各类无机/有机杂化涂料的研究进展
有机与无机杂化材料的合成与应用

有机与无机杂化材料的合成与应用杂化材料是指由有机物和无机物组成的复合材料,具有有机和无机两种物质的特性和优势。
随着杂化材料研究的深入,人们发现它在能源、催化、传感、电子器件等领域具有广泛的应用前景。
本文将介绍有机与无机杂化材料的合成方法和应用场景。
一、有机与无机杂化材料的合成方法1. 溶胶-凝胶法溶胶-凝胶法是最常用的合成有机与无机杂化材料的方法之一。
首先,将无机物的前驱体溶解在溶剂中形成溶胶,然后通过调节条件,如温度、pH值等,使溶胶发生凝胶化,形成凝胶体系。
最后,通过热处理或其他适当方法使溶胶和凝胶中有机物实现共价键结合,形成有机与无机杂化材料。
2. 原位聚合法原位聚合法是一种将无机与有机组分同时合成的方法,其基本原理是在聚合反应体系中引入无机组分,使无机与有机物一起进行聚合反应,从而形成有机与无机杂化材料。
这种方法通常可以实现杂化材料的可控合成和高静态度的有序结构。
3. 界面修饰法界面修饰法是一种在杂化材料的有机和无机界面上进行修饰的方法。
通过改变有机物与无机物之间的界面特性,可以调控材料的结构和性能。
常用的界面修饰方法包括静电作用、配位效应、键合作用等。
二、有机与无机杂化材料的应用场景1. 能源领域有机与无机杂化材料在太阳能电池、储能设备等能源领域具有重要应用。
例如,以有机与无机杂化材料为阳极材料的锂离子电池,具有高能量密度和长循环寿命的特点,可以应用于电动汽车、便携式电子设备等方面。
2. 催化领域有机与无机杂化材料在催化领域具有广阔的应用前景。
通过调控材料的结构和化学组成,可以实现高效催化反应的催化剂设计。
例如,有机与无机杂化材料催化剂在氧化还原反应、有机合成、水处理等方面表现出优异的催化性能。
3. 传感领域有机与无机杂化材料在传感领域有着重要的应用价值。
由于有机物和无机物共同作用的特点,杂化材料可以实现对多种物质的高灵敏度和高选择性检测。
例如,有机与无机杂化材料传感器在环境污染物监测、食品安全检测等方面具有广泛应用前景。
义齿树脂基托表面有机-无机杂化膜的制备与研究

义齿树脂基托表面有机-无机杂化膜的制备与研究左伟文;黄华莉;石磊;杨杨;武燃;朱松【摘要】本研究设计合成应用于义齿树脂基托表面的有机-无机杂化膜.由缩水甘油醚基丙基三甲氧基硅烷(KH560)和正硅酸乙酯(TEOS)共水解缩合制得杂化硅溶胶;由甲基丙烯酸缩水甘油酯(GMA)、丙烯酸(AA)和甲基丙烯酸甲酯(MMA)三种单体共聚制得聚合物.两者利用KH560和GMA中的环氧基团进行交联,形成具有互穿网络结构的杂化膜.对膜层的硬度、附着性及抗破裂性等进行表征,并对覆膜后的基托树脂的光泽度、吸水性及溶解性进行测试.实验结果表明,杂化膜不仅具有良好的力学性能,而且提高了基托树脂的光泽度,降低了基托树脂的吸水性和溶解性,最终会提高基托综合性能.【期刊名称】《材料工程》【年(卷),期】2013(000)010【总页数】5页(P71-75)【关键词】杂化膜;义齿树脂基托;吸水性;溶解性;光泽度【作者】左伟文;黄华莉;石磊;杨杨;武燃;朱松【作者单位】吉林大学口腔医学院,长春130021;吉林大学口腔医学院,长春130021;吉林大学口腔医学院,长春130021;吉林大学口腔医学院,长春130021;吉林大学口腔医学院,长春130021;吉林大学口腔医学院,长春130021【正文语种】中文【中图分类】R783.4目前,中国已步入老龄化社会,可摘局部义齿和全口义齿的应用日益增多,但义齿材料的综合性能还有待进一步提高,研究证实义齿基托树脂的吸水性和溶解性较高则对义齿基托产生的影响较大,包括:影响基托尺寸和颜色稳定性;降低基托力学性能,导致义齿断裂,影响使用寿命[1];改变基托生物学和化学性能,利于基托中残余单体的释放,进而导致一系列的不良反应,影响患者健康[2]。
国内外研究者试图通过调整基托固化过程[3]及基托材料单体成分[4],改变抛光方式[5],添加玻璃纤维[6]、交联剂[7]或纳米填料[8]等方法降低基托树脂吸水性和溶解性,但有的效果不确切,有的会降低基托的其他性能。
石墨烯无机复合涂层的研究进展

第49卷第9期2021年5月广州化工Guangzhou Chemical IndustryVol.49No.9May.2021石墨烯/无机复合涂层的研究进展费文翔,陶征林(上海理工大学材料科学与工程学院,上海200093)摘要:首先介绍了无机转化涂层的优势以及分类,然后介绍了石墨烯的结构和性质,综合了纯石墨烯涂层对于防止金属腐蚀的作用以及面临的问题所在,如表面的缺陷,大阴极小阳极现象导致金属局部腐蚀的加速。
最后展开了对石墨烯增强的无机复合涂层研究进展的概述,并展望了石墨烯增强的无机复合涂层未来的发展方向。
关键词:金属腐蚀;石墨烯;无机复合涂层;研究进展中图分类号:TB332文献标志码:B文章编号:1001-9677(2021)09-0006-04 Research Progress on Graphene/Inorganic Composite CoatingsFEI Wen-xiang,TAO Zheng—lin(School of Materials Science and Engineering,University of Shanghai for Science and Technology,Shanghai200093,China)Abstract:The advantage and classification of inorganic conversion coatings were introduced,andthe structure and properties of graphene were introduced.The effect of pure graphene coating on preventing metal corrosion and the problems faced by it were summarized,such as surface defects,the phenomenon of large cathode and small anode leads to the acceleration of local corrosion of metal.The research progress of graphene-reinforced inorganic composite coatings was summarized,and the future development direction of graphene-reinforced inorganic composite coatings was prospected.Key words:metal corrosion;graphene;inorganic composite coating;research progress金属腐蚀是汽车、石油和天然气等化工行业的一个主要问题。
有机无机杂化锰基钙钛矿磷光材料

有机无机杂化锰基钙钛矿磷光材料一、引言在当今科技发展日新月异的时代,新型材料的研究与开发已成为学术界和工业界的热点之一。
有机无机杂化锰基钙钛矿磷光材料作为一种新型发光材料,具有优异的光电性能和广泛的应用前景,备受研究者们的青睐。
二、有机无机杂化材料的特点1.有机无机杂化材料是指在无机基质中引入有机分子,并使其与无机相互作用形成一种新型功能材料。
这种材料不仅拥有无机材料的优良性能,还具有有机材料的柔韧性和可溶性,具有很高的应用潜力。
2.有机无机杂化材料的制备方法主要包括离子交换法、溶胶-凝胶法、表面修饰法等。
这些方法可以在一定程度上调控材料的结构和性能,为材料的优化提供了有力的手段。
三、钙钛矿磷光材料的应用前景1.钙钛矿磷光材料是一种新型的荧光功能材料,具有发光效率高、发光寿命长、发光波长可调等优点,广泛应用于LED照明、显示屏、生物成像等领域。
2.钙钛矿磷光材料的研究方向主要包括改善其发光效率、提高其光稳定性、拓展其在生物医学领域的应用等方面。
这些研究工作将为新型发光材料的开发和应用提供重要支撑。
四、有机无机杂化锰基钙钛矿磷光材料的研究进展1.近年来,许多学者对有机无机杂化锰基钙钛矿磷光材料展开了深入的研究。
他们通过有机分子对钙钛矿材料进行表面修饰,成功地调控了其光电性能,提高了其发光效率和光稳定性。
2.有机无机杂化锰基钙钛矿磷光材料的研究工作主要集中在提高其荧光量子产率、拓展其发光波长范围、增强其光稳定性等方面。
这些工作为该材料在LED照明、生物成像等领域的应用奠定了基础。
五、有机无机杂化锰基钙钛矿磷光材料的制备与表征1.目前,制备有机无机杂化锰基钙钛矿磷光材料的方法主要包括溶胶-凝胶法、离子交换法、旋涂法等。
这些方法可以有效地调控材料的结构和性能,为实现其在不同领域的应用提供可能。
2.对有机无机杂化锰基钙钛矿磷光材料进行表征,可以通过X射线衍射、傅里叶变换红外光谱、紫外-可见吸收光谱等手段对材料的结构、成分和光电性能等进行分析,为其性能优化和应用研究提供重要依据。
当代无机化学研究前沿与进展

当代无机化学研究前沿与进展【摘要】: 无机化学是化学学科里其它各分支学科的基础学科,在近年来取得较突出的进展,主要表现在固体材料化学、配位化学等方面。
未来无机化学的发展特点是各学科交叉纵横相互渗透,用以解决工业生产与人民生活的实际问题。
文章就当代无机化学研究的前沿与未来发展趋势做了简要阐述。
【关键词】:无机化学;研究前沿;研究进展当前无机化学的发展趋向主要是新型的无机化合物的合成和应用,以及新的研究领域的开辟和建立。
因此21世纪理论与计算方法的运用将大大加强理论和实验更加紧密的结合。
同时各学科间的深入发展和学科间的相互渗透,形成许多学科的新的研究领域。
例如,生物无机化学就是无机化学与生物学结合的边缘学科;固体无机化学是十分活跃的新兴学科;作为边沿学科的配位化学日益与其它相关学科相互渗透与交叉。
根据国际上最新进展和我国的具体情况,文章就“无机合成与制备化学研究进展”和“我国无机化学最新研究进展”两个方面进行阐述:一、无机合成与制备化学研究进展无机合成与制备在固体化学和材料化学研究中占有重要的地位, 是化学和材料科学的基础学科。
发展现代无机合成与制备化学, 不断地推出新的合成反应和路线或改进和绿化现有的陈旧合成方法, 不断地创造与开发新的物种, 将为研究材料结构、性能(或功能) 与反应间的关系、揭示新规律与原理提供基础。
近年来无机合成与制备化学研究的新进展主要表现为以下几个方面:(一)极端条件合成在现代合成中愈来愈广泛地应用极端条件下的合成方法与技术来实现通常条件下无法进行的合成, 并在这些极端条件下开拓多种多样的一般条件下无法得到的新化合物、新物相与物态。
超临界流体反应之一的超临界水热合成就是无机合成化学的一个重要分支。
(二)软化学合成与极端条件下的合成化学相对应的是在温和条件下功能无机材料的合成与晶化, 即温和条件下的合成或软化学合成。
由于苛刻条件对实验设备的依赖与技术上的不易控制性, 减弱了材料合成的定向程度。
有机-无机杂化环氧涂层的合成与性能研究

有机-无机杂化环氧涂层的合成与性能研究金鹿江;杭建忠;孙小英;王小芬;施利毅【摘要】以正硅酸乙酯(TEOS)和甲基三甲氧基硅烷(MTMS)为水解前驱体,y-缩水甘油醚基丙基三甲氧基硅烷(GPTMS)为偶联剂.采用溶胶-凝胶法合成了有机-无机杂化环氧树脂.研究了水解单体和用水量对涂层性能的影响.结果表明:当水与水解单体物质的量比为4∶1时,杂化涂层附着力为1级,硬度为4H,耐盐雾时间达到360 h.电化学测试表明,在低频区杂化涂层阻抗值可达105 Ω·cm2,比铝合金裸板阻抗值高出2个数量级.表现出良好的防腐蚀性.热重分析显示,杂化树脂具有优异的热稳定性能.利用红外光谱与核磁共振分析了杂化涂层的组成和结构;同时,探讨了溶胶-凝胶杂化涂层的反应机理.【期刊名称】《涂料工业》【年(卷),期】2014(044)005【总页数】7页(P18-24)【关键词】溶胶-凝胶;杂化涂层;耐盐雾;电化学;反应机理【作者】金鹿江;杭建忠;孙小英;王小芬;施利毅【作者单位】上海大学纳米科学与技术研究中心,上海200444;上海大学纳米科学与技术研究中心,上海200444;上海大学纳米科学与技术研究中心,上海200444;上海大学纳米科学与技术研究中心,上海200444;上海大学纳米科学与技术研究中心,上海200444【正文语种】中文【中图分类】TQ635.2基于溶胶-凝胶(sol-gel)技术的有机-无机杂化涂层是一种新兴的功能材料,近年来引起研究者的广泛关注[1-4]。
该材料通常以有机硅氧烷为前驱体,在低温条件下经水解缩合反应制备,杂化材料中有机相与无机相通过化学键相结合,形成高度交联的网状结构,它兼具高分子聚合物和无机材料特点,具有良好的力学性能。
研究表明,有机-无机杂化涂层可与铝合金界面形成Si—O—Al化学键,能有效增强涂层附着力和耐腐蚀能力,杂化涂层材料制备工艺及应用对环境友好,是理想的可有效替代铬酸盐氧化膜的环保材料。
膦(磷)酸基无机-有机杂化质子交换膜的研究进展

膦(磷)酸基无机-有机杂化质子交换膜的研究进展郭芷含;沈春晖;陈成;孔更金【摘要】综述了通过溶胶-凝胶法制备的质子交换膜(PEM),即膦(磷)酸基无机-有机杂化PEM的发展状况.对比分析了掺杂磷酸和键合膦酸无机-有机杂化膜的稳定性以及膦(磷)酸与聚硅氧烷网络结构的连接方式对膜性能的影响.对膦酸基无机.有机杂化膜的发展前景进行了展望.%The development of inorganic-organic hybrid proton exchange membrane(PEM) based on phosphonic(phosphoric) acid was summarized, which were prepared from organosiloxane by sol-gel method. The stability between inorganic-organic hybrid membranes doped phosphoric acid and inorganic-organic hybrid membranes chemically grafted phosphonic acid was compared, then effect of connection ways of phosphonic (phosphoric) acid with the polysiloxane network structure on the membrane performance was discussed. The prospect development of inorganic-organic hybrid membranes based on phosphoric acid was described.【期刊名称】《电池》【年(卷),期】2012(042)004【总页数】4页(P232-235)【关键词】溶胶-凝胶;聚硅氧烷;无机-有机杂化;质子交换膜(PEM);膦酸【作者】郭芷含;沈春晖;陈成;孔更金【作者单位】武汉理工大学材料科学与工程学院,湖北武汉430070;武汉理工大学材料科学与工程学院,湖北武汉430070;武汉理工大学材料科学与工程学院,湖北武汉430070;武汉理工大学材料科学与工程学院,湖北武汉430070【正文语种】中文【中图分类】TM911.42质子交换膜(PEM)是质子交换膜燃料电池(PEMFC)最重要的部件,决定了电池的性能和寿命。
有机-无机杂化膜

有机-无机杂化膜的研究进展1.简介传统的有机膜具有柔韧性良好、透气性高、密度低的优点,但是它们的耐溶剂性、耐腐蚀、耐温度性都较差,而单纯的无机膜虽然强度高、耐腐蚀、耐溶剂、耐高温,但比较脆,不易加工,因而制备一种兼具有两者优点的膜是目前研究的热点。
有机-无机杂化膜在有机网络中引入无机质点,改善网络结构,增强了膜的机械性能,提高了热稳定性,改善和修饰膜的孔结构和分布,提高膜的渗透性和分离选择性。
2.有机-无机杂化膜的结构有机-无机杂化膜按结构可分为3大类:(1)有机相和无机相间以共价键结合的杂化膜,图1;(2)有机相和无机相间以范德华力或氢键结合的杂化膜,图2,膜从结构上可以分为在有机基质内分散着无机纳米微粒和在无机基质中添加纳米高分子微粒;(3)有机改性的陶瓷膜,图3。
3.有机-无机杂化膜的制备方法制备有机-无机杂化膜的方法包括:溶液-凝胶法、纳米微粒与高分子直接共混法、原位聚合法等。
这里重点介绍前两种方法。
(1)溶胶-凝胶法(sol-gel)溶胶-凝胶法是将无机前驱体溶于水或有机溶剂中形成均匀的溶液,通过水解、缩合反应生成粒子粒径为纳米级的溶胶,再经干燥转变为凝胶。
用溶胶-凝胶法制备的杂化膜内部有机和无机相易发生分离,不易得到均质膜。
当无机组分均匀的分散在有机网络中,且两者间存在一定的相互作用时,易得到透明均质膜。
这种相互作用可以是氢键也可以是化学键,组分间的化学键可以是M-C、M-O-Si-C或M-L(L为有机配体如多羟基配体,有机羧酸等)。
引入化学键有两者方法:一是选用包含有功能性基团的烷氧基硅氧烷单体作为无机前驱体;二是加入偶联剂对有机高聚物进行改性,选用三官能团的硅氧烷,更易得到均质膜。
(2)共混法该方法是高分子可以以溶液形式、乳业形式、熔融形式等与纳米无机微粒共混。
共混法操作方便、工艺简单。
用此方法得到的杂化膜中,纳米微粒空间分布参数难以确定,纳米微粒分布不均匀,易团聚,通过对纳米微粒做表面改性或加入增溶剂进行改性。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
防腐涂料有着悠久的历史 ,它
产 生相 互 作 用 。
制作 用较 强 ,具 有 持 续 持 久 、广 谱
性 ,不易产生耐药性 ,耐 热性好及
2 抗嗣涂斟
随 着 人们 对环 境 卫 生 的重 视 与
除 了有一般涂料共性之外 ,还 需要
有对腐蚀介质 良好的稳定性 、抗渗 透性以及优 良电绝缘性 等特点 。由
表 工程 讯・00 1 5 面 资 21 年第期
科技进展
Kj za e i hn
ቤተ መጻሕፍቲ ባይዱ
3 隔热 涂料
付金栋等采用纳米氧化锢锡的
乙醇浆 ,并使用有机硅涂料作成膜 剂 ,通过 加 入共 溶 剂并调 整 体 系
p 值 的 方法 ,制得 了性 能 良好 的透 H
明隔热涂膜。该透 明隔热涂料具 有 良好的光谱选择性 ,在可见光区具 有高的透过性并能有效阻隔红外光
区 的热 辐 射 。 通过 对涂 膜 的扫描 电
镜分析表 明,涂膜 中纳米氧化锢 锡 的粒径 小于 5 m,且 分布均 匀。 0n 采用自制 的隔热效 果测试装置对透 明 隔热涂 料 的 隔热 效果 进行 了测
定 ,结果表明 ,该涂料具有明显的
隔热效果 ,在碘 钨灯 照射下透明隔 热玻璃和空 白玻璃 之间的温差可以
4 尉磨 涂料
磨 损 是 十 分普 遍 的物 理 现 象 。
巩 强 等选 用 纳 米 A O作 为填 维硅 石结 构 ,表面 存在 不 饱 和 残键 l。
料 ,用硬脂酸做亲油处理 ,与丙烯 及 不 同 键 合 状 态 的 烃 基 。 纳 米
达 到 1 。 上 ,最 高 可 超 过 2 0 C以 O
℃
基材上喷涂几微米 的透明涂料具有 好U 屏蔽性和透明性的溶剂型纳米 V 好 的光学性能,即使不对塑料基材 U 屏蔽透明涂料,提高涂料的耐老 V
进行前处理 ,也显示 了优异的附着 化性能。柯博等从纳米SO 的结构 ix 力 ,经 1 0 转T b r 损试验 浊度 0 a e磨 0 变化1 % ,显示了很好的耐磨性。 0 出发 ,阐述 了纳米S x i 改善涂料性 O 能的原理。 由于纳米SO 具有的三 ix
安全性高等特点 ,从而使得人们对
它们 的研 究 越 来越 重视 。无 机 抗 茵
提高 ,抗菌剂和抗菌材料逐渐发展 剂 不 仅 抗 茵 能 力 强 ,而 且 耐 高 温 性 很 好 ,可 以 适 应于 不 同场 合 需 要 , 起 来 ,抗 菌涂 料是 抗 茵 剂 的一 个 重 于防腐涂料需要满足上述特性 ,所 要应用领域 。在基本涂料配 方中添 是一种非常有前途 的抗菌材料。 目 以 它不 仅 仅 是机 械 地 把 腐 蚀 介 质 与 加定量 适宜的抗菌材料 ,即可制成 前所应用的无机抗菌材料主要是含 金属表面隔离分开起到保护作用 , 抗茵涂料早期 的杀菌剂 ,主要是分 银、铜 、锌等抗菌离子的离子型抗 而 且 还 由于成 膜 物 性 质 , 以及 所使 子 内含 金 属 元 素 的 有 机 化 合 物和 含 菌材料和光化活性抗茵材料以及含 用 的颜料、填料 、各种助剂等多方 金属氧化物的抗菌材料等三种。 氯 的酚 系化 合 物 ,如 有机 汞 化物 、 面 的因素 ,使防腐涂料具有物理和 通过溶胶凝 胶法制备的以纳米 有机锡化合物 以及多氯联苯等 。这 电化学 的保护 作用 。 T , i 为基 料以铁离子 为填 充的涂料 O 类有害物质 容易被 农作物和禽畜 吸 胡 继 明 等 采 用 有 机 / 机 杂 化 无 射线 收 ,最 终 经 口入 并积 蓄 于 人 的体 可 以涂 覆在玻璃表 面。根据X 涂 料 对 N — e B 铁 防 腐 蚀 处 d F— 磁 0 内,引致急性或慢性 中毒。这使得 激 光 衍 射 检 测 ,烧 结 温度 为 5 0 理 。测试显示其抗腐蚀性能有显著 这些杀菌剂 先后在许多国家禁用或 ℃ ,纳 米 二氧 化 钛 为锐 钛 型 结 构 , 的提高 ,无机/ 有机 杂化涂 料 的稳 严格 限制使用。随后又有研究人 员 长时间烧结 ,可 以使纳米二氧 化钛 定 结构 可 以很 有效 地 防 止腐 蚀 。 研究 了毒性较低的有机抗 菌剂 ,但 由锐 钛 型 向金 红 石 型 转 变 ,这种 掺 R L aad 通 过 掺 杂 金 属 氧 化 物 .B lr等 l 是 抗 细 菌 效 果 差 , 仅 防 霉 菌 作 用 杂 的金 红 石 型 的 二 氧 化钛 具 有 很 强 制 备 防 腐 蚀 的 无 机 / 机 杂 化 涂 有 强 ,对 二 者 均 有优 良抑 制 效 果 的有 的抗茵 性 。 料 , 以 异 丙 醇 盐 (I) 丙 醇 盐 TP、 李彦峰等通 过实验 ,结果表明 机 抗 茵 剂极 少 。 不仅 如 此 ,有 些 抗 (R ) 为 无 机 相 , 大 豆 油 作 为 有 Z P作 b_ np t 茵 剂具 有 即效 杀毒 性 ,持久 性 不 在涂料体 系中添;  ̄ 米氧化锌后 , 机相 、醋酸锌二水合 物和磷酸锌作 可 以使涂 料的抑菌率随纳米氧化锌 好 ,热稳定性较差 ,自身分解或挥 为抗腐蚀剂。掺杂后 的涂料在抗腐 发产 物可能对人体有害 ,易产生耐 的含 量增 大而 增 大 。 蚀 、伸长系数、硬度 、韧性等方面 目前研究性能好的防菌剂较 多 药性和造成二次污染 ,不适应于高 都 有 了大 幅度 的提 高 。 紫 外 光 谱 显 的 是 纳 米 T , Z O,把 它 们 引入 i 、 n O 温 加 工 , 限制 了它 的 使 用 。 因 此 , 示 ,通 过溶 胶 凝 胶 法 制 得 的 有机 无 无机抗菌剂便脱颖而出 ,与有机抗 到 有机涂料体系 中,便可以在较低 机杂化涂料中 ,异丙醇盐与丙醇盐 茵剂相 比,无机抗菌材 料对细菌抑 温度下获得抗茵涂料。