高一数学-高一数学第一章(第21课时)集合与简易逻辑复习小结基础训练 精品

合集下载

2020高中数学精讲精练(新人教A版)第01章 集合与简易逻辑

2020高中数学精讲精练(新人教A版)第01章 集合与简易逻辑

2020高中数学精讲精练 第一章 集合与简易逻辑第1课时 集合的概念及运算【考点导读】1. 了解集合的含义,体会元素与集合的属于关系;能选择自然语言,图形语言,集合语言描述不同的具体问题,感受集合语言的意义和作用.2. 理解集合之间包含与相等的含义,能识别给定集合的子集;了解全集与空集的含义.3. 理解两个集合的交集与并集的含义,会求两个集合的交集与并集;理解在给定集合中一个子集补集的含义,会求给定子集的补集;能使用文氏图表达集合的关系及运算,体会直观图示对理解抽象概念的作用.4. 集合问题常与函数,方程,不等式有关,其中字母系数的函数,方程,不等式要复杂一些,综合性较强,往往渗透数形思想和分类讨论思想.【基础练习】1.集合{(,)02,02,,}x y x y x y Z ≤≤≤<∈用列举法表示{(0,0),(0,1),(1,0),(1,1),(2,0),(2,1)}.2.设集合{21,}A x x k k Z ==-∈,{2,}B x x k k Z ==∈,则A B ⋂=∅.3.已知集合{0,1,2}M =,{2,}N x x a a M ==∈,则集合M N ⋂=_______. 4.设全集{1,3,5,7,9}I =,集合{1,5,9}A a =-,{5,7}I C A =,则实数a 的值为____8或2___.【范例解析】例.已知R 为实数集,集合2{320}A x x x =-+≤.若R B C A R ⋃=,{01R B C A x x ⋂=<<或23}x <<,求集合B .分析:先化简集合A ,由R B C A R ⋃=可以得出A 与B 的关系;最后,由数形结合,利用数轴直观地解决问题.解:(1){12}A x x =≤≤,{1R C A x x ∴=<或2}x >.又R B C A R ⋃=,R A C A R ⋃=, 可得A B ⊆.而{01R B C A x x ⋂=<<或23}x <<,∴{01x x <<或23}x <<.B ⊆借助数轴可得B A =⋃{01x x <<或23}x <<{03}x x =<<.{0,2}【反馈演练】1.设集合{}2,1=A ,{}3,2,1=B ,{}4,3,2=C ,则()C B A U ⋂=_________. 2.设P ,Q 为两个非空实数集合,定义集合P +Q =},5,2,0{},,|{=∈∈+P Q b P a b a 若}6,2,1{=Q ,则P +Q 中元素的个数是____8___个.3.设集合2{60}P x x x =--<,{23}Q x a x a =≤≤+.(1)若P Q P ⋃=,求实数a 的取值范围;(2)若P Q ⋂=∅,求实数a 的取值范围;(3)若{03}P Q x x ⋂=≤<,求实数a 的值.解:(1)由题意知:{23}P x x =-<<,P Q P ⋃=,Q P ∴⊆.①当Q =∅时,得23a a >+,解得3a >.②当Q ≠∅时,得2233a a -<≤+<,解得10a -<<.综上,(1,0)(3,)a ∈-⋃+∞.(2)①当Q =∅时,得23a a >+,解得3a >;②当Q ≠∅时,得23,3223a a a a ≤+⎧⎨+≤-≥⎩或,解得3532a a ≤-≤≤或. 综上,3(,5][,)2a ∈-∞-⋃+∞. (3)由{03}P Q x x ⋂=≤<,则0a =.第2课 命题及逻辑联结词【考点导读】1. 了解命题的逆命题,否命题与逆否命题的意义;会分析四种命题的相互关系.2. 了解逻辑联结词“或”,“且”,“非”的含义;能用“或”,“且”,“非”表述相关的数学内容.3. 理解全称量词与存在量词的意义;能用全称量词与存在量词叙述简单的数学内容.理解对含有一个量词的命题的否定的意义;能正确地对含有一个量词的命题进行否定.【基础练习】1.下列语句中:①230x -=;②你是高三的学生吗?③315+=;④536x ->.其中,不是命题的有____①②④_____.2.一般地若用p 和q 分别表示原命题的条件和结论,则它的逆命题可表示为若q 则p ,否命题可表示为 p q ⌝⌝若则,逆否命题可表示为q p ⌝⌝若则;原命题与逆否命题互为逆否命题,否命题与逆命题互为逆否命题.【范例解析】例1. 写出下列命题的逆命题,否命题,逆否命题并判断真假.(1) 平行四边形的对边相等;(2) 菱形的对角线互相垂直平分;(3) 设,,,a b c d R ∈,若,a b c d ==,则a c b d +=+.分析:先将原命题改为“若p 则q ”,在写出其它三种命题.解:(1)原命题:若一个四边形是平行四边形,则其两组对边相等;真命题;逆命题:若一个四边形的两组对边相等,则这个四边形是平行四边形;真命题;否命题:若一个四边形不是平行四边形,则其两组对边至少一组不相等;真命题;逆否命题:若一个四边形的两组对边至少一组不相等,则这个四边形不是平行四边形;真命题.(2)原命题:若一个四边形是菱形,则其对角线互相垂直平分;真命题;逆命题:若一个四边形的对角线互相垂直平分,则这个四边形是菱形;真命题;否命题:若一个四边形不是菱形,则其对角线不垂直或不平分;真命题;逆否命题:若一个四边形的对角线不垂直或不平分,则这个四边形不是菱形;真命题.(3)原命题:设,,,a b c d R ∈,若,a b c d ==,则a c b d +=+;真命题;逆命题:设,,,a b c d R ∈,若a c b d +=+,则,a b c d ==;假命题;否命题:设,,,a b c d R ∈,若a b ≠或c d ≠,则a c b d +≠+;假命题;逆否命题:设,,,a b c d R ∈,若a c b d +≠+,则a b ≠或c d ≠;真命题.点评:已知原命题写出其它的三种命题首先应把命题写成“若p则q”的形式,找出其条件p 和结论q,再根据四种命题的定义写出其它命题;对于含大前提的命题,在改写命题时大前提不要动;在写命题p的否定即p⌝时,要注意对p中的关键词的否定,如“且”的否定为“或”,“或”的否定为“且”,“都是”的否定为“不都是”等.例2.写出由下列各组命题构成的“p或q”,“p且q”,“非p”形式的命题,并判断真假. (1)p:2是4的约数,q:2是6的约数;(2)p:矩形的对角线相等,q:矩形的对角线互相平分;(3)p:方程210-+=的两实根的绝对值相等.x xx x-+=的两实根的符号相同,q:方程210分析:先写出三种形式命题,根据真值表判断真假.解:(1)p或q:2是4的约数或2是6的约数,真命题;p且q:2是4的约数且2是6的约数,真命题;非p:2不是4的约数,假命题.(2)p或q:矩形的对角线相等或互相平分,真命题;p且q:矩形的对角线相等且互相平分,真命题;非p:矩形的对角线不相等,假命题.(3)p或q:方程210-+=的两实根的符号相同或绝对值相等,假命题;x xp且q:方程210-+=的两实根的符号相同且绝对值相等,假命题;x x非p:方程210-+=的两实根的符号不同,真命题.x x点评:判断含有逻辑联结词“或”,“且”,“非”的命题的真假,先要把结构弄清楚,确定命题构成的形式以及构成它们的命题p,q的真假然后根据真值表判断构成新命题的真假.例3.写出下列命题的否定,并判断真假.(1)p:所有末位数字是0或5的整数都能被5整除;(2)p:每一个非负数的平方都是正数;(3)p:存在一个三角形,它的内角和大于180°;(4)p:有的四边形没有外接圆;(5)p:某些梯形的对角线互相平分.分析:全称命题“,()∃∈⌝”,特称命题“,()x M p x∃∈”的x M p xx M p x∀∈”的否定是“,()否定是“,()∀∈⌝” .x M p x解:⌝:存在末位数字是0或5的整数,但它不能被5整除,假命题;(1)p⌝:存在一个非负数的平方不是正数,真命题;(2)p⌝:任意一个三角形,它的内角和都不大于180°,真命题;(3)p(4)p ⌝:所有四边形都有外接圆,假命题;(5)p ⌝:任一梯形的对角线都不互相平分,真命题.点评:一些常用正面叙述的词语及它的否定词语列表如下:【反馈演练】1.命题“若a M ∈,则b M ∉”的逆否命题是__________________.2.已知命题p :1sin ,≤∈∀x R x ,则:p ⌝,sin 1x R x ∃∈>.3.若命题m 的否命题n ,命题n 的逆命题p ,则p 是m 的____逆否命题____.4.命题“若b a >,则122->b a ”的否命题为________________________. 5.分别写出下列命题的逆命题,否命题,逆否命题,并判断它们的真假.(1)设,a b R ∈,若0ab =,则0a =或0b =;(2)设,a b R ∈,若0,0a b >>,则0ab >.解:(1)逆命题:设,a b R ∈,若0a =或0b =,则0ab =;真命题;否命题:设,a b R ∈,若0ab ≠,则0a ≠且0b ≠;真命题;逆否命题:设,a b R ∈,若0a ≠且0b ≠,则0ab ≠;真命题;(2)逆命题:设,a b R ∈,若0ab >,则0,0a b >>;假命题;否命题:设,a b R ∈,若0a ≤或0b ≤,则0ab ≤;假命题;逆否命题:设,a b R ∈,若0ab ≤,则0a ≤或0b ≤;真命题.若b M ∈,则a M ∉ 若a b ≤,则221a b ≤-第3 课时 充分条件和必要条件【考点导读】1. 理解充分条件,必要条件和充要条件的意义;会判断充分条件,必要条件和充要条件.2. 从集合的观点理解充要条件,有以下一些结论:若集合P Q ⊆,则P 是Q 的充分条件;若集合P Q ⊇,则P 是Q 的必要条件;若集合P Q =,则P 是Q 的充要条件.3. 会证明简单的充要条件的命题,进一步增强逻辑思维能力.【基础练习】1.若p q ⇒,则p 是q 的充分条件.若q p ⇒,则p 是q 的必要条件.若p q ⇔,则p 是q 的充要条件.2.用“充分不必要条件,必要不充分条件,充要条件和既不充分也不必要条件”填空.(1)已知:2p x >,:2q x ≥,那么p 是q 的_____充分不必要___条件.(2)已知:p 两直线平行,:q 内错角相等,那么p 是q 的____充要_____条件.(3)已知:p 四边形的四条边相等,:q 四边形是正方形,那么p 是q 的___必要不充分__条件.3.若x R ∈,则1x >的一个必要不充分条件是0x >.【范例解析】例.用“充分不必要条件,必要不充分条件,充要条件和既不充分也不必要条件”填空.(1)2,2.x y >⎧⎨>⎩是4,4.x y xy +>⎧⎨>⎩的___________________条件;(2)(4)(1)0x x -+≥是401x x -≥+的___________________条件; (3)αβ=是tan tan αβ=的___________________条件;(4)3x y +≠是1x ≠或2y ≠的___________________条件.分析:从集合观点“小范围⇒大范围”进行理解判断,注意特殊值的使用.解:(1)因为2,2.x y >⎧⎨>⎩结合不等式性质易得4,4.x y xy +>⎧⎨>⎩,反之不成立,若12x =,10y =,有4,4.x y xy +>⎧⎨>⎩,但2,2.x y >⎧⎨>⎩不成立,所以2,2.x y >⎧⎨>⎩是4,4.x y xy +>⎧⎨>⎩的充分不必要条件.(2)因为(4)(1)0x x -+≥的解集为[1,4]-,401x x -≥+的解集为(1,4]-,故(4)(1)0x x -+≥是401x x -≥+的必要不充分条件. (3)当2παβ==时,tan ,tan αβ均不存在;当tan tan αβ=时,取4πα=,54πβ=,但αβ≠,所以αβ=是tan tan αβ=的既不充分也不必要条件.(4)原问题等价其逆否形式,即判断“1x =且2y =是3x y +=的____条件”,故3x y +≠是1x ≠或2y ≠的充分不必要条件.点评:①判断p 是q 的什么条件,实际上是判断“若p 则q ”和它的逆命题“若q 则p ”的真假,若原命题为真,逆命题为假,则p 为q 的充分不必要条件;若原命题为假,逆命题为真,则p 为q 的必要不充分条件;若原命题为真,逆命题为真,则p 为q 的充要条件;若原命题,逆命题均为假,则p 为q 的既不充分也不必要条件.②在判断时注意反例法的应用.③在判断“若p 则q ”的真假困难时,则可以判断它的逆否命题“若⌝q 则⌝p ”的真假.【反馈演练】1.设集合}30|{≤<=x x M ,}20|{≤<=x x N ,则“M a ∈”是“N a ∈”的_必要不充分 条件.2.已知p :1<x <2,q :x (x -3)<0,则p 是q 的 条件.3.已知条件2:{10}p A x R x ax =∈++≤,条件2:{320}q B x R x x =∈-+≤.若q ⌝是p ⌝的充分不必要条件,求实数a 的取值范围. 解::{12}q B x R x =∈≤≤,若q ⌝是p ⌝的充分不必要条件,则A B ⊆.若A =∅,则240a -<,即22a -<<;若A ≠∅,则240,a x ⎧-≥≤≤解得522a -≤≤-. 综上所述,522a -≤<.充分不必要。

【新人教】高考数学总复习专题训练集合与简易逻辑

【新人教】高考数学总复习专题训练集合与简易逻辑

第一章集合与简易逻辑【知识网络】【学法点拨】集合与简易逻辑是近代数学中最基本、应用非常广泛的基础知识,是研究数学问题、进行数学思维的基本工具.集合的语言、思想、观点渗透于中学数学内容的各个分支,有关简易逻辑常识与原理无不贯穿在数学的分析推理、计算与探索之中.复习巩固有关知识,对于提升数学语言素养,增强解决数学问题能力、提高思维能力等都会产生一定的影响,同时也为今后进一步学习高等数学打好基础.解决集合问题时一要注意吃透概念,准确表示,善于推理判断,并留心元素互异性的特征的利用、所给集合能否为空集的讨论、所求特定系数的取舍;二要注意集合与函数、方程、不等式、三角、解几、立几等知识的密切联系与综合应用;三要注意灵活运用等价转化、分类讨论、数形结合、补集法等思想方法解题.在面临与命题相关的具体问题中,应结合语境仔细阅读、推敲,反复咀嚼有关逻辑联结词.为了加深对于逻辑联结词“或”、“且”、“非”的含义的理解,可联系集合运算中的“交”、“并”、“补”对应地理解.尤其应注意,对逻辑联结词“或”的理解是难点;在研究四种命题及其相互关系时,应注意逆命题、否命题、逆否命题都是相对于原命题而言的.另应注意区分“否命题”与“命题的否定”的不同含义:前者是同时否定条件和结论,而后者只否定结论;反证法是一种重要的证题方法,其理论基础是互为逆否命题的等价性,证明步骤应分为三步:反设、归谬、结论.具体证题时,应注意书写的规范性、步骤的完整性以及导出矛盾时推理的严密性;判断条件的充要关系时,究竟是充分非必要条件,还是必要非充分条件?还是既充分又必要条件?还是非充分又非必要条件?应当判断到位.在寻求充要条件或证明充要性命题时,应准确运用相关概念,防止误把“充分”当“必要”,或把“必要”当“充分”.第1课 集合的概念【考点指津】理解集合、子集、全集、交集、并集、补集等基本概念的内涵,了解属于、包含、相等关系的意义;正确识别与使用集合的有关术语和符号,并会用它们正确表示一些简单的集合. 【知识在线】 1.设集合A ⎭⎬⎫⎩⎨⎧∈==N m x x m ,21|,若,,21A x A x ∈∈则必有 ( )A .A x x ∈+21B .A x x ∈21C .A x x ∈-21D .A x x ∈212.给出6个关系式:(1)0∈∅,(2)∅∈{∅},(3){}0φ,(4){}φφ≠,(5)φ{}φ,(6){}0φ≠.其中正确的个数是 ( )A .6B . 5C . 4D . 33.设S为全集,,B A S ⊆⊆则下列结论中不正确的是 ( )A.S S A B ⊆痧 B.A B B = C.()S A B =∅ ð D.()S A B =∅ ð 4.已知集合A=},21|{+≤≤-a x a x B=},53|{<<x x 则能使A ⊇B 成立的实数a 的取值范围是5.满足{1,2}X ⊆ {1,2,3,4,的集合X 的个数为 .【讲练平台】例1.(2002年全国高考)设集合1,24k M x x k Z ⎧⎫==+∈⎨⎬⎩⎭,1,42k N x x k Z ⎧⎫==+∈⎨⎬⎩⎭,则 ( ) A .M =N B 。

【新教材】高中数学必修第一册期末复习讲义:第1章 集合与常用逻辑用语

【新教材】高中数学必修第一册期末复习讲义:第1章 集合与常用逻辑用语

A B 图1U A A B图2高一数学第一学期期末第一章复习总结归纳,复习指导1. 集合中元素的特性:确定性、无序性、互异性2. 集合的表示:列举法,描述法(①语言描述法,②Venn 图)3. 区分元素与集合(a ∈A ),集合与集合的关系(B A ⊆),注意符号4. 非负整数集(即自然数集)N ;正整数集:N*或 N+ ; 整数集:Z ;有理数集Q ; 实数集R5. 集合间的基本关系:B A ⊆有两种可能(1)A B (真子集);(2)A=B (集合相等)6. 不含任何元素的集合叫做空集,记为Φ7. 空集是任何集合的子集, 空集是任何非空集合的真子集8. 若非空集合A 中有n 个元素,则有2n 个子集,(2n -1)个真子集,(2n -2)个非空真子集9. 集合基本运算:(1)并集:A B ={x|x ∈A ,或x ∈B} (2)交集:A B={x|x ∈A ,且x ∈B }B B A A B AB A A B =⋂⇔⊆=⋃⇔⊆(3)补集:C U A=},|{A x U x x ∉∈且10.全称量词命题和存在量词命题的否定(1)全称量词命题p :)(,x p M x ∈∀ 它的否定:)(,x p M x ⌝∈∃(2)存在量词命题p:)(,x p M x ∈∃ 它的否定:)(,x p M x ⌝∈∀11.充分条件与必要条件(1)q p ⇒ p 是q 的充分条件; q 是p 的必要条件(2)q p ⇔ p 与q 互为充要条件习题演练,考点检测一、单选题1.已知集合{}ln(2)0A x x =-≥,{}22950B x x x =--<,则AB =( ) A .()2,5B .[)2,5C .[)3,5D .()3,5 2.已知集合301x M xx ⎧⎫-=≤⎨⎬+⎩⎭,{}3,1,1,3,5N =--,则M N =( ) A .{}1,3 B .{}1,1,3- C .{3,1}- D .{}3,1,1--3.已知集合{}0A x x =>,{}3B x x =≤,则集合A B =( )A .{}33x x -≤≤B .{}30x x -≤<C .{}03x x <≤D .{}3x x ≥-4.集合{|32}x x ∈-<N 用列举法表示是( )A .{1,2,3,4}B .{1,2,3,4,5}C .{0,1,2,3,4,5}D .{0,1,2,3,4}5.集合{}1,2的子集的个数为( )A .2B .3C .4D .8 6.已知集合{}2,4,6A =,{}1,3,4,6B =,则A B 中元素的个数是( ) A .2 B .5 C .6 D .77.在东莞市第一高级中学2021届高三第一学期入学考试中,理科数学试卷的第一题是考查集合,第二题是考查复数.某数学老师为了了解学生对这两个知识点的掌握情况,对高三(5)班和(12)班的答题结果进行了统计,得到如下数据:问两题都答错的人数是( )A .5B .6C .8D .10 8.如果集合{}1P x x =>-,那么( )A .0P ⊆B .{}0P ∈C .P ∅∈D .{}0∈P 9.命题“x R ∀∈,210x x -+≥”的否定是( )A .x R ∀∈,210x x -+<B .x R ∀∈,210x x -+≤C .0x R ∃∈,20010x x -+<D .0x R ∃∈,20010x x -+≤10.“a b =”是“22a b =”的什么条件?( )A .充分不必要B .必要不充分C .充要D .既不充分也不必要 二、多选题11.已知集合{}33M x Z x =∈-<<,则下列符号语言表述正确的是( )A .2M ∈B .0M ⊆C .{}0M ∈D .{}0M ⊆ 12.下列命题中是假命题的是( ).A .x R ∀∈,30x ≥B .0x R ∃∈,303x =C .x Q ∀∈,31x ≥D .0x N ∃∈,303x = 13.设x ∈R ,则“2210x x +->”成立的一个充分不必要条件是( )A .12x >B .1x <-或12x >C .2x <-D .1x <- 14.已知全集{1,2,3,4,5,6}U =,集合{3,4,5}M =,{1,2,5}N =,则集合{1,2}可以表示为( ) A .M N ⋂ B .()U M N C .()U N M D .(())U M N N ⋂⋂ 15.已知命题:p x R ∃∈,2220x x a ++-=为真命题,则实数a 的取值可以是( )A .1B .0C .3D .3-三、填空题16.用列举法表示方程220x x --=的解集为______________.17.用∈或∉填空:0________N18.已知集合{}{}(,)46,(,)4A x y x y B x y x y =+==-=,则AB =_______. 19.若命题x R ∃∈,使得()2110x a x +-+<成立是真命题,则实数a 的取值范围是______.20.若“,64x ππ⎡⎤∃∈⎢⎥⎣⎦,tan x m ≤”是真命题,则实数m 的最小值为______.四、解答题21.设已知全集U =R ,集合{{|3215},2A x x B x x =-<-<=≤-或}0x ≥,求A B , ()U A B ,()U A B ⋂22.设集合U =R ,{}260A x x x =--<,{}2540B x x x =-+≥,{}C x x a =<(1)求图中阴影部分表示的集合;(2)若BC C =,求a 的取值范围参考答案1.C 2.A 3.D 4.D 5.C 6.B 7.B8.D 9.C 10.A 11.AD 12.ACD 13.ACD 14.BD 15.AC 16.{1,2}- 17.∈ 18.{(2,2)}- 19.()(),13,-∞-+∞ 20321.由已知得{|13}A x x =-<<,∴{|03}A B x x ⋂=≤<,{|2A B x x ⋃=≤-或1}x >-,∴(){|21}U A B x x ⋃=-<≤-, 又{1U A x x =≤-或}3x ≥, ∴(){2U A B x x ⋂=≤-或}3x ≥.22.(1)由不等式26(3)(2)0x x x x --=-+<,解得23x -<<,即{}23A x x =-<<由不等式254(1)(4)0x x x x -+=--≥,解得1x ≤或4x ≥,即{1B x x =≤或4}x ≥, 又由题中阴影部分为()U A B ,且{}U 14B x x =<<,所以阴影部分用集合表示为(){}U 13A B x x ⋂=<<. (2)因为B C C =,可得C B ⊆又因为{1B x x =≤或4}x ≥,{}C x x a =<,可得1a ≤,所以a 的取值范围是(,1]-∞。

2019新人教版高中数学必修第一册第1章集合与常用逻辑用语知识点总结

2019新人教版高中数学必修第一册第1章集合与常用逻辑用语知识点总结

第1章集合与常用逻辑用语1.1集合的含义与表示1、集合的含义:一般地,我们把研究对象统称为元素,把一些元素组成的总体叫做集合。

2、集合的中元素的三个特性:确定性、互异性、无序性 2、“属于”的概念:我们通常用大写的拉丁字母A,B,C, ……表示集合,用小写拉丁字母a,b,c, ……表示元素;元素在集合A 中,称属于A ,记为,否则称不属于A ,记作。

3、常用数集及其记法非负整数集(即自然数集)记作:N ;正整数集记作:N*或 N+ ;整数集记作:Z ;有理数集记作:Q ;实数集记作:R 4、集合的表示法(1)列举法:把集合中的元素一一列举出来,然后用一个大括号括上。

(2)描述法:用集合所含元素的公共特征表示集合的方法称为描述法。

①语言描述法:例:{不是直角三角形的三角形}②数学式子描述法:例:不等式x -3>2的解集是{x∈R| x -3>2}或{x| x -3>2} (3)图示法(Venn 图)1.2 集合间的基本关系 【知识要点】1、“包含”关系——子集:对于两个集合A 与B ,如果集合A 中的任何一个元素都是集合B 中的元素,则A 叫做B 的子集,记为,例如。

子集的个数为2n (n 为集合中元素个数)2、“相等”关系:如果A 是B 的子集,B 也是A 的子集,则称A 与B 相等。

3、真子集(个数怎么算):如果A 是B 的子集,而且B 中存在元素不属于A ,则A 叫B 的真子集。

真子集的个数为2n -1(n 为集合中元素个数)。

4、空集:不含任何元素的集合称为空集,用来表示。

空集∅是任何集合的子集,是任何非空集合的真子集。

1.3 集合的基本运算 【知识要点】1、交集的定义:即A ∩B={x| x ∈A ,且x ∈B}.2、并集的定义:即A ∪B={x | x ∈A ,或x ∈B}.3、交集与并集的性质A ∩A = A ,A ∩φ= φ, A ∩B = B ∩A ,A ∪A = A ,A ∪φ= A , A ∪B = B ∪A 4、全集与补集(1)全集:通常用U 来表示。

2023年人教版高中数学第一章集合与常用逻辑用语必须掌握的典型题

2023年人教版高中数学第一章集合与常用逻辑用语必须掌握的典型题

(名师选题)2023年人教版高中数学第一章集合与常用逻辑用语必须掌握的典型题单选题1、已知a、b、c、d∈R,则“max{a,b}+max{c,d}>0”是“max{a+c,b+d}>0”的()注:max{p,q}表示p、q之间的较大者.A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件答案:B分析:利用特殊值法、不等式的基本性质结合充分条件、必要条件的定义判断可得出结论.充分性:取a=d=1,b=c=−1,则max{a,b}+max{c,d}=max{1,−1}+max{−1,1}=1+1>0成立,但max{a+c,b+d}=max{0,0}=0,充分性不成立;必要性:设max{a+c,b+d}=a+c,则max{a,b}≥a,max{c,d}≥c,从而可得max{a,b}+max{c,d}≥a+c>0,必要性成立.因此,“max{a,b}+max{c,d}>0”是“max{a+c,b+d}>0”的必要不充分条件.故选:B.小提示:方法点睛:判断充分条件和必要条件,一般有以下几种方法:(1)定义法;(2)集合法;(3)转化法.2、已知p:√x−1>2,q:m−x<0,若p是q的充分不必要条件,则m的取值范围是()A .m <3B .m >3C .m <5D .m >5答案:C分析:先求得命题p 、q 中x 的范围,根据p 是q 的充分不必要条件,即可得答案.命题p :因为√x −1>2,所以x −1>4,解得x >5,命题q :x >m ,因为p 是q 的充分不必要条件,所以m <5.故选:C3、已知A ={1,x,y },B ={1,x 2,2y },若A =B ,则x −y =( )A .2B .1C .14D .23答案:C分析:由两集合相等,其元素完全一样,则可求出x =0,y =0或x =1,y =0或x =12,y =14,再利用集合中元素的互异性可知x =12,y =14,则可求出答案.若A =B ,则{x =x 2y =2y 或{x =2y y =x 2 ,解得{x =0y =0 或{x =1y =0 或{x =12y =14, 由集合中元素的互异性,得{x =12y =14, 则x −y =12−14=14, 故选:C .4、设集合A ={x|x ≥2},B ={x|−1<x <3},则A ∩B =( )A .{x|x ≥2}B .{x|x <2}C .{x|2≤x <3}D .{x|−1≤x <2}答案:C分析:根据交集的定义求解即可由题,A∩B={x|2≤x<3}故选:C5、已知集合S={s|s=2n+1,n∈Z},T={t|t=4n+1,n∈Z},则S∩T=()A.∅B.S C.T D.Z答案:C分析:分析可得T⊆S,由此可得出结论.任取t∈T,则t=4n+1=2⋅(2n)+1,其中n∈Z,所以,t∈S,故T⊆S,因此,S∩T=T.故选:C.6、设甲是乙的充分不必要条件,乙是丙的充要条件,丁是丙的必要不充分条件,则甲是丁的()条件A.充分不必要B.必要不充分C.充要D.既不充分也不必要答案:A分析:记甲、乙、丙、丁各自对应的条件构成的集合分别为A,B,C,D,根据题目条件得到集合之间的关系,并推出A D,,所以甲是丁的充分不必要条件.记甲、乙、丙、丁各自对应的条件构成的集合分别为A,B,C,D,由甲是乙的充分不必要条件得,A B,由乙是丙的充要条件得,B=C,由丁是丙的必要不充分条件得,C D,所以A D,,故甲是丁的充分不必要条件.故选:A.7、已知集合A={x|x2−2x=0},则下列选项中说法不正确的是()A.∅⊆A B.−2∈A C.{0,2}⊆A D.A⊆{y|y<3}答案:B分析:根据元素与集合的关系判断选项B,根据集合与集合的关系判断选项A、C、D. 由题意得,集合A={0,2}.所以−2∉A,B错误;由于空集是任何集合的子集,所以A正确;因为A={0,2},所以C、D中说法正确.故选:B.8、命题“∃x>1,x2≥1”的否定是()A.∃x≤1,x2≥1B.∃x≤1,x2<1C.∀x≤1,x2≥1D.∀x>1,x2<1答案:D分析:根据含有一个量词的命题的否定,可直接得出结果.命题“∃x>1,x2≥1”的否定是“∀x>1,x2<1”,故选:D.9、已知集合A={x|x≤1},B={x∈Z|0≤x≤4},则A∩B=()A.{x|0<x<1}B.{x|0≤x≤1}C.{x|0<x≤4}D.{0,1}答案:D分析:根据集合的交运算即可求解.由B={x∈Z|0≤x≤4}得B={0,1,2,3,4},所以A∩B={0,1},故选:D10、集合A={x∈N|1≤x<4}的真子集的个数是()A.16B.8C.7D.4答案:C解析:先用列举法写出集合A,再写出其真子集即可.解:∵A ={x ∈N|1≤x <4}={1,2,3},∴A ={x ∈N|1≤x <4}的真子集为:∅,{1},{2},{3},{1,2},{1,3},{2,3}共7个.故选:C .11、已知命题p :∃x ∃N ,e x <0(e 为自然对数的底数),则命题p 的否定是( )A .∃x ∃N ,e x <0B .∃x ∃N ,e x >0C .∃x ∃N ,e x ≥0D .∃x ∃N ,e x ≥0答案:D分析:根据命题的否定的定义判断.特称命题的否定是全称命题.命题p 的否定是:∃x ∃N ,e x ≥0.故选:D .12、已知集合A ={1,2,3,5,7,11},B ={x|3<x <15},则A ∩B 中元素的个数为()A .2B .3C .4D .5答案:B分析:采用列举法列举出A ∩B 中元素的即可.由题意,A ∩B ={5,7,11},故A ∩B 中元素的个数为3.故选:B【点晴】本题主要考查集合的交集运算,考查学生对交集定义的理解,是一道容易题.双空题13、设A ,B 是R 中两个子集,对于x ∈R ,定义:m ={1,x ∈A,0,x∉A, n ={1,x ∈B 0,x∉B ,①若A ⊆B .则对任意x ∈R ,m (1-n )=______;②若对任意x ∈R ,m +n =1,则A ,B 的关系为______.答案: 0 A =∁RB分析:①由A⊆B.分x∉A和x∈A两种情况讨论;②对任意x∈R,m+n=1,则m,n的值一个为0,另一个为1,分类讨论即可得出A,B的关系.解:①∵A⊆B.则x∉A时,m=0,m(1-n)=0.x∈A时,必有x∈B,∴m=n=1,m(1-n)=0.综上可得:m(1-n)=0.②对任意x∈R,m+n=1,则m,n的值一个为0,另一个为1,即x∈A时,必有x∉B,或x∈B时,必有x∉A,∴A,B的关系为A=∁R B.故答案为0,A=∁R B.小提示:本题考查了集合之间的关系、分类讨论方法、简易逻辑的判定方法,考查了推理能力与计算能力,属于中档题.14、已知集合S={0,1,2,3,4,5},A是S的一个子集,当x∈A时,若有x-1∉A,且x+1∉A,则称x为A的一个“孤立元素”,那么S中无“孤立元素”的4个元素的子集共有________个,其中的一个是________.答案:6{0,1,2,3}解析:根据题意用列举法即可解出.因为集合S={0,1,2,3,4,5},根据题意知只要有元素与之相邻,则该元素不是孤立元素,所以S中无“孤立元素”的4个元素的子集有{0,1,2,3},{0,1,3,4},{0,1,4,5},{1,2,3,4},{1,2,4,5},{2,3,4,5}.其中一个可以是{0,1,2,3}.所以答案是:6;{0,1,2,3}.小提示:本题主要考查集合新定义的理解和应用,以及子集的求法,属于基础题.15、若集合U n={1,2,3,⋯,n},n≥2,n∈N∗,A,B⊆U n,且满足集合A中最大的数大于集合B中最大的数,则称有序集合对(A,B)为“兄弟集合对”.当n=3时,这样的“兄弟集合对”有_________对;当n≥3时,这样的“兄弟集合对”有___________对(用含有n的表达式作答).答案: 14 4n+23−2n分析:当n =3时,分别对集合A 中最大数为1,2和3进行讨论即可;当n ≥3时,先找出集合A 中最大数为m 时,集合A 和B 的个数,再结合等比数列求和公式即可求解. 由题意可知,n =3时,U n ={1,2,3}.当集合A 中最大数为1,即A ={1}时,无满足题意的集合B ;当集合A 中最大数为2,即A ={2}或A ={1,2}时,只有一种满足题意的集合B ={1},此时“兄弟集合对”有2×1=2种;当集合A 中最大数为3,即A ={3},A ={1,3},A ={2,3}或A ={1,2,3}时,满足题意的集合B 有{1},{2}和{1,2}三种可能,此时“兄弟集合对”有4×3=12种;故当n =3时,这样的“兄弟集合对”有2+12=14种.若集合A 中最大数为m 时,集合A 的个数为{1,2,3,⋯,m −1}的子集个数,即2m−1个,此时集合B 的个数为{1,2,3,⋯,m −1}的真子集个数,即2m−1−1个,因此这样的“兄弟集合对”有2m−1(2m−1−1)种,故当n ≥3时,这样的“兄弟集合对”有:20×(20−1)+21×(21−1)+⋯+2n−1(2n−1−1)=40+41+⋯+4n−1−(20+21+⋯+2n−1)=1×(1−4n )1−4−1×(1−2n )1−2=4n +23−2n 种. 所以答案是:14;4n +23−2n .16、若方程组{ax +y =2x +by =2的解集为{(2,1)},则a =_________,b =_________. 答案: 12##0.5 0 分析:依题意可得{2a +1=22+b =2,解得即可. 解:因为方程组{ax +y =2x +by =2的解集为{(2,1)}, 所以{2a +1=22+b =2 ,解得{a =12b =0; 所以答案是:12;017、设集合A={1,a+6,a2},B={2a+1,a+b},若A∩B={4},则a=_______,b=_______.答案: 2 2分析:由题知,4∈A,4∈B,所以a+6=4或a2=4,再根据集合元素的互异性验证即可得出答案.由题知,4∈A,所以a+6=4或a2=4,当a+6=4时,则a=−2,得A={1,4,4},故应舍去;当a2=4时,则a=2或a=−2(舍),当a=2时,A={1,4,8},B={5,2+b},又4∈B,所以2+b=4,得b=2.所以a=2,b=2.所以答案是:①2;②2小提示:本题考查交集的概念,集合元素的互异性,考查学生的逻辑推理能力,考查分类讨论的思想.解答题18、用列举法表示下列集合(1)11以内非负偶数的集合;(2)方程(x+1)(x2−4)=0的所有实数根组成的集合;(3)一次函数y=2x与y=x+1的图象的交点组成的集合.答案:(1){0,2,4,6,8,10};(2){−2,−1,2}(3){(1,2)}分析:(1)根据偶数的定义即可列举所有的偶数,(2)求出方程的根,即可写出集合,(3)联立方程求交点,进而可求集合.(1)11以内的非负偶数有0,2,4,6,8,10,所以构成的集合为{0,2,4,6,8,10},(2)(x+1)(x2−4)=0的根为x1=−1,x2=2,x3=−2,所以所有实数根组成的集合为{−2,−1,2},(3)联立y=x+1和y=2x,解得{x=1y=2,所以两个函数图象的交点为(1,2),构成的集合为{(1,2)} 19、已知集合A={x|2−a≤x≤2+a},B={x|x≤1或x≥4}.(1)当a=3时,求A∩B;(2)“x∈A”是“x∈∁R B”的充分不必要条件,求实数a的取值范围.答案:(1)A∩B={x|−1≤x≤1或4≤x≤5};(2){a|a<1}分析:(1)先求出集合A={x|−1≤x≤5},再求A∩B;(2)先求出∁R B={x|1<x<4},用集合法分类讨论,列不等式,即可求出实数a的取值范围. (1)当a=3时,A={x|−1≤x≤5}.因为B={x|x≤1或x≥4},所以A∩B={x|−1≤x≤1或4≤x≤5};(2)因为B={x|x≤1或x≥4},所以∁R B={x|1<x<4}.因为“x∈A”是“x∈∁R B”的充分不必要条件,所以A∁R B.当A=∅时,符合题意,此时有2+a<2−a,解得:a<0.当A≠∅时,要使A∁R B,只需{2+a≥2−a2+a<42−a>1,解得:0≤a<1综上:a<1.即实数a的取值范围{a|a<1}.20、已知集合A={x|2<x<4},B={x|a<x<3a}.(1)若A∩B={x|3<x<4},求实数a的值;(2)若A∩B=∅,求实数a的取值范围.答案:(1)3(2){a|a≤23或a≥4}分析:(1)根据交集结果直接判断即可.(2)按B=∅,B≠∅讨论,简单计算即可得到结果. (1)因为A∩B={x|3<x<4},所以a=3.(2)因为A∩B=∅,所以可分两种情况讨论:B=∅,B≠∅. 当B=∅时,有a≥3a,解得a≤0;当B≠∅时,有{a>0a≥4或3a≤2,解得a≥4或0<a≤2 3 .综上,实数a的取值范围是{a|a≤23或a≥4}.。

高中高一数学必修1集合学习知识点总结复习学习资料

高中高一数学必修1集合学习知识点总结复习学习资料

高一数学必修 1 集合知识点复习资料高一数学必修一集合知识点复习资料一. 知识归纳:1.集合的有关概念。

1)集合( 集) :某些指定的对象集在一起就成为一个集合 ( 集). 其中每一个对象叫元素注意:①集合与集合的元素是两个不同的概念,教科书中是通过描述给出的,这与平面几何中的点与直线的概念类似。

②集合中的元素具有确定性(a?A 和 a?A,二者必居其一 ) 、互异性(假设 a?A,b?A,那么 a≠b) 和无序性 ({a,b} 与{b,a} 表示同一个集合 ) 。

③集合具有两方面的意义,即:但凡符合条件的对象都是它的元素;只要是它的元素就必须符号条件2)集合的表示方法:常用的有列举法、描述法和图文法3)集合的分类:有限集,无限集,空集。

4)常用数集: N,Z,Q,R,N*2.子集、交集、并集、补集、空集、全集等概念。

1)子集:假设对 x∈A都有 x∈B,那么 AB(或 AB);2)真子集: AB且存在 x0∈B但 x0A; 记为 AB(或,且 )3)交集: A∩B={x|x ∈A且 x∈B}4)并集: A∪B={x|x ∈A或 x∈B}5)补集: CUA={x|xA但 x∈U}注意:①?A,假设 A≠?,那么 ?A;②假设,, ;③假设且, A=B(等集 )3.弄清集合与元素、集合与集合的关系,掌握有关的和符号,特要注意以下的符号: (1) 与、 ?的区 ;(2) 与的区 ;(3) 与的区。

4.有关子集的几个等价关系①A∩B=AAB;②A∪B=BAB;③ABCuACuB;④A∩CuB=空集 CuAB;⑤CuA∪B=IAB。

5.交、并集运算的性①A∩A=A,A∩?=?,A∩B=B∩A; ②A∪A=A,A∪?=A,A∪B=B∪A;③Cu(A∪B)=CuA∩CuB,Cu(A∩B)=CuA∪CuB;6.有限子集的个数:集合 A 的元素个数是 n, A有 2n 个子集,2n-1 个非空子集, 2n-2 个非空真子集。

部编版高中数学必修一第一章集合与常用逻辑用语带答案必考知识点归纳

部编版高中数学必修一第一章集合与常用逻辑用语带答案必考知识点归纳

(名师选题)部编版高中数学必修一第一章集合与常用逻辑用语带答案必考知识点归纳单选题1、已知集合A={x|x2−2x≤0},B={−1,0,3},则(∁R A)∩B=()A.∅B.{0,1}C.{−1,0,3}D.{−1,3}2、设a,b是实数,集合A={x||x−a|<1,x∈R},B={x||x−b|>3,x∈R},且A⊆B,则|a−b|的取值范围为()A.[0,2]B.[0,4]C.[2,+∞)D.[4,+∞)3、设命题p:∃x0∈R,x02+1=0,则命题p的否定为()A.∀x∉R,x2+1=0B.∀x∈R,x2+1≠0C.∃x0∉R,x02+1=0D.∃x0∈R,x02+1≠04、已知集合P={x|1<x<4},Q={x|2<x<3},则P∩Q=()A.{x|1<x≤2}B.{x|2<x<3}C.{x|3≤x<4}D.{x|1<x<4}5、下列结论中正确的个数是()①命题“所有的四边形都是矩形”是存在量词命题;②命题“∀x∈R,x2+1<0”是全称量词命题;③命题“∃x∈R,x2+2x+1≤0”的否定为“∀x∈R,x2+2x+1≤0”;④命题“a>b是ac2>bc2的必要条件”是真命题;A.0B.1C.2D.36、若集合M={a,b,c}中的元素是△ABC的三边长,则△ABC一定不是()A.锐角三角形B.直角三角形C.钝角三角形D.等腰三角形7、设a,b∈R,A={1,a},B={−1,−b},若A⊆B,则a−b=()A.−1B.−2C.2D.08、集合A={0,−1,a2},B={−2,a4}.若A∪B={−2,−1,0,4,16},则a=()A.±1B.±2C.±3D.±4多选题9、集合{1,3,5,7,9}用描述法可表示为()A.{x|x是不大于9的非负奇数}B.{x|x=2k+1,k∈N,且k≤4}C.{x|x≤9,x∈N∗}D.{x|0≤x≤9,x∈Z}10、已知P={x|x2−8x−20≤0},集合S={x|1−m≤x≤1+m}.若x∈P是x∈S的必要条件,则实数m 的取值可以是()A.−1B.1C.3D.511、已知关于x的方程x2+(m−3)x+m=0,则下列说法正确的是()A.当m=3时,方程的两个实数根之和为0B.方程无实数根的一个必要条件是m>1C.方程有两个正根的充要条件是0<m≤1D.方程有一个正根和一个负根的充要条件是m<0填空题12、已知集合A={y|y=x2−32x+1,x∈[34,2]},B={x|x+m2≥1}.若“x∈A”是“x∈B”的充分条件,则实数m的取值范围为________.13、能够说明“∀x∈N∗,2x≥x2”是假命题的一个x值为__________.部编版高中数学必修一第一章集合与常用逻辑用语带答案(二十五)参考答案1、答案:D分析:先由一元二次不等式的解法求得集合A,再由集合的补集和交集运算可求得答案.因为A={x|x2−2x≤0}={x|0≤x≤2},所以∁R A={x|x<0或x>2},又B={−1,0,3},所以(∁R A)∩B={−1,3},故选:D.2、答案:D分析:解绝对值不等式得到集合A,B,再利用集合的包含关系得到不等式,解不等式即可得解.集合A={x||x−a|<1,x∈R}={x|a−1<x<a+1},B={x||x−b|>3,x∈R}={x|x<b−3或x>b+3}又A⊆B,所以a+1≤b−3或a−1≥b+3即a−b≤−4或a−b≥4,即|a−b|≥4所以|a−b|的取值范围为[4,+∞)故选:D3、答案:B分析:根据存在命题的否定为全称命题可得结果.∵存在命题的否定为全称命题,∴命题p的否定为“∀x∈R,x2+1≠0”,故选:B4、答案:B分析:根据集合交集定义求解.P∩Q=(1,4)∩(2,3)=(2,3)故选:B小提示:本题考查交集概念,考查基本分析求解能力,属基础题.5、答案:C分析:根据存在量词命题、全称量词命题的概念,命题的否定,必要条件的定义,分析选项,即可得答案.对于①:命题“所有的四边形都是矩形”是全称量词命题,故①错误;对于②:命题“∀x ∈R ,x 2+1<0”是全称量词命题;故②正确;对于③:命题p:∃x ∈R ,x 2+2x +1≤0,则¬p:∀x ∈R ,x 2+2x +1>0,故③错误;对于④:ac 2>bc 2可以推出a >b ,所以a >b 是ac 2>bc 2的必要条件,故④正确;所以正确的命题为②④,故选:C6、答案:D分析:根据集合元素的互异性即可判断.由题可知,集合M ={a,b,c }中的元素是△ABC 的三边长,则a ≠b ≠c ,所以△ABC 一定不是等腰三角形.故选:D .7、答案:D分析:根据集合的包含关系,结合集合的性质求参数a 、b ,即可求a −b .由A ⊆B 知:A =B ,即{a =−1−b =1,得{a =−1b =−1, ∴a −b =0.故选:D.8、答案:B分析:根据并集运算,结合集合的元素种类数,求得a 的值.由A ∪B ={−2,−1,0,4,16}知,{a 2=4a 4=16,解得a =±2 故选:B9、答案:AB分析:利用描述法的定义逐一判断即可.对A ,{x |x 是不大于9的非负奇数}表示的集合是{1,3,5,7,9},故A 正确;对B ,{x |x =2k +1,k ∈N ,且k ≤4}表示的集合是{1,3,5,7,9},故B 正确;对C ,{x |x ≤9,x ∈N ∗ }表示的集合是{1,2,3,4,5,6,7,8,9},故C 错误;对D ,{x |0≤x ≤9,x ∈Z }表示的集合是{0,1,2,3,4,5,6,7,8,9},故D 错误.故选:AB.10、答案:ABC分析:解不等式得集合P ,将必要条件转化为集合之间的关系列出关于m 的不等式组,解得m 范围即可得结果. 由x 2−8x −20≤0,解得−2≤x ≤10,∴P =[−2,10],非空集合S ={x |1−m ≤x ≤1+m },又x ∈P 是x ∈S 的必要条件,所以S ⊆P ,当S =∅,即m <0时,满足题意;当S ≠∅,即m ≥0时,∴{−2≤1−m 1+m ≤10,解得0≤m ≤3, ∴m 的取值范围是(−∞,3],实数m 的取值可以是−1,1,3,故选:ABC.11、答案:BCD分析:方程没有实数根,所以选项A 错误;由题得m >1,m >1是1<m <9的必要条件,所以选项B 正确;由题得0<m ≤1,所以方程有两个正根的充要条件是0<m ≤1,所以选项C 正确;由题得m <0,所以方程有一个正根和一个负根的充要条件是m <0,所以选项D 正确.对于选项A ,方程为x 2+3=0,方程没有实数根,所以选项A 错误;对于选项B ,如果方程没有实数根,则Δ=(m −3)2−4m =m 2−10m +9<0,所以1<m <9,m >1是1<m <9的必要条件,所以选项B 正确;对于选项C ,如果方程有两个正根,则{Δ=m 2−10m +9≥0−(m −3)>0m >0,所以0<m ≤1,所以方程有两个正根的充要条件是0<m ≤1,所以选项C 正确;对于选项D ,如果方程有一个正根和一个负根,则{Δ=m 2−10m +9>0m <0 ,所以m <0,所以方程有一个正根和一个负根的充要条件是m <0,所以选项D 正确.故选:BCD小提示:方法点睛:判断充分条件必要条件,常用的方法有:(1)定义法;(2)集合法;(3)转化法.要根据已知条件,灵活选择方法判断得解.12、答案:(−∞,−34]∪[34,+∞) 分析:求函数的值域求得集合A ,根据“x ∈A ”是“x ∈B ”的充分条件列不等式,由此求得m 的取值范围. 函数y =x 2−32x +1的对称轴为x =34,开口向上,所以函数y =x 2−32x +1在[34,2]上递增,当x =34时,y min =716;当x =2时,y max =2.所以A =[716,2].B ={x|x +m 2≥1}={x|x ≥1−m 2},由于“x ∈A ”是“x ∈B ”的充分条件,所以1−m 2≤716,m 2≥916,解得m ≤−34或m ≥34,所以m 的取值范围是(−∞,−34]∪[34,+∞).所以答案是:(−∞,−34]∪[34,+∞)13、答案:3分析:取x =3代入验证即可得到答案.因为x =3∈N ∗,而23<32,∴说明“∀x ∈N ∗,2x ≥x 2”是假命题.所以答案是:3小提示:本题考查命题与简易逻辑,属于基础题.。

高中数学必修一 第一章测试题(含答案)

高中数学必修一 第一章测试题(含答案)

必修一 第一章 集合与简易逻辑单元测试学校:___________姓名:___________班级:___________考号:___________一、单选题 1.已知全集U ={1,2,3,4,5,6,7},A ={2,3,5,7},B ={1,3,6,7},则∁U (A ∩B )=( ) A .{4}B .∅C .{1,2,4,5,6}D .{1,2,3,5,6}2.A ={2,3},B ={x ∈N|x 2−3x <0},则A ∪B =( ) A .{1,2,3}B .{0,1,2,}C .{0,2,3}D .{0,1,2,3}3.下列各组集合表示同一集合的是( ) A .M ={(3,2)},N ={(2,3)} B .M ={(x,y)|x +y =1},N ={y |x +y =1} C .M ={4,5},N ={5,4}D .M ={1,2},N ={(1,2)}4.已知全集U =Z ,集合M ={x|−1<x <2,x ∈Z},N ={−1,0,1,2},则()C U M N ⋂=( ) A .{−1,2}B .{−1,0}C .{0,1}D .{1,2}5.设集合U ={1,2,3,4},M ={1,2,3},N ={2,3},则∁U (M ∩N )=( ) A .{4}B .{1,2}C .{}2,3D .{1,4}6.下列各式中:①{0}∈{0,1,2};②{0,1,2}⊆{2,1,0};③∅⊆{0,1,2};④∅={0};⑤{0,1}={(0,1)};⑥0={0}.正确的个数是( ) A .1B .2C .3D .47.命题“∃x ∈R ,x 2−2x +2≤0”的否定是( ) A .∃x ∈R ,x 2−2x +2≥0 B .∃x ∈R ,2220x x -+> C .∀x ∈R ,2220x x -+>D .∀x ∈R ,x 2−2x +2≤08.王昌龄《从军行》中两句诗为“黄沙百战穿金甲,不破楼兰终不还”,其中后一句中“攻破楼兰”是“返回家乡”的( ) A .充分条件 B .必要条件C .充要条件D .既不充分也不必要条件9.若命题:“∃x ∈R ,使x 2−x −m =0”是真命题,则实数m 的取值范围是( ) A .[−14,0]B .10,4⎡⎤⎢⎥⎣⎦C .1,4⎡⎫-+∞⎪⎢⎣⎭D .1,4⎛⎤-∞ ⎥⎝⎦10.命题“∀x ∈[1,2],x 2-a ≤0”为真命题的一个充分不必要条件是( ) A .a ≥4B .a ≤4C .a ≥5D .a ≤511.已知集合A ={x|ax =x 2},B ={0,1,2},若A ⊆B ,则实数a 的值为( ) A .1或2B .0或1C .0或2D .0或1或212.已知集合A ={x|−2≤x ≤5},B ={x|m +1≤x ≤2m −1}.若B ⊆A ,则实数m 的取值范围为( ) A .m ≥3B .2≤m ≤3C .3m ≤D .m ≥2二、填空题 13.已知集合A ={−1,0,1},B ={0,a,a 2},若A =B ,则a =______.14.已知集合M ={(x,y)|x +y =2}、N ={(x,y)|x −y =4},那么集合M ∩N= 15.“方程220x x a --=没有实数根”的充要条件是________.16.已知A ,B 是两个集合,定义A −B ={x|x ∈A,x ∉B},若A ={x|−1<x <4},B ={x|x >2},则A −B =_______________.三、解答题 17.已知A ={a −1,2a 2+5a +1,a 2+1}, −2∈A ,求实数a 的值.18.已知集合A ={x |−4<x <2},B ={x |x <−5或x >1}.求A ∪B ,A ∩(∁R B ); 19.已知集合U ={1,2,3,4,5,6,7,8,9},A ={x|3≤x ≤7且x ∈U},B ={x|x =3n,n ∈Z 且x ∈U}.(1)写出集合B 的所有子集; (2)求A ∩B ,A ∪∁U B .20.已知全集U =R ,集合A ={x|−1≤x ≤3}. (1)求C U A ;(2)若集合B ={x |2x −a >0},且B ⊆(C U A ),求实数a 的取值范围.21.已知集合{}|123A x a x a =-≤≤+,{}|14B x x =-≤≤,全集U =R .(1)当a=1时,求(C U A)∩B;(2)若“x∈B”是“x∈A”的必要条件,求实数a的取值范围.22.命题p:“∀x∈[1,2],x2+x−a≥0”,命题q:“∃x∈R,x2+3x+2−a=0”.(1)写出命题p的否定命题¬p,并求当命题¬p为真时,实数a的取值范围;(2)若p和q中有且只有一个是真命题,求实数a的取值范围.参考答案:1.C【分析】先求交集,再求补集,即得答案.【详解】因为A={2,3,5,7},B={1,3,6,7},所以A∩B={3,7},A B={1,2,4,5,6}.又全集U={1,2,3,4,5,6,7},所以()U故选:C2.A【分析】根据一元二次不等式的运算求出集合B,再根据并集运算即可求出结果.【详解】因为B={x∈N|x2−3x<0},所以B={1,2},所以A∪B={1,2,3}.故选:A.【点睛】本题主要考查了集合的并集运算,属于基础题.3.C【分析】根据集合的表示法一一判断即可;【详解】解:对于A:集合M={(3,2)}表示含有点(3,2)的集合,N={(2,3)}表示含有点(2,3)的集合,显然不是同一集合,故A错误;对于B:集合M表示的是直线x+y=1上的点组成的集合,集合N=R为数集,故B错误;对于C:集合M、N均表示含有4,5两个元素组成的集合,故是同一集合,故C正确;对于D:集合M表示的是数集,集合N为点集,故D错误;故选:C4.A【解析】根据集合M,求出C U M,然后再根据交集运算即可求出结果.【详解】M={x|−1<x<2,x∈Z}={0,1}∴()C {1,2}U M N ⋂=-. 故选:A.【点睛】本题主要考查集合的交集和补集运算,属于基础题. 5.D【分析】根据交集、补集的定义计算可得;【详解】解:∵集合U ={1,2,3,4},M ={1,2,3},N ={2,3} ∴M ∩N ={2,3}, 则∁U (M ∩N)={1,4}. 故选:D . 6.B【分析】根据相等集合的概念,元素与集合、集合与集合之间的关系,空集的性质判断各项的正误.【详解】∈集合之间只有包含、被包含关系,故错误;②两集合中元素完全相同,它们为同一集合,则{0,1,2}⊆{2,1,0},正确; ③空集是任意集合的子集,故∅⊆{0,1,2},正确; ④空集没有任何元素,故∅≠{0},错误;⑤两个集合所研究的对象不同,故{0,1},{(0,1)}为不同集合,错误; ⑥元素与集合之间只有属于、不属于关系,故错误; ∈∈∈正确. 故选:B. 7.C【分析】根据存在量词命题的否定为全称量词命题判断即可;【详解】解:命题“∃x ∈R ,2220x x -+”为存在量词命题,其否定为:∀x ∈R ,2220x x -+>;故选:C 8.B【分析】“返回家乡”的前提条件是“攻破楼兰”,即可判断出结论. 【详解】“返回家乡”的前提条件是“攻破楼兰”, 故“攻破楼兰”是“返回家乡”的必要不充分条件 故选:B9.C【分析】利用判别式即可得到结果.【详解】∵“∃x∈R,使x2−x−m=0”是真命题,∴Δ=(−1)2+4m≥0,解得m≥−14.故选:C10.C【分析】先要找出命题为真命题的充要条件{a|a≥4},从集合的角度充分不必要条件应为{a|a≥4}的真子集,由选择项不难得出答案【详解】命题“∀x∈[1,2],x2-a≤0”为真命题,可化为∀x∈[1,2],a≥x2恒成立即只需a ≥(x2)max,即命题“∀x∈[1,2],x2-a≤0”为真命题的的充要条件为a≥4,而要找的一个充分不必要条件即为集合{a|a≥4}的真子集,由选择项可知C 符合题意.故选:C11.D【解析】先求出集合A,再根据A⊆B,即可求解.【详解】解:当a=0时,A={0},满足A⊆B,当a≠0时,A{0,a},若A⊆B,∴a=1或a=2,综上所述:a=0,1或a=2.故选:D.12.C【分析】讨论B=∅,B≠∅两种情况,分别计算得到答案.【详解】当B=∅时:m+1>2m−1∴m<2成立;当B≠∅时:{m+1≤2m−1m+1≥−22m−1≤5解得:2≤m≤3.综上所述:3m 故选C【点睛】本题考查了集合的关系,忽略掉空集的情况是容易发生的错误. 13.1-【分析】根据集合相等,元素相同,即可求得a 的值. 【详解】∵集合A ={−1,0,1},B ={0,a,a 2},A =B ,1a ∴=-,a 2=1.故答案是:1-. 14.{(3,1)}-【分析】确定集合中的元素,得出求交集就是由求得方程组的解所得. 【详解】因为M ={(x,y)|x +y =2}、N ={(x,y)|x −y =4}, 所以M ∩N ={(x,y)|{x +y =2x −y =4}={(3,−1)}.故答案为:{(3,1)}-. 15.a <−1【解析】利用判别式求出条件,再由充要条件的定义说明.【详解】解析因为方程220x x a --=没有实数根,所以有440a ∆=+<,解得a <−1,因此“方程220x x a --=没有实数根”的必要条件是a <−1.反之,若a <−1,则Δ<0,方程220x x a --=无实根,从而充分性成立.故“方程220x x a --=没有实数根”的充要条件是“a <−1”. 故答案为:a <−1【点睛】本题考查充要条件,掌握充要条件的定义是解题关键. 16.{x|−1<x ≤2}【分析】根据集合的新定义,结合集合A 、B 求A −B 即可.【详解】由题设,A −B ={x|x ∈A,x ∉B},又A ={x|−1<x <4},B ={x|x >2}, ∴A −B ={x|−1<x ≤2}. 故答案为:{x|−1<x ≤2} 17.−32【分析】由−2∈A ,有a −1=−2,或2a 2+5a +1=−2,显然a 2+1≠−2,解方程求出实数a 的值,但要注意集合元素的互异性.【详解】因为−2∈A ,所以有a −1=−2,或2a 2+5a +1=−2,显然a 2+1≠−2, 当a −1=−2时,a =−1,此时a −1=2a 2+5a +1=−2不符合集合元素的互异性,故舍去;当2a2+5a+1=−2时,解得a=−32,a=−1由上可知不符合集合元素的互异性,舍去,故a=−32.【点睛】本题考查了元素与集合之间的关系,考查了集合元素的互异性,考查了解方程、分类讨论思想.18.A∪B={x|x<−5或x>−4};A∩(∁R B)={x|−4<x≤1}【分析】由并集、补集和交集定义直接求解即可.【详解】由并集定义知:A∪B={x|x<−5或x>−4};∵∁R B={x|−5≤x≤1},∴A∩(∁R B)={x|−4<x≤1}.19.(1)∅,{3},{6},{9},{3,6},{3,9},{}6,9,{3,6,9};(2)A∩B={3,6},A∪∁U B={1,2,3,4,5,6,7,8}.【分析】(1)根据题意写出集合B,然后根据子集的定义写出集合B的子集;(2)求出集合A,利用交集的定义求出集合A∩B,利用补集和并集的定义求出集合A∪∁U B.【详解】(1)∵B={x|x=3n,n∈Z且x∈U},∴B={3,6,9},因此,B的子集有:∅,{3},{6},{9},{3,6},{3,9},{}6,9,{3,6,9};(2)由(1)知B={3,6,9},则∁U B={1,2,4,5,7,8},∵A={x|3≤x≤7且x∈U}={3,4,5,6,7},因此,A∩B={3,6},A∪∁U B={1,2,3,4,5,6,7,8}.【点睛】本题考查有限集合的子集,以及补集、交集和并集的运算,考查计算能力,属于基础题.20.(1) {x|x>3或x<−1};(2) a≥6.【分析】(1)利用数轴,根据补集的定义直接求出C U A;(2)解不等式化简集合B的表示,利用数轴根据B⊆(C U A),可得到不等式,解这个不等式即可求出实数a的取值范围.【详解】(1)因为集合A={x|−1≤x≤3}.所以C U A={x|x>3或x<−1};(2) B={x|2x−a>0}={x|x>a2}.因为B⊆(C U A),所以有362aa≤⇒≥.【点睛】本题考查了补集的定义,考查了已知集合的关系求参数问题,运用数轴是解题的关键. 21.(1)(C U A)∩B={x|−1≤x<0}(2)a <−4或0≤a ≤12【分析】(1)根据补集与交集的运算性质运算即可得出答案.(2)若“x ∈B ”是“x ∈A ”的必要条件等价于A ⊆B .讨论A 是否为空集,即可求出实数a 的取值范围.(1)当a =1时,集合{}|05A x x =≤≤,C U A ={x|x <0或x >5}, (C U A)∩B ={x|−1≤x <0}.(2)若“x ∈B ”是“x ∈A ”的必要条件,则A ⊆B , ①当A =∅时,a −1>2a +3,∴a <−4;②A ≠∅,则a ≥−4且a −1≥−1,2a +3≤4,∴0≤a ≤12. 综上所述,a <−4或0≤a ≤12. 22.(1)a >2 (2)a >2或a <−14【分析】(1)根据全称命题的否定形式写出¬p ,当命题¬p 为真时,可转化为(x 2+x −a)min ,当x ∈[1,2],利用二次函数的性质求解即可;(2)由(1)可得p 为真命题时a 的取值范围,再求解q 为真命题时a 的取值范围,分p 真和q 假,p 假和q 真两种情况讨论,求解即可 (1)由题意,命题p :“∀x ∈[1,2],x 2+x −a ≥0”,根据全称命题的否定形式,¬p :“∃x ∈[1,2],x 2+x −a <0” 当命题¬p 为真时,(x 2+x −a)min ,当x ∈[1,2]二次函数y =x 2+x −a 为开口向上的二次函数,对称轴为x =−12 故当x =1时,函数取得最小值,即(x 2+x −a)min 故实数a 的取值范围是a >2 (2)由(1)若p 为真命题a ≤2,若p 为假命题a >2 若命题q :“∃x ∈R ,x 2+3x +2−a =0” 为真命题 则Δ=9−4(2−a)≥0,解得14a ≥-故若q 为假命题a <−14由题意,p 和q 中有且只有一个是真命题, 当p 真和q 假时,a ≤2且a <−14,故a <−14; 当p 假和q 真时,a >2且14a ≥-,故a >2;综上:实数a 的取值范围是a >2或a <−14。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高一数学第一章集合与简易逻辑复习小结
基本训练题
一、选择题:(本大题共12小题,每小题4分,共48分)
1. 下列命题正确的是(c )
A. {实数集}
B. {|x x ≤
C. {|x x ≤
D. {|x x ⊆≤
2.在1⊆{0,1,2};②{1}∈{0,1,2};{0,1,2}⊆{0,1,2};
④、φ{0}上述四个关系中,错误的个数是( B ) A 、1个 B 、2个 C 、3个 D 、4个
3.已知全集}12|{≤≤-=x x U ,}12|{<<-=x x A ,
}02|{2=-+=x x x B , }12|{<≤-=x x C ,则( D )
A 、A C ⊆
B 、 A
C C U ⊆ C 、C B C U =
D 、B A C U =
4.已知集合}1|{≤=x x M ,}|{t x x P >=,若φ≠P M ,则实数
t 应该满足的条件是( D )
A 、1>t
B 、1≥t
C 、1<t
D 、1≤t
5.下列说法正确的是( D )
A 、任一集合必有真子集;
B 、任一集合必有两个子集;
C 、若φ=B A ,则A 、B 之中至少有一个为空集;
D 、若B B A = ,则B ⊆
6.已知集合P={}2|2,y y x x R =-+∈,Q={}|2,y y x x R =-+∈,那么P Q 等于
A 、 (0,2),(1,1)
B 、 {(0,2 ),(1,1)}
C 、 {1,2}
D 、 {}|2y y ≤
7.若21||<
x 和3
1||>x 同时成立,则x 的取值范围是( ) A 、3121-<<-x B 、2
131<<x C 、2131<<x 或3121-<<-x D 2131<<-x 8.不等式0|12|3>---x 的解集是( )
A 、{x |x <-2或x >1}
B 、{x |-2<x <1}
C 、{x |21<<-x }
D 、R
9.方程0122=++x mx 至少有一个负根,则( )
A 、10<<m 或0<m
B 、10<<m
C 、1<m
D 、1≤m
10.“0232>+-x x ”是“1<x 或4>x ”的( )
A 、充分不必要条件
B 、必要不充分条件
C 、充要条件
D 、既不充分也不必要条件
11.当0<a 时,关于x 的不等式05422>--a ax x 的解集是( )
A 、{|x a x 5>或a x -<}
B 、{|x a x 5<或a x ->}
C 、{|x a x a 5<<-}
D 、{|x a x a -<<5}
12.不等式042<-+ax ax 的解集为R ,则a 的取值范围是( )
A 、016<≤-a
B 、16->a
C 、016≤<-a
D 、0<a
二、填空题:(本大题共4小题,每小题4分,共16分)
13.已知集合A={a ,b ,2},B={2,2b ,2a }且,A =B ,则a =
14.已知全集U = R ,不等式034≥-+x
x 的解集A ,则=A C U 15.不等式0)3)(4(>-+x x x 的解集是
16.有下列四个命题:
①、命题“若1=xy ,则x ,y 互为倒数”的逆命题;
②、命题“面积相等的三角形全等”的否命题;
③、命题“若m ≤1,则022=+-m x x 有实根”的逆否命题; ④、命题“若A ∩B =B ,则A ⊆B ”的逆否命题
其中是真命题的是 (填上你认为正确命题的序号)
三、解答题:(本大题共4小题, 36分)
17.(本题8分)若}06|{},065|{2=-==+-=ax x B x x x A ,且A B A = ,求由实数a 组成的集合
18.(本题8分)用反证法证明:若a 、b 、c R ∈,且122+-=b a x ,122+-=c b y ,122+-=a c z ,则x 、y 、z 中至少有一个不小于
19.(本题10分,每小题5分)解下列关于x 的不等式:
①0|)|1)(1(>-+x x ②)3)((≤-+a ax a x
20.(本题10分)
已知集合}312|{≤≤+=x x P ,}0)1(|{2≤++-=a x a x x M , x x y y N 2|{2-==,}P x ∈,且N N M = ,求实数a 的取值范围
附加题:我校高中部先后举行了数理化三科竞赛,学生中至少参加一科竞赛的有:数学807人,物理739人,化学437人,至少参加其中两科的有:数学与物理593人,数学与化学371人,物理与化学267人,三科都参加的有213
集合与简易逻辑复习小结
基本训练题参考答案
一、选择题:(本大题共12小题,每小题4分,共48分)
二、填空题:(本大题共4小题,每小题4分,共16分)
13 0或4
1 144|{-≤x x 或}3≥x 4|{-<x x 或}30<<x 16 ①、②、③
三、解答题:(本大题共4小题, 36分)
17.(本题8分)由实数a 组成的集合为{0,2,
18.(本题8分)
证明: 假设x 、y 、z 均小于0,即:
0122<+-=b a x ----① ;
0122<+-=c b y ----② ;
0122<+-=a c z ----③;
①+②+③得0)1()1()1(222<-+-+-=++c b a z y x ,
这与0)1()1()1(222≥-+-+-c b a 矛盾,
则假设不成立,
∴x 、y 、z 中至少有一个不小于0
19.(本题10分,每小题5分)解下列关于x 的不等式:
①、|)|1)(1(>-+x x
解:1|{<x x 且1-≠x
②、0)3)((≤-+a ax a x
解:原不等式化为:0)3)((≤-+x a x a
①、当0=a 时, 其解集为:R
②、当0>a 时, 其解集为:3|{≤≤-x a x ③、当03<<-a 时, 其解集为:a x x -≤|{或3≥x ④、当3-<a 时, 其解集为:3|{≤x x 或a x -≥ ⑤、当3-=a 时, 其解集为:R
20.(本大题10分)
解:依题意,
集合}312|{≤≤+=x x P ,}0)1(|{2≤++-=a x a x x M ,
x x y y N 2|{2-==,}P x ∈}31|{≤≤=x x , 由N N M = 知N M ⊆, ∴实数a 的取值范围J 1≤≤a
附加题:由公式或如图填数字计算
Card(A B C)= Card(A)+ Card(B)+ Card(C)- Card(A B) - Card(A C) - Card(C B)+ Card(A B。

相关文档
最新文档