信号与系统冲击偶函数的证明

信号与系统冲击偶函数的证明

高一数学必修一函数的奇偶性

函数的单调性和奇偶性 教材复习 基本知识方法 1.奇偶函数的性质: ()1函数具有奇偶性的必要条件是其定义域关于原点对称; ()2()f x 是偶函数?()f x 的图象关于y 轴对称;()f x 是奇函数?()f x 的图象关于原点对称; ()3奇函数在对称的单调区间内有相同的单调性,偶函数在对称的单调区间内具有相反的 单调性. 2.()f x 为偶函数()()(||)f x f x f x ?=-=. 3.若奇函数()f x 的定义域包含0,则(0)0f =. 4.判断函数的奇偶性的方法: ()1定义法:首先判断其定义域是否关于原点中心对称. 若不对称,则为非奇非偶函数;若对称,则再判断()()f x f x =-或()()f x f x =-是否定义域上的恒等式; ()2图象法; ()3性质法:设()f x ,()g x 的定义域分别是12,D D ,那么在它们的公共定义域12D D D = 上:奇±奇=奇,偶±偶=偶,奇?奇=偶,偶?偶=偶,奇?偶=奇; 5. 判断函数的奇偶性有时可以用定义的等价形式:()()0f x f x ±-=,()1() f x f x =±-. 6.判断函数的单调性的方法: (1)定义法;(2)图象法;(3)性质法:在公共定义域内,利用函数的运算性质:若()f x 、)(x g 同为增函数,则①()()f x g x +为增函数;②()()f x g x 为增函数;③()1()0() f x f x >为减函数; ()()0f x ≥为增函数;⑤()f x -为减函数.

1.设)(x f 是定义在R 上的一个函数,则函数)()()(x f x f x F --=在R 上一定是( ) A .奇函数 B .偶函数 C .既是奇函数又是偶函数 D .非奇非偶函数。 2.函数)11()(+--=x x x x f 是( ) A .是奇函数又是减函数 B .是奇函数但不是减函数 C .是减函数但不是奇函数 D .不是奇函数也不是减函数 3.若)(x f 是偶函数,其定义域为()+∞∞-,,且在[)+∞,0上是减函数,则)2 52()23 (2++-a a f f 与的大小关系是( ) A .)23(-f >)252(2++a a f B .)23(-f <)2 52(2 ++a a f C .)23(-f ≥)252(2++a a f D .)23(-f ≤)2 52(2++a a f 4.设()f x 是奇函数,且在(0,)+∞内是增函数,又(3)0f -=,则()0x f x ?<的解集是( ) A .{}|303x x x -<<>或B .{}|303x x x <-<<或 C .{}|33x x x <->或 D .{}|3003x x x -<<<<或 5.已知函数()()2212f x x a x =+-+在区间(]4,∞-上是减函数, 则实数a 的取值范围是( ) A .3a ≤- B .3a ≥- C .5a ≤ D .3a ≥ 6.设()f x 是R 上的奇函数,且当[)0,x ∈+∞时,()(1f x x =,则当(,0)x ∈-∞时()f x =_____________________。 7.若函数2()1 x a f x x bx +=++在[]1,1-上是奇函数,则()f x 的解析式为________. 8.已知定义在R 上的奇函数()f x ,当0x >时,1||)(2-+=x x x f ,那么0x <时,()f x =. 9.设函数()f x 与()g x 的定义域是x R ∈且1x ≠±,()f x 是偶函数,()g x 是奇函数,且1()()1 f x g x x +=-,求()f x 和()g x 的解析式. 10.利用函数的单调性求函数x x y 21++=的值域;

奇函数和偶函数发言稿

函数的奇偶性讲稿 (一、导入新课) 现在开始上课,今天我为大家讲解一下有关函数奇偶性的概念以及如何判断函数奇偶性。 在此之前,先回忆一下之前讲的有关对称的概念,我们会发现生活中有很多对称的例子。例如:汽车车轮,人(一般只要是圆柱,圆锥,球,正方体,长方体几何体都是轴对称图形),篮球,羽毛球拍等. 而数学中也存在对称的例子,例如今天所要讲的奇函数和偶函数。大家可以在纸上画出函数y=x,y=1/x,y=cos x ,y=x2的图象,看一下这些函数有什么特点。 (y=x,y=1/x图象关于原点对称,=cos x ,y=x2的图象关于y轴对称)。(二、讲解新课) 如何从数值角度研究对称函数图象的自变量与函数值之间的规律。 下面以函数y=x2为例(画出函数图象),首先我们知道,对于任意x,-x与x 关于y轴对称,即x2与(-x)2两点到坐标y轴的距离相等,而且x2=(-x)2,也就是说函数y=x2的定义域上每一点都成立x2=(-x)2,而这样的函数我们通常称之为偶函数。 所以可以给出偶函数的定义:一般地,如果对于函数f(x)的定义域内任意一个x,都有f(x)=f(-x),那么函数f(x)就叫做偶函数. 注意“任意”两字。 (让大家举出一些偶函数的例子)既然关于y轴对称的函数我们称为偶函数,那么关于原点对称的函数呢?当然也有一个特定称谓叫做奇函数。而奇函数的自

变量与函数值之间具有怎样的数值规律呢?可以以函数y=1/x为例(同时画出出 y=1/x的图象), 我们可以类似的方法,得出函数y=1/x的定义域上每一点都成立1/x=-1/(-x),所以奇函数的定义. 一般地,如果对于函数f(x)的定义域内任意一个x,都有f(-x)=-f(x),那么函数f(x)就叫做奇函数. 下面如何判定函数奇偶性? (三、例题讲解 写下:例1 判断下列函数的奇偶性 (1)f(x)=x+1/x; (2) f(x)= 1/x2; (3) f(x)=2x ; (4) f(x)=|x|-2; (5)f(x)=(1-x2)1/2; (6)f(x)=-x2,-3≤x≤1; (7)f(x)=2x-1;) 前三个题做完,可以发现判断奇偶性,只需验证 f(x)与f(-x)之间的关系.那如何判断一个函数不具有奇偶性呢?以第(1)为例,说说它为什么不是偶函数呢?(因为f(x)≠f(-x)),所以判断一个函数不具有奇偶性只需举一个反例就可说明. 另一个需要注意的是,通过第(6)题我们可以得出:定义域关于原点对称是函数具有奇偶性的先决条件。 在这几个函数中有是奇函数不是偶函数,有是偶函数不是奇函数也有既不是奇函数也不是偶函数,那么有没有这样的函数,它既是奇函数也是偶函数呢?

高中必修一函数的奇偶性详细讲解及练习(详细答案)

函数的单调性和奇偶性 例1(1)画出函数y=-x2+2|x|+3的图像,并指出函数的单调区间. 解:函数图像如下图所示,当x≥0时,y=-x2+2x+3=-(x-1)2+4;当x<0时,y=-x2-2x+3=-(x+1)2+4.在(-∞,-1]和[0,1]上,函数是增函数:在[-1,0]和[1,+∞)上,函数是减函数. 评析函数单调性是对某个区间而言的,对于单独一个点没有增减变化,所以对于区间端点只要函数有意义,都可以带上. (2)已知函数f(x)=x2+2(a-1)x+2在区间(-∞,4]上是减函数,求实数a的取值范围.分析要充分运用函数的单调性是以对称轴为界线这一特征. 解:f(x)=x2+2(a-1)x+2=[x+(a-1)]2-(a-1)2+2,此二次函数的对称轴是x=1-a.因为在区间(-∞,1-a]上f(x)是单调递减的,若使f(x)在(-∞,4]上单调递减,对称轴x=1-a必须在x=4的右侧或与其重合,即1-a≥4,a≤-3. 评析这是涉及逆向思维的问题,即已知函数的单调性,求字母参数范围,要注意利用数形结合.例2判断下列函数的奇偶性: (1)f(x)=- (2)f(x)=(x-1). 解:(1)f(x)的定义域为R.因为 f(-x)=|-x+1|-|-x-1| =|x-1|-|x+1|=-f(x). 所以f(x)为奇函数. (2)f(x)的定义域为{x|-1≤x<1},不关于原点对称.所以f(x)既不是奇函数,也不是偶函数. 评析用定义判断函数的奇偶性的步骤与方法如下: (1)求函数的定义域,并考查定义域是否关于原点对称. (2)计算f(-x),并与f(x)比较,判断f(-x)=f(x)或f(-x)=-f(x)之一是否成立.f

最新函数的奇偶性的经典总结

x x x f 1)(+ =1 )(2+= x x x f x x f 1)(= 函数的奇偶性 一、函数奇偶性的基本概念 1.偶函数:一般地,如果对于函数()x f 的定义域内任意一个x ,都有()()x f x f =-, 0)()(=--x f x f ,那么函数()x f 就叫做偶函数。 2.奇函数:一般地,如果对于函数()x f 的定义域内任一个x ,都有()()x f x f -=-, 0)()(=+-x f x f ,那么函数()x f 就叫做奇函数。 注意:(1)判断函数的奇偶性,首先看定义域是否关于原点对称,不关于原点对称是非奇非偶函数,若函数的定义域是关于原点对称的,再判断 ()()x f x f ±=- 之一是否成立。 (2)在判断()x f 与()x f -的关系时,只需验证()()0=±-x f x f 及) () (x f x f -=1±是否成立即可来确定函数的奇偶性。 题型一 判断下列函数的奇偶性。 ⑴ x x x f +=2)(,(2) x x x f -=3)( (3) ()()()R x x f x f x G ∈--=,(4) (5)x x x f cos )(= (6)x x x f sin )(= (7) x x x f --=22)(,(8) 提示:上述函数是用函数奇偶性的定义和一些性质来判断 (1)判断上述函数的奇偶性的方法就是用定义。 (2)常见的奇函数有:x x f =)(,3 )(x x f =,x x f sin )(=, (3)常见的奇函数有:2 )(x x f =,x x f =)(,x x f cos )(= (4)若()x f 、()x g 都是偶函数,那么在()x f 与()x g 的公共定义域上,()x f +()x g 为 偶函数,()-x f ()x g 为偶函数。当()x g ≠0时, ) () (x g x f 为偶函数。 (5)若()x f ,()x g 都是奇函数,那么在()x f 与()x g 的公共定义域上,()x f +()x g 是奇函数,()-x f ()x g 是奇函数,()()x g x f ?是偶函数,当()x g ≠0时, ) () (x g x f 是偶函数。

信号与系统课后习题答案—第1章

第1章 习题答案 1-1 题1-1图所示信号中,哪些是连续信号?哪些是离散信号?哪些是周期信号?哪些是非周期信号?哪些是有始信号? 解: ① 连续信号:图(a )、(c )、(d ); ② 离散信号:图(b ); ③ 周期信号:图(d ); ④ 非周期信号:图(a )、(b )、(c ); ⑤有始信号:图(a )、(b )、(c )。 1-2 已知某系统的输入f(t)与输出y(t)的关系为y(t)=|f(t)|,试判定该系统是否为线性时不变系统。 解: 设T 为此系统的运算子,由已知条件可知: y(t)=T[f(t)]=|f(t)|,以下分别判定此系统的线性和时不变性。 ① 线性 1)可加性 不失一般性,设f(t)=f 1(t)+f 2(t),则 y 1(t)=T[f 1(t)]=|f 1(t)|,y 2(t)=T[f 2(t)]=|f 2(t)|,y(t)=T[f(t)]=T[f 1(t)+f 2(t)]=|f 1(t)+f 2(t)|,而 |f 1(t)|+|f 2(t)|≠|f 1(t)+f 2(t)| 即在f 1(t)→y 1(t)、f 2(t)→y 2(t)前提下,不存在f 1(t)+f 2(t)→y 1(t)+y 2(t),因此系统不具备可加性。 由此,即足以判定此系统为一非线性系统,而不需在判定系统是否具备齐次性特性。 2)齐次性 由已知条件,y(t)=T[f(t)]=|f(t)|,则T[af(t)]=|af(t)|≠a|f(t)|=ay(t) (其中a 为任一常数) 即在f(t)→y(t)前提下,不存在af(t)→ay(t),此系统不具备齐次性,由此亦可判定此系统为一非线性系统。 ② 时不变特性 由已知条件y(t)=T[f(t)]=|f(t)|,则y(t-t 0)=T[f(t-t 0)]=|f(t-t 0)|, 即由f(t)→y(t),可推出f(t-t 0)→y(t-t 0),因此,此系统具备时不变特性。 依据上述①、②两点,可判定此系统为一非线性时不变系统。 1-3 判定下列方程所表示系统的性质: )()()]([)()(3)(2)(2)()()2()()(3)(2)()()()()() (2''''''''0t f t y t y d t f t y t ty t y c t f t f t y t y t y b dx x f dt t df t y a t =+=++-+=+++=? 解:(a )① 线性 1)可加性 由 ?+=t dx x f dt t df t y 0)()()(可得?????→+=→+=??t t t y t f dx x f dt t df t y t y t f dx x f dt t df t y 01122011111)()()()()()()()()()(即即 则 ???+++=+++=+t t t dx x f x f t f t f dt d dx x f dt t df dx x f dt t df t y t y 0212102201121)]()([)]()([)()()()()()( 即在)()()()()()()()(21212211t y t y t f t f t y t f t y t f ++前提下,有、→→→,因此系统具备可加性。 2)齐次性 由)()(t y t f →即?+=t dx x f dt t df t y 0)()()(,设a 为任一常数,可得 )(])()([)()()]([)]([000t ay dx x f dt t df a dx x f a dt t df a dx x af t af dt d t t t =+=+=+??? 即)()(t ay t af →,因此,此系统亦具备齐次性。 由上述1)、2)两点,可判定此系统为一线性系统。

函数的奇偶性的经典总结

x x x f 1)(+=1 )(2+= x x x f x x f 1)(=函数的奇偶性 一、函数奇偶性的基本概念 1.偶函数:一般地,如果对于函数()x f 的定义域内任意一个x ,都有()()x f x f =-,0)()(=--x f x f ,那么函数()x f 就叫做偶函数。 2.奇函数:一般地,如果对于函数()x f 的定义域内任一个x ,都有()()x f x f -=-,0)()(=+-x f x f ,那么函数()x f 就叫做奇函数。 注意:(1)判断函数的奇偶性,首先看定义域是否关于原点对称,不关于原点对称是非奇非偶函数,若函数的定义域是关于原点对称的,再判断 ()()x f x f ±=- 之一是否成立。 (2)在判断()x f 与()x f -的关系时,只需验证()()0=±-x f x f 及 ) ()(x f x f -=1±是否成立即可来确定函数的奇偶性。 题型一 判断下列函数的奇偶性。 ⑴x x x f +=2)(,(2)x x x f -=3)( (3)()()()R x x f x f x G ∈--=,(4) (5)x x x f cos )(= (6)x x x f sin )(= (7) x x x f --=22)(,(8) 提示:上述函数是用函数奇偶性的定义和一些性质来判断 (1)判断上述函数的奇偶性的方法就是用定义。 (2)常见的奇函数有:x x f =)(,3)(x x f =,x x f sin )(=, (3)常见的奇函数有:2)(x x f =,x x f =)(,x x f cos )(= (4)若()x f 、()x g 都是偶函数,那么在()x f 与()x g 的公共定义域上,()x f +()x g 为 偶函数,()-x f ()x g 为偶函数。当()x g ≠0时,) ()(x g x f 为偶函数。 (5)若()x f ,()x g 都是奇函数,那么在()x f 与()x g 的公共定义域上,()x f +()x g 是奇函数,()-x f ()x g 是奇函数,()()x g x f ?是偶函数,当()x g ≠0时,) ()(x g x f 是偶函数。

华侨大学《信号与系统》证明题题库(A)

精品文档 考核人数______ 考核班次_______________ 任课教员_________ 出题教员签名________ 任课教研室主任签名_______日期_______ 队别__________ 教学班次___________ 学号___________ 姓名____________ …………………………密………………………………封………………………………线……………………………………… 华侨大学信息科学与工程学院 《信号与系统》期末考试试卷(A 卷) 题目部分,(卷面共有50题,100分,各大题标有题量和总分) 一、证明(50小题,共100分) 1.设() H p 是线性时不变系统的传输算子,且系统起始状态为零,试证明 [()()]()(t H p t e H p t αδαδ-=+。 2.证明()()(0)()2(0)()(0)()f t t f t f t f t δδδδ''''''''=-+。 3.证明:23()2(),()0t t t t t δδδ''''==一般情况:()()(1)!()n n n t t n t δδ=- 4.设()()(3)t k r t e u t t k δ+∞ -=-∞=*-∑,证明()t r t Ae -=,03t ≤≤,并求出A 值。 5.设()H p 是线性时不变系统的传输算子,且系统起始状态为零,试证明: [()()]()()t H p t e H p t βδβδ-=+ 6.证明()()(0)()2(0)()(0)()f t t f t f t f t δδδδ''''''''=-+。 7.设()()(3)t k r t e u t t k δ∞ -=-∞=?-∑,证明(),03t r t Ae t -=≤≤,并求出A 的值。 8.若()x n 为纯虚序列,[()]()DFT x n X k =,分解为实部与虚部写做:()()r x k X k =+ ()i jX k ,试证明()r X k 是k 的奇函数,()i X k 是k 的偶函数。 9.已知()()N x n R n =,求()[()]X k DFT x n =,利用所得到的结果验证帕塞瓦尔定理。 10.证明下表中除第1行以外的其余几条性质 11.库利—图基FFT 算法也可解释[W] 矩阵的分解简化,例如4N =可写出 0010 1 01 001 00(0)(0)(2)100110(1)(1)(2)0011 00(3)(3)0 01010W W X X X W W X X X W W X X W W ???????? ??? ?????-????????=?????? ?? -??????????????? ?--???? 试证明此矩阵表示与(976)-一致,并指出此矩阵相乘的过程与前面哪一张FFT 流程相对应。 12.函数( )f t 可以表示成偶函数()e f t 与奇函数0()f t 之和,试证明: (1)若()f t 是实函数,且 [()]()f t F ω= ,则 [()]Re[()]e f t F ω= 0[()]Im[()]f t j F ω= (2)若 ()f t 是复函数,可表示为()()(), r i f t f t jf t =+[()]()f t F ω=则 *1 [()][()()], 2 r f t F F ωω=+-*1 [()][()()],2i f t F F j ωω= -- 其中* ()F ω-= *[()]F t 13.若已知实数有限长序列1()x n 和2()x n ,其长度为N ,且112()[()],()X k DFT x n X k == 212[()],()()(),()[()]DFT x n x n jx n x n X k DFT x n +==,试证明下列关系式成立: 11 ()[()()]2 X k X k X N k *=+- 21()[()()]2X k X k X N k j *=--

奇函数偶函数教案

函数奇偶性教案(第一课时) 一、课题:谁是奇?谁是偶? 二、课型:概念学习型 三、教学目标:通过函数奇偶性的学习,使学生对函数的整体性质有一定的了解,并且让学生能够判断函数的奇偶性,以及体会数形结合的数学思想方法。 四、教学重点和难点:1)重点:对函数奇偶性概念的理解于应用。2)难点:判断奇偶性的方法。五、教学方法:利用已经学过的对称性,及前面学习过的函数图象来类比学习。 六、课时安排:2课时 七、教学设备:可以运用多媒体,也可以黑板讲解。 八、教学过程:

2)引入:观察下面的函数图像 偶函数: 先来看看前两个函数的图象,我们发现有共同的特点,那就是都是关于y 轴对称的,是吧!所以,我们就用奇偶性来表示函数图象的这种性质。那么,函数奇偶性的定义是怎么样的呢?下面我们就来定义一下: 一、 偶函数:一般的,如果对于函数f(x)的定义域内 任意一个x ,都有f(-x)=f(x),那么函数f(x) 就叫做

偶函数。 二、同理,我们也可以定义出奇函数的定义。请大家 归纳一下。 注意:1)定义域内的、任意的、定义域要关于原点对称才能判断!与函数的单调性的比较!2)首先定义域要关于原点对称才能判断奇偶性。既奇又偶函数:常值函数 三、如何判断函数的奇偶性:1)定义法:第一步, 先看函数的定义域是否关于原点对称,否则非奇非偶。第二步,直接或间接利用奇偶性的定义来判断。(可利用作差或用作商) 2)图象法:利用奇偶函数图象的对称性;来判断。 3)复合函数的奇偶性判断:若复合函数是由若干个函数复合而成,则可依若干个函数的奇偶性而定。 四、例题:判断下列函数的奇偶性: (1) 4 f()x x=(2)5 f()x x=; (3) 1 f()x x x =+(4) 2 1 f()x x =. 九、板书设计和课后分析:

函数的奇偶性及其几何意义

教学过程: (一)函数的奇偶性定义 1.偶函数(even function) 一般地,对于函数f(x)的定义域内的任意一个x,都有f(-x)=f(x),那么f(x)就叫做偶函数.仿照偶函数的定义给出奇函数的定义 2.奇函数(odd function) 一般地,对于函数f(x)的定义域内的任意一个x,都有f(-x)=f(x),那么f(x)就叫做奇函数.注意: ○1函数是奇函数或是偶函数称为函数的奇偶性,函数的奇偶性是函数的整体性质; ○2由函数的奇偶性定义可知,函数具有奇偶性的一个必要条件是,对于定义域内的任意一个x,则 -x也一定是定义域内的一个自变量(即定义域关于原点对称). (二)具有奇偶性的函数的图象的特征 偶函数的图象关于y轴对称;奇函数的图象关于原点对称. (三)典型例题 1.判断函数的奇偶性 例1.(例3)应用函数奇偶性定义说明两个观察思考中的四个函数的奇偶性.(本例由学生讨论,师生共同总结具体方法步骤) 总结:利用定义判断函数奇偶性的格式步骤: ○1首先确定函数的定义域,并判断其定义域是否关于原点对称; ○2确定f(-x)与f(x)的关系; ○3作出相应结论: 若f(-x) = f(x) 或 f(-x)-f(x) = 0,则f(x)是偶函数; 若f(-x) =-f(x) 或 f(-x)+f(x) = 0,则f(x)是奇函数. 例2.(习题1.3 B组每1题) 说明:函数具有奇偶性的一个必要条件是,定义域关于原点对称,所以判断函数的奇偶性应应首先判断函数的定义域是否关于原点对称,若不是即可断定函数是非奇非偶函数. 2.利用函数的奇偶性补全函数的图象 规律:偶函数的图象关于y轴对称; 奇函数的图象关于原点对称. 说明:这也可以作为判断函数奇偶性的依据.

函数的奇偶性的典型例题

函数的奇偶性的典型例题 函数的奇偶性的判断 判断函数的奇偶性大致有下列两种方法: 第一种方法:利用奇、偶函数的定义,主要考查)(x f 是否与)(x f -、)(x f 相等,判断步骤如下: ①、定义域是否关于原点对称; ②、数量关系)()(x f x f ±=-哪个成立; 例1:判断下列各函数是否具有奇偶性 ⑴、x x x f 2)(3+= ⑵、2 432)(x x x f += ⑶、1 )(2 3--=x x x x f ⑷、2)(x x f = []2,1-∈x ⑸、x x x f -+-=22)( ⑹、2211)(x x x f -+-= 解:⑴为奇函数 ⑵为偶函数 ⑶为非奇非偶函数 ⑷为非奇非偶函数 ⑸为非奇非偶函数 ⑹既是奇函数也是偶函数 注:教材中的解答过程中对定义域的判断忽略了。 例2:判断函数???<≥-=)0()0()(22x x x x x f 的奇偶性。 .)(),()() ()()()(,0,0) ()()(,0,0) (0)0(:22222为奇函数故总有有时即当有时即当解x f x f x f x f x x x f x x x f x x x f x x x f f =-∴-=--=-=->-<-=-=--=-<->-== 第二种方法:利用一些已知函数的奇偶性及下列准则(前提条件为两个函数的定义域交集不为空集):两个奇函数的代数和是奇函数;两个偶函数的和是偶函数;奇函数与偶函数的和既不非奇函数也非偶函数;两个奇函数的积为偶函数;两个偶函数的积为偶函数;奇函数与偶函数的积是奇函数。 四、关于函数的奇偶性的几个命题的判定。 命题 1 函数的定义域关于原点对称,是函数为奇函数或偶函数的必要不充分

函数的奇偶性的经典总结

函数的奇偶性 一、函数奇偶性的基本概念 1.偶函数:一般地,如果对于函数()x f 的定义域内任意一个x ,都有()()x f x f =-, 0)()(=--x f x f ,那么函数()x f 就叫做偶函数。 2.奇函数:一般地,如果对于函数()x f 的定义域内任一个x ,都有()()x f x f -=-, 0)()(=+-x f x f ,那么函数()x f 就叫做奇函数。 注意:(1)判断函数的奇偶性,首先看定义域是否关于原点对称,不关于原点对称是非奇非偶函数,若函数的定义域是关于原点对称的,再判断 ()()x f x f ±=- 之一是否成立。 (2)在判断()x f 与()x f -的关系时,只需验证()()0=±-x f x f 及) () (x f x f -=1±是否成立即可来确定函数的奇偶性。 题型一 判断下列函数的奇偶性。 ⑴x x x f +=2 )(,(2)x x x f -=3 )( (3)()()()R x x f x f x G ∈--=,(4) (5)x x x f cos )(= (6)x x x f sin )(= (7) x x x f --=22)(,(8) 提示:上述函数是用函数奇偶性的定义和一些性质来判断 (1)判断上述函数的奇偶性的方法就是用定义。 (2)常见的奇函数有:x x f =)(,3 )(x x f =,x x f sin )(=, (3)常见的奇函数有:2 )(x x f =,x x f =)(,x x f cos )(= (4)若()x f 、()x g 都是偶函数,那么在(x f 与()x g 的公共定义域上,()x f +()x g 为 偶函数,()-x f ()x g 为偶函数。当()x g ≠0时, ) () (x g x f 为偶函数。 (5)若()x f ,()x g 都是奇函数,那么在()x f 与()x g 的公共定义域上,()x f +()x g 是奇函数,()-x f ()x g 是奇函数,()()x g x f ?是偶函数,当()x g ≠0时, ) () (x g x f 是偶函数。 (6)常函数()()为常数c c x f =是偶函数,()f x =0既是偶函数又是奇函数。 (7)在公共定义域内偶函数的和、差、积、商(分母不为零)仍为偶函数;奇函数和、差仍为奇函数;奇(偶)数个奇函数积、商(分母不为零)为奇(偶)函数;一个奇函数与一个偶函数的积为奇函数.(8)对于复合函数()()[]x g f x F =;若()x g 为偶函数, ()f x 为奇(偶)函数,则()x F 都为

函数的奇偶性优秀教案

1.3.2(1)函数的奇偶性 【教学目标】 1.理解函数的奇偶性及其几何意义; 2.学会运用函数图象理解和研究函数的性质; 3.学会判断函数的奇偶性; 【教学重难点】 教学重点:函数的奇偶性及其几何意义 教学难点:判断函数的奇偶性的方法与格式 【教学过程】 “对称”是大自然的一种美,这种“对称美”在数学中也有大量的反映,让我们看看下列各函数有什么共性? 提出问题 ①如图所示,观察下列函数的图象,总结各函数之间的共性. 结论:这两个函数之间的图象都关于y轴对称. ②那么如何利用函数的解析式描述函数的图象关于y轴对称呢?填写表1和表2,你发现这两个函数的解析式具有什么共同特征? 表1 表2 结论:这两个函数的解析式都满足:f(-3)=f(3); f(-2)=f(2); f(-1)=f(1). 可以发现对于函数定义域内任意的两个相反数,它们对应的函数值相等,也就是说对于函数定义域内任意一个x,都有f(-x)=f(x). 定义: 1.偶函数 1 / 5

2 / 5 一般地,对于函数()f x 的定义域内的任意一个x ,都有()()f x f x -=,那么()f x 就叫做偶函数. 观察函数f(x)=x 和f(x)=x 1 的图象,类比偶函数的推导过程,给出奇函数的定义和性质? 2.奇函数 一般地,对于函数()f x 的定义域的任意一个x ,都有()()f x f x -=-,那么()f x 就叫做奇函数. 注意: 1、如果函数()y f x =是奇函数或偶函数,我们就说函数()y f x =具有奇偶性;函数的奇偶性是函数的整体性质; 2、根据奇偶性可将函数分为四类:奇函数、偶函数、既是奇函数又是偶函数、既不是奇函 数也不是偶函数; 3、由函数的奇偶性定义可知,函数具有奇偶性的一个必要条件是,对于定义域内的任意一个x ,则x -也一定是定义域内的一个自变量(即定义域关于原点对称).如果一个函数的定义域不关于“0”(原点)对称,则该函数既不是奇函数也不是偶函数; 4、偶函数的图象关于y 轴对称, 反过来,如果一个函数的图象关于y 轴对称,那么这个函数为偶函数 且()(||)f x f x = 奇函数的图象关于原点对称;反过来,如果一个函数的图象关于原点对称,那么这个函数为奇函数. 且f(0)=0 5、可以利用图象判断函数的奇偶性,这种方法称为图象法,也可以利用奇偶函数的定义判断函数的奇偶性,这种方法称为定义法 用定义判断函数奇偶性的步骤是 (1)、先求定义域,看是否关于原点对称; (2)、再判断()()f x f x -=- 或 ()()f x f x -= 是否恒成立; (3)、作出相应结论. 若()()()()0,()f x f x f x f x f x -=--=或则是偶函数; 若()()()()0,()f x f x f x f x f x -=--+=或则是奇函数 例.判断下列函数的奇偶性 (1)2 ()[1,2]f x x x =∈- 为非奇非偶函数 (2)32 ()1x x f x x -=-为非奇非偶函数 (3)x x x f +=3 )( 奇函数 (4)1 1 ) 1()(-+-=x x x x f

函数的奇偶性

函数的奇偶性 【学习目标】 1.理解函数的奇偶性定义; 2.会利用图象和定义判断函数的奇偶性; 3.掌握利用函数性质在解决有关综合问题方面的应用. 【要点梳理】 要点一、函数的奇偶性概念及判断步骤 1.函数奇偶性的概念 偶函数:若对于定义域内的任意一个x ,都有f(-x)=f(x),那么f(x)称为偶函数. 奇函数:若对于定义域内的任意一个x ,都有f(-x)=-f(x),那么f(x)称为奇函数. 要点诠释: (1)奇偶性是整体性质; (2)x 在定义域中,那么-x 在定义域中吗?----具有奇偶性的函数,其定义域必定是关于原点对称的; (3)f(-x)=f(x)的等价形式为:() ()()0, 1(()0)() f x f x f x f x f x ---==≠, f(-x)=-f(x)的等价形式为:() ()()01(()0)() f x f x f x f x f x -+-==-≠, ; (4)由定义不难得出若一个函数是奇函数且在原点有定义,则必有f(0)=0; (5)若f(x)既是奇函数又是偶函数,则必有f(x)=0. 2.奇偶函数的图象与性质 (1)如果一个函数是奇函数,则这个函数的图象是以坐标原点为对称中心的中心对称图形;反之,如果一个函数的图象是以坐标原点为对称中心的中心对称图形,则这个函数是奇函数. (2)如果一个函数为偶函数,则它的图象关于y 轴对称;反之,如果一个函数的图像关于y 轴对称,则这个函数是偶函数. 3.用定义判断函数奇偶性的步骤 (1)求函数()f x 的定义域,判断函数的定义域是否关于原点对称,若不关于原点对称,则该函数既不是奇函数,也不是偶函数,若关于原点对称,则进行下一步; (2)结合函数()f x 的定义域,化简函数()f x 的解析式; (3)求()f x -,可根据()f x -与()f x 之间的关系,判断函数()f x 的奇偶性. 若()f x -=-()f x ,则()f x 是奇函数; 若()f x -=()f x ,则()f x 是偶函数; 若()f x -()f x ≠±,则()f x 既不是奇函数,也不是偶函数; 若()f x -()f x =且()f x -=-()f x ,则()f x 既是奇函数,又是偶函数 要点二、判断函数奇偶性的常用方法

函数奇偶性知识点与经典题型归纳

函数奇偶性 知识梳理 1. 奇函数、偶函数的定义 (1)奇函数:设函数()y f x =的定义域为D ,如果对D 内的任意一个x ,都有()()f x f x -=-, 则这个函数叫奇函数. (2)偶函数:设函数()y f x =的定义域为D ,如果对D 内的任意一个x ,都有()()f x f x -=, 则这个函数叫做偶函数. (3)奇偶性:如果函数()f x 是奇函数或偶函数,那么我们就说函数()f x 具有奇偶性. (4)非奇非偶函数:无奇偶性的函数是非奇非偶函数. 注意:(1)奇函数若在0x =时有定义,则(0)0f =. (2)若()0f x =且()f x 的定义域关于原点对称,则()f x 既是奇函数又是偶函数. 2.奇(偶)函数的基本性质 (1)对称性:奇函数的图象关于原点对称,偶函数的图象关于y 轴对称. (2)单调性:奇函数在其对称区间上的单调性相同,偶函数在其对称区间上的单调性相反. 3. 判断函数奇偶性的方法 (1)图像法 (2)定义法 ○ 1 首先确定函数的定义域,并判断其定义域是否关于原点对称; ○ 2 确定f(-x)与f(x)的关系; ○ 3 作出相应结论: 若f(-x) = f(x) 或 f(-x)-f(x) = 0,则f(x)是偶函数; 若f(-x) =-f(x) 或 f(-x)+f(x) = 0,则f(x)是奇函数. 例题精讲 【例1】若函数2()f x ax bx =+是偶函数,求b 的值. 解:∵函数 f (x )=ax 2+bx 是偶函数, ∴f (-x )=f (x ).∴ax 2+bx= ax 2-bx. ∴2bx=0. ∴b =0. 【例3】已知函数21()f x x =在y 轴左边的图象如下图所示,画出它右边的图象. 题型一 判断函数的奇偶性 【例4】判断下列函数的奇偶性. (1)2()||(1)f x x x =+;

函数的奇偶性练习题[(附答案)

函数的奇偶性 1.函数f (x )=x(-1﹤x ≦1)的奇偶性是 ( ) A .奇函数非偶函数 B .偶函数非奇函数 C .奇函数且偶函数 D .非奇非偶函数 2. 已知函数f (x )=ax 2+bx +c (a ≠0)是偶函数,那么g (x )=ax 3+bx 2+cx 是( ) A .奇函数 B .偶函数 C .既奇又偶函数 D .非奇非偶函数 3. 若函数f (x )是定义在R 上的偶函数,在]0,(-∞上是减函数, 且f (2)=0,则使得f (x )<0的x 的取值范围是 ( ) A.(-∞,2) B. (2,+∞) C. (-∞,-2)?(2,+∞) D. (-2,2) 4.已知函数f (x )是定义在(-∞,+∞)上的偶函数. 当x ∈(-∞,0)时,f (x )=x -x 4,则 当x ∈(0.+∞)时,f (x )= . 5. 判断下列函数的奇偶性: (1)f (x )=lg (12+x -x ); (2)f (x )=2-x +x -2 (3) f (x )=? ? ?>+<-). 0() 1(),0()1(x x x x x x 6.已知g (x )=-x 2-3,f (x )是二次函数,当x ∈[-1,2]时,f (x )的最小值是1,且f (x )+g (x )是奇函数,求f (x )的表达式。 7.定义在(-1,1)上的奇函数f (x )是减函数,且f(1-a)+f(1-a 2 )<0,求a 的取值范围 8.已知函数21 ()(,,)ax f x a b c N bx c += ∈+是奇函数,(1)2,(2)3,f f =<且()[1,)f x +∞在上是增函数, (1)求a,b,c 的值; (2)当x ∈[-1,0)时,讨论函数的单调性. 9.定义在R 上的单调函数f (x )满足f (3)=log 23且对任意x ,y ∈R 都有 f (x+y )=f (x )+f (y ). (1)求证f (x )为奇函数; (2)若f (k ·3x )+f (3x -9x -2)<0对任意x ∈R 恒成立,求实数k 的取值范围.

高考数学奇函数与偶函数的性质及其应用

奇函数与偶函数的性质及其应用 1 奇函数的性质及其应用 奇函数的性质 设)(x f 是奇函数. (1)若)0(f 有意义,则0)0(=f ; (2)若a x f x g +=)()(,则a x g x g 2)()(=-+; (3)若函数)(x f 有最大(小)值,则函数)(x f 有最小(大)值,且函数)(x f 的最大值与最小值互为相反数. 证明 (1)在恒等式0)()(=-+x f x f 中,令0=x 后,可得0)0(=f . (2)可得a a x f a x f x g x g 2])([])([)()(=+-++=-+. (3)这里只证明结论:若函数)(x f 有最大值,则函数)(x f 有最小值,且函数)(x f 的最大值与最小值互为相反数. 设函数)(x f 的定义域是D ,得)()(,,00x f x f D x D x ≤∈?∈?. 因为奇函数)(x f 的定义域D 关于原点对称,所以D x D x ∈-∈?,,得 D x x f x f x f x f x f x f ∈--=-≥≤-=-0000),()()(),()()(,所以函数)(x f 有最小值(为)(0x f -),且函数)(x f 的最大值与最小值互为相反数. 题1 (普通高中课程标准实验教科书《数学1·必修·A 版》(人民教育出版社,2007年第2版)第83页第3(2)题)是否存在实数a 使函数1 22)(+- =x a x f 为奇函数? 解 由奇函数的性质(1),可得1,01)0(==-=a a f . 还可验证:当1=a 时,0)()(=-+x f x f ,即)(x f 是奇函数. 所以存在实数1=a 使函数)(x f 为奇函数. 题2 (2007年高考安徽卷理科第11题)定义在R 上的函数)(x f 既是奇函数,又是周期函数,T 是它的一个周期,若将方程0)(=x f 在闭区间],[T T -上的根的个数记为n ,则n 可能为( )

函数的奇偶性(讲义)

函数的奇偶性 【知识要点】 1.函数奇偶性的定义:一般地,对于函数()f x 定义域内的任意一个x ,都有()()f x f x -=,那么函数()f x 叫偶函数(even function ). 如果对于函数定义域内的任意一个x ,都有()()f x f x -=-,那么函数()f x 叫奇函数(odd function ). 2.奇函数的图象关于原点对称,偶函数的图象关于y 轴对称,反之亦真.由此,可由函数图象的对称性判断函数的奇偶性,也可由函数的奇偶性作函数的图象. 3.判别方法:先考察定义域是否关于原点对称,再用比较法、计算和差、比商法等判别()f x -与()f x 的关系; (1)奇函数?)0)((1) ()(0)()()()(≠-=-?=+-?-=-x f x f x f x f x f x f x f ; (2)偶函数()()()()()() ()()0 10≠=-?=--?=-?x f x f x f x f x f x f x f . 4.函数奇偶性的几个性质: (1)奇偶函数的定义域关于原点对称,在判断函数奇偶性时,应先考察函数的定义域; (2)奇偶性是函数的整体性质,对定义域内任意一个x 都必须成立; (3)若奇函数()x f 在原点有意义,则()00=f ; (4)根据奇偶性可将函数分为四类:奇函数、偶函数、既是奇函数又是偶函数、既不是奇函数,又不是偶函数; (5)在公共的定义域内:两个奇(偶)函数的和与差仍是奇(偶)函数;两个奇(偶)函数的积是偶函数;一个奇函数与一个偶函数的积是奇函数; (6)函数()x f 与函数() x f 1有相同的奇偶性.

西电期末考试信号与系统大总结(所有)

第一章引论

第二、三章.连续时间信号、离散时间信号与系统时域分析一.普通信号 二、冲激信号

三.卷积 四.电路元件的运算模型 i 关系 )()t Ri t = 五.连续时间系统时域分析

六.系统的特征方程 七.系统的冲激响应和单位样值响应 八.基本离散信号

九.离散信号的性质 十.信号的分解 ○ 1直流分量与交流分量 ○2奇分量与偶分量 ()()D A f t f f t =+常数平均是为零 ()()()e o f t f t f t =+1()[()()]21()[()()]2e o f t f t f t f t f t f t ? =+-????=--?? 备注:无 第四章.连续时间信号与系统频域分析 一.周期信号的频谱分析 1. 简谐振荡信号是线性时不变系统的本征信号: () ()()()()j t j t j t j y t e h t e h d e e h d ωωτωωτττττ∞ ∞ ---∞ -∞ = *==???简谐振荡信号 傅里叶变换:()()j H j e h d ωτωττ∞ --∞ =? 点 测 法: ()()j t y t e H j ωω=? 2.傅里叶级数和傅里叶变换 3.荻里赫勒(Dirichlet )条件(只要满足这个条件信号就可以用傅里叶级数展开) ○1()f t 绝对可积,即00 ()t T t f t dt +<∞? ○2()f t 的极大值和极小值的数目应有限 ○3()f t 如有间断点,间断点的数目应有限 4.周期信号的傅里叶级数

5.波形对称性与谐波特性的关系 6.周期矩形脉冲信号 7.线性时不变系统对周期信号的响应 一般周期信号:()jn t n n F e f t ∞ Ω=-∞ =∑ 系统的输出 :()()jn t n n F H jn t e y t ∞ Ω=-∞ Ω= ∑ 二.非周期信号的傅里叶变换(备注)

相关文档
最新文档