非线性系统李雅普诺夫稳定性分析
第5章李雅普诺夫稳定性分析

第5章 李雅普诺夫稳定性分析
第五章 李雅普诺夫稳定性分析
5.1 李雅普诺夫意义下的稳定性 5.2 李雅普诺夫第一法(间接法) 5.3 李雅普诺夫第二法(直接法) 5.4 线性定常系统的李雅普诺夫稳定性分析
4
第5章 李雅普诺夫稳定性分析
5.1 李雅普诺夫意义下的稳定性
1.自治系统
没有外输入作用时的系统称为自治系统,可 用如下系统状态方程来描述:
如果时变函数V(x,t)有一个正定函数作为下限, 也就是说,存在一个正定函数W(x) ,使得
V ( x ,t) W ( x), V (0,t) 0, t t0
则称时变函数V(x,t)在域S(域S包含状态空间的 原点)内是正定的。
24
第5章 李雅普诺夫稳定性分析
3. 负定函数:如果-V(x)是正定函数,则标量函数 V(x)为负定函数。
则称平衡状态xe在李雅普诺夫意义下是稳定的。
在上述稳定的定义中,实数δ通常与ε和初始时
刻t0都有关,如果δ只依赖于ε ,而和t0的选取无关,
则称平衡状态是一致稳定的。
9
第5章 李雅普诺夫稳定性分析
5. 渐近稳定性
若系统的平衡状态xe不仅具有李雅普诺夫意 义下的稳定性,且有
lim
t
||
x(t;
x0 ,
(s)
则 m(s) 为矩阵A的最小多项式。
注:换言之,矩阵A的最小多项式就是(sI-A)-1
中所有元素的最小公分母。
17
第5章 李雅普诺夫稳定性分析
例5-1(补充):判断下述线性定常系统的稳定性
0 0 0
x 0 0
0
x
0 0 1
解:1)系统矩阵A为奇异矩阵,故系统存在无穷
李雅普诺夫稳定性分析

⑥ V(x)函数只表示了平衡状态附近的某领域内的局部 运动稳定状况。不能提供域外的运动信息。 ⑦ V(x)的构造需要较多技巧,可通过计算机来完成, 人力难以估测。因此,此方法常用于难以判定的复 杂问题。例如高阶时变非线性系统。
李雅普诺夫稳定性在线性系统中的应用
线性系统中的应用
线性连续定常系统稳定性分析 线性离散定常系统稳定性分析 线性连续时变系统稳定性分析 线性离散时变系统稳定性分析
V ( x) 0,V ( x) 0,V ( x) 0
李雅普诺夫函数讨论
⑤ V ( x) 0 V ( x) 0 V ( x) 0
能量的趋近速度是负的,所以能量最 终为0,趋向于原点,系统是渐进稳 定的。 能量最终为可能0,趋向于原点,也 有可能停止在ε内的某处。 能量是递增的,因此是不稳定的。
李雅普诺夫稳定性
上述定理的标量函数V(X,t)称为李亚普诺夫函数. 李亚普诺夫稳定性定理是判定系统稳定的充分条件, 但非必要条件。 一般李亚普诺夫函数对某个系统来说不止一个,即不 唯一。
状态 系统 能量函数
寻找的
?
系统 稳定
李雅普诺夫稳定性
示例有一个非线性状态方程,Xe=0为一个平衡状态
是否就一定不稳定呢?是否标量函数不合适呢?需要另外判断。 从李雅普诺夫第一方 法来看,解特征方程
s 1 1 2 sI A 1 s 1 s 2s 2 0
李雅普诺夫函数讨论
李雅普诺夫第二方法关键在于寻找一个满足条件的李 雅普诺夫函数。 ① V(x)是满足稳定性盘踞条件的一个正定标量函数,具 有连续一阶偏导。 ② 对于一个给定系统,如果V(x)能找到,那么通常是非 唯一的,但是不影响结论一致性。 ③ V(x)最简形式是二次型,但未必都是。 ④ 如果V(x)是标准二次型,V(x)可表示为从原点到x的 距离。V (x) 表征了系统相对原点运动的速度。
Lyapunov稳定性理论李雅普诺夫

A的所有特征值:
需 lim eAt 0. t
e1t
te1t e1t
1 t e2 1t 2 te1t
0 0
0
0
e1t
0 0
e2t 0
e3t
结论3:
不稳定
A有一个特征值:
或
的特征值有重根
e1t
te1t e1t
1 t 2e1t 2 te1t
0 0
0
0
e1t
0 0
e2t 0
稳定性: 控制系统本身处于平衡状态。受到扰动,产生偏差,
在扰动消失后,由偏差状态逐渐恢复到原来平衡状态的性能。
偏差逐渐变大,不能恢复到原来的平衡状态,则不稳定。 稳定性是动态系统的一个重要性能,保证系统的稳定性 通常是控制器设计的最基本要求。
1
经典控制理论对稳定性分析的局限性
(1)局限于描述线性定常系统
任给一个球域 ,若存在一个球域 ,使得从 出发的 轨迹不离开 ,则称系统的平衡状态是李雅普诺夫意义下稳定 的。
初始状态有界,随时间 推移,状态向量距平衡 点的距离可以维持在一 个确定的数值内,而到 达不了平衡状态。
任给一个球域 ,若存在一个球域 ,使得从 出发的 轨迹不离开 ,则称系统的平衡状态是李雅普诺夫意义下稳定 的。
若
与初始时刻
t
无关,则
0
称系统的平衡状态 是一致
稳定的。
时变系统 与 t0有关
定常系统
与
t
无关
0
李雅普诺夫意义下稳定
考虑系统(4.1),如果对任意的实数 ,都存在另一实
数 ,使当初始状态位于以平衡状态 为球心, 为半径的
闭球域
内,即
5.4_非线性系统的李雅普诺夫稳定性分析解析

克拉索夫斯基法(3/7)
V ( x ) [ f ( x ) f ( x )] f ( x ) f ( x ) x f ( x ) f ( x ) x x x f ( x) J ( x) f ( x) f ( x) J ( x) f ( x) ˆ ( x) f ( x) f ( x) J
克拉索夫斯基法(6/7)
例4-12 试确定如下非线性系统的平衡态的稳定性:
3x1 x2 f ( x) x 3 x x x 2 1 2
(t ) f ( x ) x
克拉索夫斯基法(2/7)
定理5-11 非线性定常连续系统的平衡态xe=0为渐近稳定的充 分条件为
ˆ ( x ) J ( x) J ( x) J
为负定的矩阵函数,且
V ( x) x x f ( x) f ( x)
为该系统的一个李雅普诺夫函数。
由于 V ( x) f ( x) f ( x)为系统的一个李雅普诺夫函数,即
f ( x) f ( x) 正定。
ˆ (x)负定,则 V ( x, t ) f ( x ) J ˆ ( x) f ( x )必为负定。 因此,若 J
所以 , 由定理 5-4 知 , 该非线性系统的平衡态 xe=0 是渐近稳 定的。
0 1 ˆ J ( x) J ( x) J ( x) 1 14
不是负定矩阵 , 故由克拉索夫斯基定理判别不出该系统 为渐近稳定的。
可见,该定理仅是一个充分条件判别定理。
克拉索夫斯基法(5/7)
若 V(x)=f(x)f(x) 正定 , 为 Lyapunov 函数 , 则说明只有当 x=0 时,才有V(x)=0,即原点是唯一的平衡态。 因此,只有原点是系统的由该定理判别出的渐 近稳定的平衡态一定是大范围渐近稳定的。 由克拉索夫斯基定理可知 ,系统的平衡态xe=0是渐近稳定 的条件是J(x)+J(x)为负定矩阵函数。 由负定矩阵的性质知 , 此时雅可比矩阵 J(x) 的对角线 元素恒取负值 , 因此向量函数 f(x) 的第 i 个分量必须包 含变量xi, 否则 , 就不能应用克拉索夫斯基定理判别该 系统的渐近稳定性。 将克拉索夫斯基定理推广到线性定常连续系统可知 :对称 矩阵A+A负定,则系统的原点是大范围渐近稳定的。
李雅普诺夫稳定性分析方法

(2)李雅普诺夫第二方法
• 也称直接法,属于直接根据系统结构判断内 部稳定性的方法.
• 该方法直接面对非线性系统,基于引入具有 广义能量属性的Lyapunov函数和分析李氏 函数的定量性, 建立判断稳定性的相应结 论.
• 因此直接法也是一般性方法----Lyapunov 第二法更具有一般性.
(2).平衡状态的形式.平衡状态 可由方程定 出,对二维自治系统, 的形式包括状态空 间中的点和线段.
(3).不唯一性.平衡状态 一般不唯一.
对定常线性系统而言,平衡状态 的解.
• 若矩阵A非奇,则有唯一解 • 若矩阵A奇异,则解 不唯一.
为方程
(4).孤立平衡状态,该状态是指状态空间彼此 分隔的孤立点形式的平衡状态,孤立平衡状 态的重要特征是:通过坐标移动可将其转换 为状态空间的原点.
• Lyapunov函数与
有关,用V(x)来
表示.
• 一般情况下V(x)>0 , 间的变化率.
表示能量随时
•当 少.
表明能量在运动中随时间推移而减
•当 加.
表明能量在运动中随时间推移而增
1.预备知识 1).标量函数V(x)性质意义:
令V(x)是向量x的标量函数,Ω是x空间包含 原点的封闭有限区域. (1).如果对所有区域Ω中的非零向量x,有 V(x)>0,且在x=0处有V(x)=0则在域Ω内称 V(x)为正定.
(3)用李氏方法分析的必要性 • 以一个例子说明:用特征值来判断线性时变
系统一般稳定性是会失效的.
• 其中特征值为 -1,-1.
• 但由于其解为
• 当 时,若 则必有 • 故平衡状态是不稳定的,即系统的实际表现
李雅普诺夫方法分析控制系统稳定性0306

2.渐近稳定 1)是李氏意义下的稳定
x(t ; x0 , t0 ) xe 0 2)lim t
与t0无关 一致渐进稳定
3.大范围内渐进稳定性
对 x0 s( )
t
都有 lim x(t; x0 , t0 ) xe 0
初始条件扩展到整个空间,且是渐进稳定性。
3.4 李雅普诺夫第二法(直接法)
稳定性定理:
f ( x, t ) 设系统状态方程:x 其平衡状态满足 f (0, t ) 0 ,假定 状态空间原点作为平衡状态( xe 0),并设 在原点邻域存在V ( x, t )对 x 的连续一阶偏 导数。
定理1:若(1) V ( x, t ) 正定; . (2) V ( x, t ) 负定; 则原点是渐进稳定的。 . 说明: V ( x, t ) 负定 能量随时间连续单调 衰减。 定理2:若(1) V . ( x, t ) 正定; (2) V . ( x, t ) 负半定; (3) V [ x(t ; x0 , t ), t ] 在非零状态不 恒为零,则原点是渐进稳定的。 V ( x) 如果V(x)还满足 lim x
数判据,Nquist稳定判据,根轨迹 判据等
非线性系统:相平面法(适用于一,
二阶非线性系统)
1982年,俄国学者李雅普诺夫提出的
稳定性定理采用了状态向量来描述, 适用于单变量,线性,非线性,定常, 时变,多变量等系统。
应用:自适应,最优控制,非线性控
制等。
主要内容:
李氏第一法(间接法):求解特征方
程的特征值
李氏第二法(直接法):利用经验和
技巧来构造李氏函数
2.1 稳定性基本概念
=Ax+Bu(u=0) 1.自治系统:输入为0的系统 x
非性线性连续系统李雅普诺夫第二方法稳定性分析

非线性连续系统Lyapunov第二方法稳定性分析目录1、前言 (7)1.1发展状况 (7)1.2 Lyapunov稳定性实际应用 (7)1.3 Lyapunov应用研究现状 (9)1.4 Lyapunov关于稳定性定义 (10)1.5 Lyapunov第一方法 (11)2 、非线性连续系统Lyapunov第二方法稳定性分析 (13)2.1 引言 (13)2.2 问题描述 (13)2.3 Lyapunov第二方法直观解释 (13)2.4 标量函数的符号性质 (14)2.5 Lyapunov第二方法相关定理 (14)2.6非线性连续系统Lyapunov第二方法稳定性分析 (16)3、仿真示例 (20)4、总结与展望 (23)致谢 (24)参考文献 (25)摘要对非线性系统和时变系统,状态方程的求解常常是很困难的,因此Lyapunov第二方法就显示出很大的优越性。
Lyapunov第二方法可用于任意阶的系统,运用这一方法可以不必求解系统状态方程而直接判定稳定性。
Lyapunov第二方法的局限性在于,运用时需要系统的稳定性问题。
现在,随着计算机技术的发展,借助数字计算机不仅可以找到所需要的Lyapunov函数,而且还能确定系统的稳定区域。
本文主要通过分析李雅普诺夫当前发展状况和在实际中的应用,进而研究非线性连续系统Lyapunov第二方法的稳定性分析。
关键字:非线性连续系统 Lyapunov第二方法稳定性AbstractDirectly determine the stability of system state equation. The limitations of lyapunov second method is that the need when using the stability of the system problem. Now, with the development of computer technology, with the aid of a digital computer can find not only the need of lyapunov function, but also can determine the stability regions of the system. In this paper, by analyzing the lyapunov's current development status and application in the actual, and study the nonlinear stability analysis of continuous system lyapunov second method.Keywords:Stability of nonlinear; continuous system; Lyapunov second method1 前言(Introduction)1.1 Lyapunov发展状况Lyapunov稳定性理论能同时适用于分析定常系统和时变系统的稳定性、线性系统和非线性系统、,是更为一般的稳定性分析方法。
李雅普诺夫稳定性理论

1.2
李雅普诺夫稳定性及判别方法
线性系统稳定性分析的理论框架 稳定性分析 解析 方法 SISO的代数 分析方法 Routh判据 Houwitz判据 1892年俄国数学 家李雅普诺夫 第一 方法 第二 方法
根据SISO闭环特 征方程的系数判 定系统的稳定性
根据状态方程A阵 判定系统的稳定性
线性系统的稳定判据
线性定常系统 ∑=(A,b,c)
x Ax bu
y cx
(1-4)
平衡状态 xe 0 渐进稳定的充要条件是矩阵A的所有特征值均具有负实部。 以上讨论的都是指系统的状态稳定性,或称内部稳定性。但从工程意义上看, 往往更重视系统的输出稳定性。
1.2
李雅普诺夫稳定性及判别方法
1.2
李雅普诺夫稳定性及判别方法
与稳定性相关的几个定义
x xe :状态向量x与平衡状态 xe 的距离。
点集s():以xe为中心,为半径的超球体。 若xs() : x xe ,其中 x xe 为欧几里德范数。 则
当很小时,则称s()为xe的邻域。
如系统的解 x (t ; x0 , t0 ) 位于球域s()内,则:
x f [ x, t ]
x (t , x0 , t0 )
(1-2)
式(1-2)描述了系统(1-1)在n维状态空间中从初始条件(t0 x0 ) 出发的一条状态运动的轨迹,简称为系统的运动和状态轨线。
1.2
李雅普诺夫稳定性及判别方法
系统的平衡状态:若系统(1-1)存在状态矢量 xe ,对所有t, 使得: f ( xe , t ) 0 (1-3)
大范围渐 近稳定
渐近稳定
1.2
李雅普诺夫稳定性及判别方法
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。