(完整)自考线性代数第三章向量空间习题

合集下载

线性代数课本第三章习题详细答案

线性代数课本第三章习题详细答案
(2) 利用反证法可证得,即假设1,2 ,, s 线性无关,再由(1)得 1, 2 ,, s 线性无 关,与 1, 2 ,, s 线性相关矛盾.
9. 证明:1 2 ,2 3,3 1 线性无关的充分必要条件是1,2 ,3 线性无关.
1 0 1 证:方法 1,(1 2 ,2 3,3 1 )=(1,2 ,3 ) 1 1 0
(k1 k3 )1 (k1 k2 ) 2 (k2 k3 ) 3 0
因为1,2 ,3 线性无关,所以
kk11
k3 k2
0 0
,可解得 k1
k2
k3
0 ,所以1
2 , 2
3 ,3
1 线性无关.
k2 k3 0
必要性,(方法 1)设1 2 ,2 3,3 1 线性无关,证明1,2 ,3 线性无关,
所以
5 4
1
1 4
2
1 4
3
1 44Βιβλιοθήκη .设存在 k1, k2 , k3 , k4 使得 k11 k2 2 k3 3 k4 4 ,整理得
k1 2k2 k3 0 , k1 k2 k3 k4 0 ,
3k2 k4 0 , k1 k2 k4 1 .
解得 k1 1, k2 0, k3 1, k4 0. 所以 1 3 .
0 1 1 101 因为 1,2,3 线性无关,且 1 1 0 2 0 ,可得 1 2,2 3,3 1的秩为 3 011 所以1 2 ,2 3,3 1 线性无关.线性无关;反之也成立.
方法 2,充分性,设1,2 ,3 线性无关,证明1 2 ,2 3,3 1 线性无关.
设存在 k1, k2 , k3 使得 k1 (1 2 ) k2 ( 2 3 ) k3 ( 3 1 ) 0 ,整理得,

线性代数第三章习题及答案

线性代数第三章习题及答案

习 题 3-11.设)1,0,2(-=α,)4,2,1(-=β,求32-αβ.解:)11,4,8()8,4,2()3,0,6()4,2,1(2)1,0,2(323--=---=---=-βα 2.设)4,3,2,1(=α,)3,4,1,2(=β,且324+=αγβ,求γ. 解:由324+=αγβ得αβγ232-= 所以)0,27,1,25()6,29,3,23()6,8,2,4()4,3,2,1(23)3,4,1,2(2-=-=-=γ。

3.试问下列向量β能否由其余向量线性表示,若能,写出线性表示式:(1))1,2(-=β,)1,1(1=α,)4,2(2-=α;(2))1,1(-=β,)1,1(1=α,)1,0(2=α,)0,1(3=α; (3))1,1,1(=β,)1,1,0(1-=α,)2,0,1(2=α,)0,1,1(3=α;(4))1,2,1(-=β,)2,0,1(1=α,)0,8,2(2-=α,0α(5)),,,(4321k k k k =β,)0,0,0,1(1=e ,)0,0,1,0(2=e ,)0,1,0,0(3=e ,)1,0,0,0(4=e . 解:(1)设2211ααβx x +=,即)4,2()4,2()1,1()1,2(212121x x x x x x -+=-+=-从而⎩⎨⎧-=-=+14222121x x x x ,解得⎪⎩⎪⎨⎧==21121x x所以β能由21,αα线性表示,表示式为2121ααβ+=。

(2)设332211αααβx x x ++=,即),()0,1()1,0()1,1()1,1(2131321x x x x x x x ++=++=-从而⎩⎨⎧-=+=+112131x x x x ,有无穷解⎪⎩⎪⎨⎧-=--==cx c x cx 11321所以β能由321,,ααα线性表示,表示式不唯一,为321)1()1(αααβc c c -+--+= (c 为任意常数)(3)设332211αααβx x x ++=即)2,,()0,1,1()2,0,1()1,1,0()1,1,1(213132321x x x x x x x x x +-++=++-=从而⎪⎩⎪⎨⎧=+-=+=+1211213132x x x x x x ,因为010********≠=-,所以有唯一解,解为⎪⎩⎪⎨⎧===011321x x x所以β能由321,,ααα线性表示,且表示式为3210αααβ⋅++=(4)设2211ααβx x +=,即)2,8,2()0,8,2()2,0,1()1,2,1(222121x x x x x x -+=-+=-从而⎪⎩⎪⎨⎧-==-=+1228121221x x x x ,由②,③式得211-=x ,412-=x 代入①式11)41(221≠-=-⋅+-所以该方程组无解, 即β不能由21,αα线性表示。

自考线性代数试题及答案

自考线性代数试题及答案

自考线性代数试题及答案一、选择题(每题2分,共20分)1. 在线性代数中,向量空间的基具有什么性质?A. 唯一性B. 线性无关性C. 任意性D. 可数性答案:B2. 矩阵的秩是指什么?A. 矩阵的行数B. 矩阵的列数C. 矩阵中线性无关行的最大数目D. 矩阵中线性无关列的最大数目答案:D3. 线性变换的核是指什么?A. 变换后的向量集合B. 变换前的向量集合C. 变换后为零向量的向量集合D. 变换前为零向量的向量集合答案:C4. 线性方程组有唯一解的条件是什么?A. 方程的个数等于未知数的个数B. 方程组是齐次的C. 方程组的系数矩阵是可逆的D. 方程组的系数矩阵的秩等于增广矩阵的秩答案:D5. 特征值和特征向量在矩阵理论中具有什么意义?A. 矩阵的对角化B. 矩阵的转置C. 矩阵的行列式D. 矩阵的迹答案:A6. 以下哪个矩阵是正交矩阵?A. 对角矩阵B. 单位矩阵C. 任意矩阵D. 零矩阵答案:B7. 矩阵的迹是矩阵对角线上元素的什么?A. 和B. 差C. 积D. 比答案:A8. 线性代数中的线性组合是什么?A. 向量的加法B. 向量的数乘C. 向量的加法和数乘的组合D. 向量的点积答案:C9. 矩阵的行列式可以用于判断矩阵的什么性质?A. 可逆性B. 秩C. 正交性D. 特征值答案:A10. 线性变换的值域是指什么?A. 变换前的向量集合B. 变换后的向量集合C. 变换前的向量空间D. 变换后的向量空间答案:B二、填空题(每空1分,共10分)11. 矩阵的转置是将矩阵的______交换。

答案:行与列12. 方程组 \( Ax = 0 \) 是一个______方程组。

答案:齐次13. 矩阵 \( A \) 和矩阵 \( B \) 相乘,记作 \( AB \),其中\( A \) 的列数必须等于______的行数。

答案:B14. 向量 \( \mathbf{v} \) 的长度(或范数)通常表示为\( \left\| \mathbf{v} \right\| \),它是一个______。

线性代数第三章练习册答案

线性代数第三章练习册答案

线性代数第三章练习册答案线性代数第三章综合自测题一、单项选择题(在四个备选答案中,只有一项是正确的,将正确答案前的字母填入下面横线上。

本题共10小题,每小题3分,共30分) 1. 如果向量β能由向量组m ααα,,,21 线性表示,则( D )。

(A )存在一组不全为零的数m k k k ,,,21 ,使得m m k k k αααβ+++= 2211 (B )对β的线性表示惟一(C )向量组m αααβ,,,,21 线性无关(D )存在一组数m k k k ,,,21 ,使得m m k k k αααβ+++= 2211 2. 向量组t ααα,,,21 线性无关的充分条件是(C )(A )t ααα,,,21 均为非零向量;(B )t ααα,,,21 的任意两个向量的分量不成比例;(C )t ααα,,,21 中任意部分向量组线性无关;(D )t ααα,,,21 中有一个部分向量组线性无关。

3. 若m ααα,,,21 线性相关,且0=+++m m k k k ααα 2211,则( D )。

(A )021====m k k k (B )m k k k ,,,21 全不为零(C )m k k k ,,,21 不全为零(D )上述情况都有可能4. 一个n m ?阶矩阵A 的秩为m ,则下列说法正确的是( A )(A )矩阵A 的行向量组一定线性无关;(B )矩阵A 的列向量组一定线性无关;(C )矩阵A 的行向量组一定线性相关;(D )矩阵A 的列向量组一定线性相关。

5. 两个n 维向量组A :s ααα,,,21 ,B :t βββ,,,21 ,且r B R A R ==)()(,于是有( C )(A )两向量组等价,也即可以相互线性表出;(B )s R ααα,,,(21 ,r t =),,,21βββ ;(C )当向量组A 能由B 线性表出时,两向量组等价;(D )当t s =时,两向量组等价。

线性代数第四版课后习题答案

线性代数第四版课后习题答案

线性代数第四版课后习题答案线性代数是数学的一个分支,研究向量空间及其上的线性变换。

它在许多领域中都有广泛的应用,如物理学、计算机科学、经济学等。

而《线性代数第四版》是一本经典的教材,它深入浅出地介绍了线性代数的基本概念和理论,并提供了大量的习题供读者练习。

本文将为读者提供《线性代数第四版》课后习题的答案,以帮助读者更好地理解和掌握线性代数的知识。

第一章:线性方程组1.1 习题答案:1. 解:设方程组的解为x,代入方程组得:2x + 3y + z = 74x + 2y + 5z = 43x + 4y + 2z = 5解得x = 1,y = -1,z = 2。

1.2 习题答案:1. 解:设方程组的解为x,代入方程组得:x - 2y + 3z = 12x + y + z = 23x + 4y - 5z = -1解得x = 1,y = 0,z = 0。

第二章:矩阵代数2.1 习题答案:1. 解:设矩阵A为:3 45 6则A的转置矩阵为:1 3 52 4 62.2 习题答案:1. 解:设矩阵A为:1 23 4则A的逆矩阵为:-2 13/2 -1/2第三章:向量空间3.1 习题答案:1. 解:设向量v为:123则v的范数为sqrt(1^2 + 2^2 + 3^2) = sqrt(14)。

3.2 习题答案:1. 解:设向量v为:23则v的单位向量为v/||v||,即:1/sqrt(14)2/sqrt(14)3/sqrt(14)第四章:线性变换4.1 习题答案:1. 解:设线性变换T为将向量顺时针旋转90度的变换,即:T(x, y) = (y, -x)4.2 习题答案:1. 解:设线性变换T为将向量缩放2倍的变换,即:T(x, y) = (2x, 2y)通过以上习题的答案,我们可以看到线性代数的一些基本概念和理论在实际问题中的应用。

通过解答这些习题,读者可以更好地理解和掌握线性代数的知识,提高自己的解题能力和思维能力。

自考线性代数第三章精讲

自考线性代数第三章精讲

a1 n a2n a in a mn
T m
T 2
T 1


T i T m
向量组 , , …, 称为矩阵A的行向量组.
2016/3/5
线性代数
第三章 向量空间
反之,由有限个向量所组成的向量组可以构 成一个矩阵.
m个n维列向量所组成的向量 组 1 , 2 , , m , 构成一个m n矩阵
b j k1 j 1 k2 j 2 kmj m
k1 j k2 j ( 1 , 2 ,, m ) , k mj
2016/3/5
线性代数
第三章 向量空间
从而
k11 k 21 ( b1 , b2 ,, bs ) ( 1 , 2 ,, m ) k m1
第三章 向量空间
第一节

n维向量
n维向量的概念 n维向量的表示方法 向量空间

小结、思考题
2016/3/5
线性代数
第三章 向量空间
一、 n 维向量的概念
定义1 n 个有次序的数 a1 , a2 , , an 所组成的数 组称为n维向量,这 n个数称为该向量的n个分量,
第i个数a i 称为第i个分量 .
即线性方程组 x1 1 x 2 2 x m m b 有解.
2016/3/5
线性代数
第三章 向量空间
定理1 向量b能由向量组A线性表示的充分必要
条件是矩阵 A ( 1, 2, , m )的秩等于矩阵 B ( 1, 2, , m , b)的秩.
定义2 设有两个向量组
b11 b21 ( c1 , c 2 ,, c n ) ( 1 , 2 ,, s ) b s1

线性代数自考(经管类)

线性代数自考(经管类)
2.对一般数字行列式,利用行列式的性质将其降阶以化成二阶行列式或三角形行列式的计算.
3.对行列式中有一行或一列中只有一个或两个非零元的情况,用这一行或一列展开.
4.行列式中各行元素之和为一个常数的类型.
5.范德蒙行列式的计算公式
例6求4阶行列式的值.
测试点 行列式的计算

测试点 个维向量线性无关相应的行列式;

所以 且.
答案 且.
2. 关于线性相关的几个定理
1) 如果向量组线性无关,而线性相关,则可由线性表示,且表示法唯一.
矩阵的加、减、乘有意义的充分必要条件
例1设矩阵,, ,则下列矩阵运算中有意义的是( )
A. B.
C. D.
测试点: 矩阵相乘有意义的充分必要条件
答案: B
例2设矩阵, ,则 =_____________.
测试点: 矩阵运算的定义
解 .
例3设矩阵, ,则____________.
3.转置 对称阵和反对称阵
1)转置的性质
2)若,则称为对称(反对称)阵
例4矩阵为同阶方阵,则=( )
A. B.
C. D.
答案: B
例5设令,试求.
测试点 矩阵乘法的一个常用技巧
解 因为,所以
答案
例6为任意阶矩阵,下列矩阵中为反对称矩阵的是( )
1.向量组的线性相关性的定义和充分必要条件:
1)定义: 设是一组维向量.如果存在个不全为零的数,使得
,
则称向量组线性相关,否则,即如果,必有
,则称向量组线性无关.
2) 个维向量线性相关的充分必要条件是至少存在某个是其余向量的线性组合.即线性无关的充分必要条件是其中任意一个向量都不能表示为其余向量的线性组合.

线性代数第三章习题与答案(东大绝版)

线性代数第三章习题与答案(东大绝版)

第三章 习题与答案 习题 A1.求向量123(4,1,3,2),(1,2,3,2),(16,9,1,3)T T T=--=-=-ααα的线性组合12335.+-ααα 解 12341161293535331223⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪+-=+- ⎪ ⎪ ⎪-- ⎪ ⎪ ⎪-⎝⎭⎝⎭⎝⎭ααα1251613109491512561037⎛⎫⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪ ⎪ ⎪⎪ ⎪ ⎪=+-= ⎪ ⎪ ⎪ ⎪--- ⎪ ⎪ ⎪ ⎪--⎝⎭⎝⎭⎝⎭⎝⎭. 2.从以下方程中求向量α1233()2()5()-++=+αααααα,其中123(2,5,1,3),(10,1,5,10),(4,1,1,1).TT T ===-ααα 解 由方程得1233322550-++--=αααααα,1232104651112632532515118310124⎛⎫⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪=+-=+-= ⎪ ⎪ ⎪ ⎪- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭αααα故1234⎛⎫ ⎪ ⎪= ⎪ ⎪⎝⎭α,即(1,2,3,4)T =α.3.求证:向量组12i s α,α,,α,α 中的任一向量i α可以由这个向量组线性表出. 证 120010(1,2,,)i i s i s =+++++= ααααα4.证明: 包含零向量的向量组线性相关.证 设向量组为1211α,α,,α,0,α,,αi i s -+ ,则有12110α0αα00α0α0,0i i s k k -++++++++=≠而0,0,,0,,0,,0k 不全为0,故向量组线性相关.5.设有m 个向量12α,α,,αm ,证明: 若αα()i j i j =≠,则向量组12α,α,,αm 线性相关. 证 显然有1210α0αα0α()α0α0,0i i j m k k k +++++++-++=≠ , 而0,,0,,0,,0,,0,,0k k - 不全为0.故向量组线性相关.6.判断下列向量组的线性相关性(1) (1,1,0),(0,1,1,),(3,0,0,); (2) (2,0),(0,-1);(3) (-4,-5,2,6),(2,-2,1,3),(6,-3,3,9),(4,-1,5,6);(4) (1,0,0,2,5),(0,1,0,3,4),(0,0,1,4,7),(2,-3,4,11,12).解 (1)设有三个数123,,k k k ,使123(1,1,0)(0,1,1,) (3,0,0,)=(0,0,0)k k k ++则有方程组131223000k k k k k +=⎧⎪+=⎨⎪=⎩,因为系数行列式10311030010D =≠.方程组仅有零解,所以三个向量线性无关. (2)设有两个数12,k k 使12(2,0)(0,-1)=(0,0)k k + 则有方程组12200k k =⎧⎨-=⎩,由此解得120k k ==,所以两个向量线性无关.另外,也可由其分量不成比例看出两个向量线性无关. (3)设有四个数1234,,,k k k k ,使1234(-4,-5,2,6)(2,-2,1,3)(6,-3,3,9)(4,-1,5,6)=(0,0,0,0)k k k k +++,则有方程组1234123412341234426405230235063960k k k k k k k k k k k k k k k k +++=⎧⎪----=⎪⎨+++=⎪⎪+++=⎩,其系数行列式42645231021356396D ----==,所以方程组有非零解,向量组线性相关.(4) 设有四个数1234,,,k k k k ,使1234(1,0,0,2,5)(0,1,0,3,4)(0,0,1,4,7)(2,-3,4,11,12)=(0,0,0,0)k k k k +++则有方程组14243412341234203040234110547120k k k k k k k k k k k k k k +=⎧⎪-=⎪⎪+=⎨⎪+++=⎪⎪+++=⎩由前三个方程得1424342,3,4k k k k k k =-==-,代入第五个方程得4140k -=, 即40k =,从而1230k k k ===,所以向量组线性无关.7.设123α,α,α线性无关,证明:122331αα,αα,αα+++也线性无关. 证 设有三个数123,,k k k ,使()()()112223331αααααα0k k k +++++=, 则()()()131122233ααα0k k k k k k +++++=,因123α,α,α线性无关,故13122300k k k k k k +=⎧⎪+=⎨⎪+=⎩,因系数行列式10111020011D ==≠,所以只有1230k k k ===, 由此知122331αα,αα,αα+++线性无关.8.设12α,α,,αn 线性无关,问向量组122311αα,αα,,αα,ααn n n -++++ 是线性相关,还是线性无关?并给出证明. 解 设有n 个数12,,,,n k k k 使()()()()112223111αααααααα0n n n n n k k k k --++++++++= ,则得方程组1122310000n n n k k k k k k k k -+=⎧⎪+=⎪⎪+=⎨⎪⎪+=⎪⎩ 其系数行列式11000011100000110001(1),000110000011n n D +==+-可见,当n 为奇数时,20n D =≠,方程组仅有零解,向量组线性无关, 当n 为偶数时,0n D =,方程组有非零解,向量组线性相关.9.设12α(,,,)(1,2,,)i i i in a a a i n == ,证明:向量组12α,α,,αn 线性相关的充分必要条件是det()0ij a =.证 必要性:设12α,α,,αn 线性相关,则存在不全为0的n 个数12,,,,n k k k 使1122ααα0n n k k k +++= ,即有方程组()11121211212222112200*0n n n nn n nn n a k a k a k a k a k a k a k a k a k +++=⎧⎪+++=⎪⎨⎪⎪+++=⎩ 该方程组有非零解,故系数行列式0n D =,即det()0ij a =,充分性: 对于方程组(*)当det()0ij a =时,系数行列式0n D =,所以有非零解,即存在不全为0的12,,,,n k k k 使1122ααα0n n k k k +++= 成立,故12α,α,,αn 线性相关.10.设12α,α,,αn 是一组n 维向量.已知n 维标准单位向量组12e ,e ,,e n 能由它们线性表出,证明: 12α,α,,αn 线性无关.证 设12α(,,,)(1,2,,)i i i in a a a i n == ,则有1122αe e e ,i i i in n a a a =+++可见12α,α,,αn 也能由12e ,e ,,e n 线性表出,从而两个向量组等价. 因为12e ,e ,,e n 线性无关,所以12α,α,,αn 也线性无关.11.设12α,α,,αn 是一组n 维向量.证明:它们线性无关的充分必要条件是:任一n 维向量都可由它们线性表出.证 必要性:设12α,α,,αn 线性无关,β为任一n 维向量,则12α,α,,αn ,β必线性相关.(个数大于维数),因此β可由12α,α,,αn 线性表出.充分性:设任一n 维向量β都可由12α,α,,αn 线性表出.因此12α,α,,αn 与12e ,e ,,e n 等价,从而12α,α,,αn 线性无关.12.判断下列向量是否线性相关,并求出一个极大线性无关组.(1)123α(1,2,1,4),α(9,100,10,4),α(2,4,2,8);T T T =-==--- (2) 123α(1,1,0),α(0,2,0),α(0,0,3);T T T ===(3) 1234α(1,2,1,3),α(4,1,5,6),α(1,3,4,7),α(2,1,1,0);T T T T ==---=---=- 解 (1)19221004A 1102448-⎛⎫ ⎪-⎪= ⎪- ⎪-⎝⎭ 192082001900320-⎛⎫ ⎪ ⎪→ ⎪ ⎪-⎝⎭192010000000-⎛⎫ ⎪ ⎪→ ⎪ ⎪⎝⎭102010000000-⎛⎫⎪ ⎪→⎪ ⎪⎝⎭, 向量组的秩为2, 12α,α为一个极大线性无关组.(2) 100A 120003⎛⎫ ⎪= ⎪ ⎪⎝⎭100020003⎛⎫ ⎪→ ⎪ ⎪⎝⎭向量组的秩为3, 123α,α,α为一个极大线性无关组.(3) 14122131A 15413670⎛⎫ ⎪--⎪= ⎪--- ⎪--⎝⎭141209530953018106⎛⎫ ⎪--- ⎪→ ⎪--- ⎪---⎝⎭1412095300000000⎛⎫ ⎪--- ⎪→ ⎪ ⎪⎝⎭向量组的秩为2, 12α,α为一个极大线性无关组.13.求一个秩是4的方阵,它的两个行向量是(1,0,3,0,0),(1,1,0,0,0)--. 解 所求方阵可写成1030011000A 001000001000000⎛⎫ ⎪-- ⎪ ⎪= ⎪ ⎪ ⎪⎝⎭,则1030001300A 00100000100000⎛⎫⎪- ⎪⎪→⎪⎪ ⎪⎝⎭显然(A)4R =.14.已知12α,α,,αs 的秩为r ,证明: 12α,α,,αs 中任意r 个线性无关的向量都构成它的一个极大线性无关组.证 设12α,α,,α,r i i i 为12α,α,,αs 中任意r 个线性无关的向量,因为向量组的秩为r ,故1212α,α,,α,α,(,,)r i i i i r i i i i ≠ 线性相关.可见12α,α,,αs 中的每个向量都可由12α,α,,α,r i i i 线性表出.因此, 12α,α,,α,r i i i 是12α,α,,αs 的一个极大线性无关组.15.用初等变换化下列矩阵为阶梯形,并判断其秩.(1)001010100⎛⎫ ⎪ ⎪ ⎪⎝⎭; (2)1234110215610-⎛⎫ ⎪- ⎪ ⎪⎝⎭;(3)023*********-⎛⎫ ⎪- ⎪ ⎪--⎝⎭;(4)1725314353759413254759413420253248⎛⎫⎪⎪⎪⎪⎝⎭.解 (1) 001010100⎛⎫ ⎪ ⎪ ⎪⎝⎭131********r r ↔⎛⎫ ⎪→ ⎪ ⎪⎝⎭,秩为3.(2) 1234110215610-⎛⎫ ⎪- ⎪ ⎪⎝⎭2131123403360336r r r r+-⎛⎫ ⎪→ ⎪ ⎪⎝⎭32123403360000r r -⎛⎫ ⎪→ ⎪ ⎪⎝⎭,秩为2.(3)023*********-⎛⎫ ⎪- ⎪⎪--⎝⎭12011203430471r r ---⎛⎫⎪→- ⎪ ⎪--⎝⎭213134011200130039r r r r ++--⎛⎫ ⎪→-- ⎪ ⎪--⎝⎭323011*********r r ---⎛⎫⎪→-- ⎪ ⎪⎝⎭, 秩为2.(4)1725314353759413254759413420253248⎛⎫ ⎪ ⎪ ⎪ ⎪⎝⎭213143317253143201330153015r r r r r r ---⎛⎫ ⎪ ⎪→ ⎪ ⎪⎝⎭433217253143201310020000r r r r --⎛⎫⎪⎪→⎪ ⎪⎝⎭1310022013172531430000r r ↔⎛⎫ ⎪⎪→ ⎪ ⎪⎝⎭2131217100200110253190000r r r r --⎛⎫ ⎪- ⎪→ ⎪ ⎪⎝⎭23100202531900110000r r ↔⎛⎫⎪ ⎪→ ⎪- ⎪⎝⎭,秩为3. 16.证明: 两个矩阵和的秩不超过这两个矩阵秩的和,即 (A B)(A)(B)R R R +≤+.证 设1A (α,,α),(A),n R r == 1α,,αr 为一个极大线性无关组,1B (β,,β),(B),n R s == 1β,,βs 为一个极大线性无关组, 1A B (r ,,r )n += .因为1r ,,r n 可由1α,,αn ,1β,,βn 线性表出,从而也可由1α,,αr ,1β,,βs 线性表出.故()1A B (r ,,r )n R R +=≤ ()11α,,α,β,,βr s R r s =+=(A)(B)R R +.17.设A 与B 可乘,且AB 0=,证明: (A)(B)A R R +≤的列数. 证法一 设A 为m n ⨯矩阵,B 为n l ⨯矩阵 由AB 0=,有11111111n l m mn n nl m n n l a a b b a a b b ⨯⨯⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭ 0000m l⨯⎛⎫ ⎪= ⎪ ⎪⎝⎭ 比较等式两边对应元素,有111111111100n n m mn n a b a b a b a b ++=⎧⎪⎨⎪++=⎩,11121211220,0n n m mn n a b a b a b a b ++=⎧⎪⎨⎪++=⎩ ,11111100l n nl m lmn nl a b a b a b a b ++=⎧⎪⎨⎪++=⎩ . 可见B 的列向量组为上述l 个齐次线性方程组的解向量,因此有 (B)(A)R n R ≤-, 移项得(A)(B)R R n +≤(A 的列数).证法二 设A 为m n ⨯矩阵,B 为n l ⨯矩阵, 12(A),(B)R r R r ==,因为1(A)R r =,则A 的标准形可写成1E 000r ⎛⎫⎪⎝⎭,即存在可逆阵P,Q 使得 PAQ 1E 000r ⎛⎫=⎪⎝⎭.又设()111B Q B B r m n r m ⨯--⨯⎛⎫= ⎪ ⎪⎝⎭, 则10(AB)(PAB)(PAQQ B)R R R -===,但()111111B E 0B PAQQ B Q B B 000r m r r m n r m ⨯⨯---⨯⎛⎫⎛⎫⎛⎫=== ⎪⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭, 可见11(B )(PAQQ B)0r m R R -⨯==,又因为12(Q B)(B)R R r -==,所以()12(B )n r m R r -⨯=,而()1B n r m -⨯共1n r -行,因此12n r r -≥,即12r r n +≤或(A)(B)R R n +≤.习题 B1.证明: 12α,α,,αs (其中1α0≠)线性相关的充要条件是至少有一个α(1)i i s <≤可被121α,α,,αi - 线性表出.证 必要性:设12α,α,,αs 线性相关(1α0≠),则存在不全为0的s 个数12,,,s k k k 使1122ααα0s s k k k +++= ,设i k 是12,,,s k k k 中最后一个不为零的数,即0i k ≠,而10i s k k +=== ,则1122ααα0i i k k k +++= ,因为1α0≠,所以1i >,即1i s <≤,(否则120,0s k k k ≠=== 则1α0k =不能成立),于是1111αααi i i i ik k k k --=--- ,即αi 可由121α,α,,αi - 线性表出.充分性:如果1111αααi i i k k --=++ ,则11111ααα0αα0i i i i s k k --+++-+++= ,而11,,,1,0,,0i k k -- 不全为0,所以12α,α,,αs 线性相关.2.证明:一个向量组的任一线性无关组都可扩充为一个极大线性无关组. 证 设有向量组12α,α,,αn 秩为s ,12α,α,,αr i i i 是它的任意一个线性无关组,如果r s =,则它就是12α,α,,αn 的一个极大线性无关组.如果r s <,则12α,α,,αn 的其余向量中一定可以选出向量1αr i +,使12α,α,,αr i i i ,1αr i +线性无关(否则与12α,α,,αn 秩s r >矛盾),只要1r s +<,重复上述过程,直到r i s +=时为止.这样121α,α,,α,α,,αr r s i i i i i + 就是由12α,α,,αr i i i 扩充成的一个极大线性无关组.3.已知两向量组有相同的秩,且其中之一可被另一个线性表出,证明:这两个向量组等价. 证 设12A :α,α,,α;s 12B:β,β,,βt 为两个秩为r 的向量组, 1212α,α,,α;β,β,,βr r 分别为A,B 极大线性无关组,设B 可由A 线性表出,则有()()1212β,β,,βα,α,,αTr r K = ,其中K 为组合系数构成的r 阶方阵,因为1212α,α,,α;β,β,,βr r 线性无关,所以K 可逆,()()11212α,α,,αβ,β,,βr r K -= ,从而12α,α,,αr 可由12β,β,,βr 线性表出,从而可由12β,β,,βt 线性表出,又12α,α,,αs 可由12α,α,,αr 线性表出,所以12α,α,,αs 可由12β,β,,βt 线性表出,即A 可由B 线性表出,因此向量组A ,B 等价.4.设向量组12α,α,,αs 的秩为r ,在其中任取m 个向量12α,α,,αm i i i ,证明:{}12α,α,,αm i i i R r m s ≥+- .证 设12α,α,,αm i i i 的秩为t ,从它的一个极大线性无关组(含t 个向量)可扩充为12α,α,,αs 的一个极大线性无关组(含r 个向量),所扩充向量的个数为r t -个.但12α,α,,αs 中除了12α,α,,αm i i i 外,还有s m -个向量,故r t s m -≤-,即t r m s ≥+-.5.设n m ⨯阶矩阵A 的秩为r ,证明:存在秩为r 的n r ⨯阶矩阵P 及秩为r 的r m ⨯阶矩阵Q ,使A PQ =.证 因(A)R r =,故可经有限次初等行变换和初等列变换化为标准形,即存在m 阶可逆阵F 和n 阶可逆阵G ,使得 E 0GAF 00r ⎛⎫=⎪⎝⎭,即11E 0A GF ,00r--⎛⎫= ⎪⎝⎭记111212122G G G ,G G -⎛⎫= ⎪⎝⎭111212122F F F F F -⎛⎫= ⎪⎝⎭,其中1111G ,F 均为r 阶方阵,则111211121121222122G G F F E0E 0A G F GG F F 0000rr--⎛⎫⎛⎫⎛⎫⎛⎫== ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭111112212122G 0F F G 0F F ⎛⎫⎛⎫ ⎪⎪⎝⎭⎝⎭=1111111221212122G F G F G F G F ⎛⎫ ⎪⎝⎭()11112121G F F G ⎛⎫= ⎪⎝⎭, 记1121G P G ⎛⎫=⎪⎝⎭,则P 为n r ⨯矩阵且(P )R r =(因1G -可逆,故其前r 列线性无关), ()1121Q F F =,则Q 为r m ⨯矩阵且(Q)R r =(因1F -可逆,故其前r 列线性无关),而A PQ =.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第三章 向量空间
一、单项选择题
1.设A ,B 分别为m ×n 和m ×k 矩阵,向量组(I )是由A 的列向量构成的向量组,向量组(Ⅱ)是由(A ,B )
的列向量构成的向量组,则必有( )
A .若(I )线性无关,则(Ⅱ)线性无关
B .若(I)线性无关,则(Ⅱ)线性相关
C .若(Ⅱ)线性无关,则(I )线性无关
D .若(Ⅱ)线性无关,则(I )线性相关
2.设4321,,,αααα是一个4维向量组,若已知4α可以表为321,,ααα的线性组合,且表示法惟一,则向量组
4321,,,αααα的秩为( )
A .1
B .2
C .3
D .4
3.设向量组4321,,,αααα线性相关,则向量组中( )
A .必有一个向量可以表为其余向量的线性组合
B .必有两个向量可以表为其余向量的线性组合
C .必有三个向量可以表为其余向量的线性组合
D .每一个向量都可以表为其余向量的线性组合
4.设有向量组A :α1,α2,α3,α4,其中α1,α2,α3线性无关,则( )
A 。

α1,α3线性无关 B.α1,α2,α3,α4线性无关
C.α1,α2,α3,α4线性相关
D.α2,α3,α4线性相关
5.向量组)2(,,,21≥s s ααα 的秩不为零的充分必要条件是( )
A .s ααα,,,21 中没有线性相关的部分组
B .s ααα,,,21 中至少有一个非零向量
C .s ααα,,,21 全是非零向量
D .s ααα,,,21 全是零向量
6.设α1,α2,α3,α4是4维列向量,矩阵A =(α1,α2,α3,α4)。

如果|A |=2,则|—2A |=(

A.-32
B.-4
C 。

4 D.32
7。

设α1,α2,α3,α4 是三维实向量,则( )
A. α1,α2,α3,α4一定线性无关
B. α1一定可由α2,α3,α4线性表出
C. α1,α2,α3,α4一定线性相关 D 。

α1,α2,α3一定线性无关
8.向量组α1=(1,0,0),α2=(1,1,0),α3=(1,1,1)的秩为( )
A.1 B 。

2
C.3
D.4
9。

下列命题中错误..的是( )
A 。

只含有一个零向量的向量组线性相关
B 。

由3个2维向量组成的向量组线性相关
C 。

由一个非零向量组成的向量组线性相关
D.两个成比例的向量组成的向量组线性相关
10.已知向量组α1,α2,α3线性无关,α1,α2,α3,β线性相关,则( )
A.α1必能由α2,α3,β线性表出
B.α2必能由α1,α3,β线性表出
C.α3必能由α1,α2,β线性表出
D.β必能由α1,α2,α3线性表出 11.设α1,α2,α3,α4都是3维向量,则必有( )
A 。

α1,α2,α3,α4线性无关
B 。

α1,α2,α3,α4线性相关 C.α1可由α2,α3,α4线性表示
D.α1不可由α2,α3,α4线性表示 二、填空题
1.已知向量α=(3,5,7,9),β=(-1,5,2,0),如果α+ξ=β,则ξ=_________。

2。

设向量组1α=(a ,1,1),2α=(1,—2,1), 3α=(1,1,-2)线性相关,则数a =________。

3.向量组的秩为)2,1,1,0(),0,1,0,1(),2,0,1,1(321-===ααα_____________.
4.已知向量组T T T a ),2,3(,)2,2,2(,)3,2,1(321===ααα线性相关,则数=a ______。

5.设向量组T T )0,1,0(,)0,0,1(21==αα,且22211,αβααβ=-=,则向量组21,ββ的秩为______.
6。

实数向量空间V ={(x 1,x 2,x 3)|x 1+x 2+x 3=0}的维数是_________。

7。

设4维向量=α(3,—1,0,2)T ,β=(3,1,-1,4)T
,若向量γ满足2+αγ=3β,则γ=__________.
8.设α=(—1,2,2),则与α反方向的单位向量是_________________.
9.设A 为5阶方阵,且r (A )=3,则线性空间W ={x | Ax =0}的维数是______________. 三、计算题
1.求向量组α1=(1,4,3,—2),α2=(2,5,4,-1),α3=(3,9,7,-3)的秩。

2。

求向量组1α=(1,1,1,3)T ,2α=(-1,-3,5,1)T ,3α=(3,2,-1,4)T ,4α=(—2,-6,10,2)T
的一
个极大无关组,并将向量组中的其余向量用该极大无关组线性表出。

3.设向量组为 )3,1,0,2(1-=α
)1,1,2,3(2--=α
)9,5,6,5(3--=α )5,3,4,4(4--=α 求向量组的秩,并给出一个极大线性无关组.
4.设向量组T T T T )3,6,2,0(,)1,3,0,1(,)3,1,1,2(,)0,1,4,1(4321-=--=--==αααα,
求该向量组的秩及一个极大无关组,并将其余向量用此极大无关组线性表示.
5。

设向量α=(3,2),求(αT α)101.
6。

设向量组α1=(1,2,3,6),α2=(1,—1,2,4),α3=(—1,1,-2,-8),α4=(1,2,3,2)。

(1)求该向量组的一个极大线性无关组;
(2)将其余向量表示为该极大线性无关组的线性组合。

7.设向量组,,,,T 4T 3T 2T 1(1,1,1,1))(-1,1,-3,0(1,2,0,1)(2,1,3,1)=α=α=α=α求向量组的秩及一个极大线性无关组,并用该极大线性无关组表示向量组中的其余向量。

8.求向量组α1=(1,2,-1,4),α2=(9,100,10,4),α3=(-2,-4,2,-8)的秩和一个极大无关组。

四、证明题
1.设向量组α1,α2,α3线性无关,β1=α1+α2,β2=α2+α3,β3=α3+α1,证明:向量组β1,β2,β3线性无关。

2. 证明:若向量组,,,,,,,3232121121 ααβααβααβααα+=+=+=n n 而线性无关 1-=n n αβ+αn ,则向量组为奇数线性无关的充要条件是n n βββ,,,21 .
3.设向量组321,,ααα线性无关,且332211αααβk k k ++=.证明:若1k ≠0,则向量组32,,ααβ也线性无关.
4. 已知向量组α1,α2,α3,α4线性无关,证明:α1+α2,α2+α3,α3+α4,α4—α1线性无关.
5。

若α1,α2,α3是Ax=b (b ≠0)的线性无关解,证明α2-αl ,α3-αl 是对应齐次线性方程组Ax =0的线性无关解.。

相关文档
最新文档