,发现含水量降低到85%。

现在这批水果的质量是多少千克?4、现有浓度为70%的酒精溶液500克与浓度为50%的酒精溶液300克。

六年级数学浓度问题及解决方案

六年级数学浓度问题及解决方案
3.提升解题技能
(1)教授学生如何从题干中提取关键信息,培养良好的审题习惯。
(2)指导学生分析题意,归纳解题规律,形成解题策略。
(3)通过典型例题的讲解,帮助学生掌握解题方法和技巧。
4.强化课后辅导
(1)针对学生的认知差异,设计分层作业,使每个学生都能得到有效提升。
(2)定期检查学生的学习进度,及时发现问题并进行针对性辅导。
二、问题分析
1.学生对浓度基本概念的理解不够深入,导致在解题过程中难以准确把握题目要求。
2.学生在应用浓度计算公式时,容易出现计算错误,影响解题效果。
3.教学方法单一,难以激发学生的学习兴趣和主动性。
4.学生在解决实际问题时,缺乏有效的解题策略和技巧。
三、解决方案
1.加强基础知识教学
(1)通过生动的实例引入浓度概念,帮助学生建立直观的认识。
3.提高学生对浓度问题的学习兴趣,培养学生的数学思维。
4.通过家校合作,形成良好的教育氛围,促进学生全面发展。
五、实施与评估
1.制定详细的实施计划,明确时间节点、教学内容和教学目标。
2.定期进行教学质量评估,了解教学效果,调整教学策略。
3.通过问卷调查、学生访谈等方式,了解学生的满意度,及时改进教学方案。
六年级数学浓度问题景分析
随着我国教育事业的不断发展,小学数学教育越来越受到重视。在六年级数学教学过程中,浓度问题是一个常见且重要的知识点。然而,学生在学习这一部分内容时,往往存在一定的难度。为提高学生的学习效果,本方案针对六年级数学浓度问题进行深入分析,并提出相应的解决方案。
(2)结合实际操作,让学生亲身体验浓度变化,加深对浓度概念的理解。
(3)强化基本计算方法的训练,提高学生的计算准确率。

小学数学浓度问题

小学数学浓度问题

小学数学浓度问题在小学数学中,浓度问题是一个比较常见且重要的知识点。

对于小朋友们来说,可能一开始会觉得有点难理解,但只要掌握了其中的关键,就会发现其实并没有那么复杂。

首先,咱们来聊聊什么是浓度。

简单来说,浓度就是指溶液中溶质的含量占溶液总量的比例。

比如说,一杯糖水里面糖的含量占糖水总量的多少,就是这杯糖水的浓度。

为了更清楚地理解浓度问题,咱们来举个例子。

假设我们有一杯200 克的糖水,其中糖有 40 克,那么这杯糖水的浓度是多少呢?要计算浓度,我们就用糖的质量除以糖水的总质量,也就是 40÷200 = 02,然后把这个结果转化为百分数,就是 20%。

所以这杯糖水的浓度就是20%。

那在实际问题中,我们经常会遇到一些关于浓度变化的情况。

比如说,把一杯浓度高的糖水和一杯浓度低的糖水混合在一起,求混合后糖水的浓度;或者是往一杯糖水里再加入一些糖或者水,求新糖水的浓度。

咱们先来说说混合的情况。

假设我们有一杯浓度为 30%的糖水 100 克,还有一杯浓度为 10%的糖水 200 克,把它们混合在一起,新糖水的浓度是多少呢?我们先分别算出两杯糖水里糖的质量,浓度为 30%的糖水里糖的质量是 100×30% = 30 克,浓度为 10%的糖水里糖的质量是 200×10% = 20 克。

混合后糖的总质量就是 30 + 20 = 50 克,而糖水的总质量是 100 + 200 = 300 克。

那么新糖水的浓度就是 50÷300≈ 167%。

再来说说添加糖或者水的情况。

比如有一杯 200 克浓度为 20%的糖水,我们再往里面加入 50 克糖,那么新糖水的浓度是多少呢?原来糖水里糖的质量是 200×20% = 40 克,加入 50 克糖后,糖的总质量变成了 40 + 50 = 90 克,而糖水的总质量变成了 200 + 50 = 250 克。

新糖水的浓度就是 90÷250 = 36%。

小学数学典型应用题20:浓度问题(含解析)

小学数学典型应用题20:浓度问题(含解析)

小学数学典型应用题20:浓度问题(含解析)浓度问题【含义】在生产和生活中,我们经常会遇到溶液浓度问题。

这类问题研究的主要是溶剂(水或其它液体)、溶质、溶液、浓度这几个量的关系。

例如,水是一种溶剂,被溶解的东西叫溶质,溶解后的混合物叫溶液。

溶质的量在溶液的量中所占的百分数叫浓度,也叫百分比浓度。

【数量关系】溶液=溶剂+溶质浓度=溶质÷溶液×100%解题思路和方法找出不变量,简单题目直接利用公式,复杂题目变通后再利用公式。

例1:要将浓度为25%的酒精溶液1020克,配制成浓度为17%的酒精溶液,需加水多少克?解:1、根据题意可知,配制前后酒精溶液的质量和浓度发生了改变,但纯酒精的质量并没有发生改变。

2、纯酒精的质量:1020×25%=255(克),占配制后酒精溶液质量的17%。

所以配制后酒精溶液的质量:255÷17%=1500(克)。

加入的水的质量:1500-1020=480(克)。

例2:有浓度为30%的盐水溶液若干,添加了一定数量的水后稀释成浓度为24%的盐水溶液。

如果再加入同样多的水,那么盐水溶液的浓度变为多少?解:1、分析题意,假设浓度为30%的盐水溶液有100克,则100克溶液中有100×30%=30(克)的盐,加入水后,盐占盐水的24%。

此时盐水的质量为:30÷24%=125(克),加入的水的质量为:125-100=25(克)。

2、再加入相同多的水后,盐水溶液的浓度为:30÷(125+25)=20%。

例3:两个杯中分别装有浓度为45%与15%的盐水,倒在一起后混合盐水的浓度为35%。

若再加入300克浓度为20%的盐水,则变成浓度为30%的盐水,则原来浓度为45%的盐水有多少克?解:1、本题考察的是浓度和配比问题的相关知识。

解决本题的关键是先求出原溶液与混合后的溶液浓度差的比。

从而求出所需溶液质量的比,并解决问题。

2、根据题意可知,浓度为35%的盐水和浓度为20%的盐水混合成浓度为30%的盐水,因为浓度为35%的盐水比混合后的浓度多35%-30%=5%,浓度为20%的盐水比混合后的浓度少30%-20%=10%,5%:10%=1:2,即混合时,2份浓度为35%的盐水才能补1份浓度为20%的盐水。

六年级下册数学课件-浓度问题 (共 20 张ppt) 全国通用

六年级下册数学课件-浓度问题 (共 20 张ppt) 全国通用
习题课件
• 现在有浓度为20%的糖水300克,要把它变 成浓度为40%的糖水,需要加糖多少克?
习题课件
• 有含盐15%的盐水20千克,要使盐水的浓 度为20%,需加盐多少千克?
习题课件
有含糖量为7%的糖水600克,要使其含糖量加大到10%,需要再加入多少克糖?
习题课件
• 根据题意,在7%的糖水中加糖就改变了原来糖水的浓度,糖的质 量增加了,糖水的质量也增加了,但水的质量并没有改变。因此,可 以先根据原来糖水中的浓度求出水的质量,再根据后来糖水中的浓度 求出现在糖水的质量,用现在糖水的质量减去原来糖水的质量就是增 加的糖的质量。 原来糖水中水的质量:600×(1-7%)=558(克) 现在糖水的质量 :558÷(1-10%)=620(克)
方法 3 抓住不变量解百分数问题
3.实验小学原有科技书、文艺书共6300本,其中 文艺书占20%。后来又买来一些文艺书,这时 文艺书占总数的30%,又买来文艺书多少本?
6300×(1-20%)=5040(本) 5040÷(1-30%)=7200(本) 7200-6300=900(本)
方法 4 用消去法解百分数问题 4.甲、乙两班共84人,甲班人数的62.5%与乙班人
没有运走。这批
货物共有多少吨?(画出线段示意图) 画线段图略。
(6 + 6 - 2 ) 1 - 2 0 % - 2 0 % - 1 3 = 3 7 .5t
ቤተ መጻሕፍቲ ባይዱ
方法 2 利润率问题
2.某种商品,每件成本120元,按照获利 30%定价,然后按照定价的80%出售。每 件商品的利润率是多少? 120×(1+30%)×80%=124.8(元) (124.8-120)÷120×100%=4% 答:每件商品的利润率是4%。

六年级【小升初】小学数学专题课程《浓度问题》(含答案)

六年级【小升初】小学数学专题课程《浓度问题》(含答案)

20.浓度问题知识要点梳理一、浓度问题的基本量溶质:溶于液体的物质(通常指“盐,糖,酒精”)溶剂:溶解物质的液体(通常指“水”)溶液:溶质和溶剂的混合溶液浓度:溶质占溶液的百分比或百分率(盐占盐水的百分比)二、基本数量关系式溶液=溶质+溶剂浓度=溶质÷溶液×100%=溶质÷(溶质+溶剂)×100%溶液×浓度=溶质溶质÷浓度=溶液溶剂=溶液×(1-浓度)混合溶液的浓度=(溶质1+溶质2+溶质3)÷(溶液1+溶液2+溶液3)三、解决浓度问题的基本方法加浓稀释问题:①抓不变量;②溶液的配比问题:列方程解,铁三角考点精讲分析典例精讲考点1 简单的配制问题【例1】糖完全溶解在水中变成糖水,已知某种糖水中糖和糖水的重量比是1∶11。

则500克糖要加水多少千克?【精析】因为糖∶糖水=1∶11,所以糖∶水=1∶10,要求500克糖要加水多少千克,根据分数除法的意义列式即可。

【答案】糖与水的重量比是1∶(11-1)=1∶10500克糖水要加水的千克数:500×10=5000(克)5000克=5千克答:500克糖要加水5千克。

【归纳总结】这道应用题容易出错的地方在于条件是糖与糖水的重量比,而非糖与水的重量比。

所以要先弄清糖与水之间的数量关系。

考点2 加浓问题(溶剂不变,溶质增加)【例2】有含糖量为7%的糖水 600克,要使其含糖量加大到10%,需要再加入多少克糖?【精析】含糖量是指糖的重量占糖水总重量的百分之几;先把原来糖水的总重量看成单位“1”,那么原来水的重量就是糖水的总重量的(1-7%),用乘法求出水的重量;后来的含糖量是10%,把后来的糖水的总重量看成单位“1”,那么后来水的重量是总重量的(1-10%),用除法求出后来糖水的总重量,再用后来的总重量减去原来糖水的总重量就是需要加糖多少克。

【答案】原来糖水中水的质量:600 ×(1-7%)=558(克)现在糖水的质量:558÷(1-10%)=620(克)加入糖的质量:620-600=20(克)答:需要加入20克糖。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

浓度问题
一碗糖水中有多少糖,这就要用百分比浓度来衡量.放多少水和放多少糖能配成某一浓度的糖水,这就是配比问题.在考虑浓度和配比时,百分数的计算扮演了重要的角色,并产生形形色色的计算问题,这是小学数学应用题中的一个重要内容.
从一些基本问题开始讨论.
例15 基本问题一
(1)浓度为10%,重量为80克的糖水中,加入多少克水就能得到浓度为8%的糖水?
(2)浓度为20%的糖水40克,要把它变成浓度为40%的糖水,需加多少克糖?
解:(1)浓度10%,含糖 80×10%= 8(克),有水80-8=72(克).
如果要变成浓度为8%,含糖8克,糖和水的总重量是8÷8%=100(克),其中有水
100-8=92(克).
还要加入水 92- 72= 20(克).
(2)浓度为20%,含糖40×20%=8(克),有水40- 8= 32(克).
如果要变成浓度为40%,32克水中,要加糖x克,就有
x∶32=40%∶(1-40%),
例16 基本问题二
20%的食盐水与5%的食盐水混合,要配成15%的食盐水900克.问:20%与5%食盐水各需要多少克?
解: 20%比15%多(20%-15%), 5%比15%少(15%-5%),多的含盐量
(20%-15%)×20%所需数量
要恰好能弥补少的含盐量
(15%-5%)×5%所需数量.
也就是
画出示意图:
相差的百分数之比与所需数量之比恰好是反比例关系.
答:需要浓度 20%的 600克,浓度 5%的 300克.
这一例题的方法极为重要,在解许多配比问题时都要用到.现在用这一方法来解几个配比的问题.
例17 某人到商品买红、蓝两种笔,红笔定价5元,蓝笔定价9元.由于买的数量较多,商店就给打折扣.红笔按定价 85%出售,蓝笔按定价80%出售.结果他付的钱就少了18%.已知他买了蓝笔 30支,问红笔买了几支?
解:相当于把两种折扣的百分数配比,成为1-18%=82%.
(85%-82%)∶(82%-80%)=3∶2.
按照基本问题二,他买红、蓝两种笔的钱数之比是2∶3.
设买红笔是x支,可列出比例式
5x∶9×30=2∶3
答:红笔买了 36支.
配比问题不光是溶液的浓度才有的,有百分数和比,都可能存在配比.要提请注意,例17中是钱数配比,而不是两种笔的支数配比,千万不要搞错.
例18甲种酒精纯酒精含量为72%,乙种酒精纯酒精含量为58%,混合后纯酒精含量为 62%.如果每种酒精取的数量比原来都多取15升,混合后纯酒精含量为63.25%.问第一次混合时,甲、乙两种酒精各取多少升?
解:利用例16的方法,原来混合时甲、乙数量之比是
后一次混合,甲、乙数量之比是
这与上一讲例 14是同一问题.都加15,比例变了,但两数之差却没有变.
5与2相差3,5与3相差2.前者3份与后者2份是相等的.把2∶5中前、后两项都乘2,3∶5中前、后两项都乘3,就把比的份额统一了,即
现在两个比的前项之差与后项之差都是5.15是5份,每份是3.原来这
答:第一次混合时,取甲酒精12升,乙酒精30升.
例19 甲容器中有8%的食盐水300克,乙容器中有12.5%的食盐水120克.往甲、乙两个容器分别倒入等量的水,使两个容器的食盐水浓度一样.问倒入多少克水?
解:要使两个容器中食盐水浓度一样,两容器中食盐水重量之比,要与所含的食盐重量之比一样.
甲中含盐量:乙中含盐量
= 300×8%∶120×12.5%
= 8∶5.
现在要使
(300克+倒入水)∶(120克+倒入水)=8∶5.
把“300克+ 倒入水”算作8份,“120克+ 倒入水”算作5份,每份是
(300-120)÷(8-5)= 60(克).
倒入水量是 60×8-300= 180(克).
答:每一容器中倒入 180克水.
例20甲容器有浓度为2%的盐水 180克,乙容器中有浓度为 9%的盐水若干克,从乙取出 240克盐水倒入甲.再往乙倒入水,使两个容器中有一样多同样浓度的盐水.问:
(1)现在甲容器中食盐水浓度是多少?
(2)再往乙容器倒入水多少克?
解:(1)现在甲容器中盐水含盐量是
180×2%+ 240×9%= 25.2(克).
浓度是
25.2÷(180 + 240)× 100%= 6%.
(2)“两个容器中有一样多同样浓度的盐水”,也就是两个容器中含盐量一样多.在乙中也含有25.2克盐.因为后来倒入的是水,所以盐只在原有的盐水中.在倒出盐水 240克后,乙的浓度仍是 9%,要含有 25.2克盐,乙容器还剩下盐水25.2÷9%=280(克),
还要倒入水420-280=140(克).
答:(1)甲容器中盐水浓度是6%;
(2)乙容器再要倒入140克水.
例21甲、乙两种含金样品熔成合金.如甲的重量是乙的一半,得到含
乙两种含金样品中含金的百分数.
解:因为甲重量增加,合金中含金百分数下降,所以甲比乙含金少.
用例17方法,画出如下示意图.
因为甲与乙的数量之比是1∶2,所以
(68%-甲百分数)∶(乙百分数-68%)
=2∶1
= 6∶3.
注意:6+3=2+7=9.
那么每段是
因此乙的含金百分数是
甲的含金百分数是
答:甲含金 60%,乙含金 72%.
用这种方法解题,一定要先弄清楚,甲和乙分别在示意图线段上哪一端,也就是甲和乙哪个含金百分数大.
有100千克青草,含水量为66%,晾晒后含水量降到15%。

这些青草晾晒后重多少千克?纯干物质的千克数
100×(1-66%)=34千克
含水量降到15%后,干物质还是34千克,占晾晒后的1-15%=85%。

所以这些青草晾晒后的千克数为
34÷(1-15%)=40千克。

相关文档
最新文档