水稻转基因步骤

合集下载

水稻转基因组织培养步骤

水稻转基因组织培养步骤

水稻转基因组织培养步骤农杆菌介导的转化一.试剂1 6-BA (6-BenzylaminoPurine) Sigma Cat No. B-58982 KT (Kinetin) Sigma Cat No. K-07533 NAA (Napthalene acetic acid) Sigma Cat N-06404 IAA (Indole-3-acetic acid) Sigma Cat No. I-51485 2,4-D (2,4-Dichlorophenoxyacetic acid) Sigma Cat No. D-84076 Kanamycin USB Cat No. 179247 CH (Casein Enzymatic Hydrolysate) Sigma Cat No. C-72908 Hn (hygromycin B) GiBco BRL Cat No. 10687-0109 Cn (Carbenicillin) 国产分装10 Nicotinic acid Sigma Cat No. N-076511 Pyridoxine HCl Sigma Cat No. P-866612 Thiamine HCl Sigma Cat No. T-390213 Inositol Sigma Cat No. I-301114 Phytagel Sigma Cat No. P-816915 Dimethyl Sulfoxide-DMSO Sigma Cat No. D-587916 X-gluc (5-bromo-4-chloro-3-indolyl-D-galactoside) Sigma Cat No. B-378317 AS (Acetosringone) Aldrich chem., CO 01531 EG二.溶液1.MS maxNH4NO316.5gKNO319.0gKH2PO4 1.7gMgSO4?7H2O 3.7gCaCl2?2H2O 4.4g 或CaCl2 3.32g逐一溶解药品后,加dH2O定容到1000ml。

水稻转基因实验技术手册

水稻转基因实验技术手册

水稻转基因实验技术手册遗传工程实验室Genetic Engineering Laboratory Discipline of Crop Genetics and BreedingFujian agricultural and Forestry University目录第一章DNA提取与纯化第二章引物设计与PCR第三章感受态细胞制备与转化(E. coli & 农杆菌)第四章电泳技术、琼脂糖凝胶DNA回收第五章质粒回收第六章RT-PCR第七章构建载体互补实验过量表达GFPGUSRNAi第八章水稻组织培养第九章原位杂交第十章石蜡切片技术第十一章扫描电子显微镜附录:第一章SDS-DNA微量提取法1、取新鲜叶片5cm 左右于1.5ml 离心管中,加入液氮研磨(电钻)。

2、加入700μl 预热至65℃的SDS 抽提液,迅速搅匀后置于65℃水浴30min 。

3、加入200μl 5M KAc ,颠倒混匀,-20℃冰浴30min 后,10,000rpm 离心5min ,将上清夜倒入另一新的1.5ml 离心管中。

注:若溶液中仍有植物组织,可进行二次离心。

4、加入等体积的异丙醇(700 μl ),-20℃冰浴30min ,11,000rpm 离心5min 。

5、弃上清,加入70%乙醇清洗液晾干。

6、将风干的DNA 溶于100 μl TE 溶液中,55℃水浴溶解1h ,再室温放置1d 。

实验准备:溶液配制:SDS-抽提液:1M Tris-HCl :100ml 5M NaCl :100ml 0.5M EDTA :100ml 10% SDS :125mlTE (pH8.0):1M Tris-HCl (pH8.0):5ml 0.5M EDTA (pH8.0):1ml第二章 PCR定容至1000ml定容至500mlPrimeSTAR HS DNA Polymerase with GC Buffer & TaKaRa LA Taq with GC BufferPCR体系和程序第四章琼脂糖凝胶DNA回收*第一次使用前请先在15ml漂洗液WB中加入60ml无水乙醇1、在长波紫外下,用干净刀片将所需回收的DNA条带切下,尽力切除不含DNA的凝胶,得到凝胶体积越小越好。

水稻转化方法

水稻转化方法

水稻转化方法1.愈伤组织的诱导选取成熟良好、饱满、无霉变的籼稻种子,用糙米机或人工方法去掉种子的内外粰,保留胚的完整性。

先用75%酒精消毒1 min,再浸泡于40% NaClO+0.1% Tween 20 溶液,并置于100 rpm的摇床上消毒30 min。

在超净工作台上,消毒后的去粰种子用无菌水洗涤5次以上,洗净后转移至装有无菌吸水纸的培养皿中吸干水分,再将去粰种子接种于诱导培养基中。

培养条件为32℃,持续光照(100 mole m-2 s-1)。

30天后即可得到较好的愈伤组织用于转化。

2.农杆菌的准备农杆菌选用水稻转化中常用的菌株Ag10。

将含有目的基因的表达载体通过电激转化法转入农杆菌Ag10,选取阳性菌株,再将阳性菌株划线于含合适抗生素的YEB固体平板培养基中,于28 ℃暗培养3天。

3天后,用接种针挑取米粒大小的农杆菌震荡悬浮于装有100 mL AA 浸染培养基的150 mL灭菌三角瓶中,以此作为愈伤组织的农杆菌浸染液。

特别值得注意的是,农杆菌应充分分散,而且浓度不能太大(OD600=0.1),否则后续的脱菌效果不好。

3.愈伤组织和农杆菌的共培养挑取诱导30天并且生长良好的愈伤组织(长出的水稻芽与种子去掉)浸泡于装有100 mL 农杆菌浸染液的150 mL灭菌三角瓶中(在加入愈伤前,先加入150ml的AS,使AA液中AS的浓度为30mg/L),摇动5min。

同时,在共培养基平板上预先垫1张无菌滤纸,用1 mL 的AAM浸染培养基打湿,并除去气泡。

然后将浸染5 min后的愈伤组织用无菌滤纸吸干,置于垫了滤纸的共培养基上于25℃黑暗培养3天。

4.农杆菌的洗脱将共培养3天后的愈伤组织置于250 mL锥形瓶中,先用无菌水洗涤4-5次,直至洗液清澈透明为止。

加入过滤灭菌的400 mg/L羧苄青霉素溶液适量,于摇床上100 rpm 震荡洗涤25 min。

然后倒掉洗液,继续用羧苄青霉素溶液洗愈伤3-5次,再加入适量羧苄青霉素溶液,于摇床上100 rpm 震荡洗涤25 min,然后倒掉洗液,继续用羧苄青霉素溶液洗愈伤3-5次,最后用无菌滤纸将愈伤组织吸干。

转基因水稻Bt汕优63外源插入结构验证和定量检测方法建立

转基因水稻Bt汕优63外源插入结构验证和定量检测方法建立

转基因水稻Bt汕优63外源插入结构验证和定量检测方法建立一、背景介绍Bt汕优63是一种经过基因工程技术改造的转基因水稻品种,通过引入Bt基因,使其具备抗虫特性,有效减少农药使用,保障粮食安全。

为确保Bt汕优63中外源基因插入结构的稳定性和表达量,本研究旨在建立一套针对其外源插入结构的验证和定量检测方法。

二、外源插入结构验证方法1. DNA提取从Bt汕优63植株中提取基因组DNA,作为后续实验的模板。

2. PCR扩增设计特异性引物,针对Bt基因及其侧翼序列进行PCR扩增。

通过琼脂糖凝胶电泳检测扩增产物,验证Bt基因是否成功插入水稻基因组。

3. 序列分析将PCR扩增产物进行测序,与预期序列进行比对,确认插入位点和序列的正确性。

三、定量检测方法建立1. 实时荧光定量PCR(qPCR)以Bt基因为目标,设计特异性引物和探针,建立qPCR检测体系。

通过标准曲线法对Bt基因在水稻基因组中的表达量进行定量分析。

2. qPCR实验步骤(1)制备cDNA:以提取的RNA为模板,反转录合成cDNA。

(2)配制qPCR反应体系:包括cDNA模板、引物、探针、dNTPs、Taq酶等。

(3)设置qPCR反应程序:包括预变性、变性、退火、延伸等步骤。

(4)数据分析:采用软件分析Ct值,根据标准曲线计算Bt基因的相对表达量。

四、方法优化与验证1. 优化实验条件:对qPCR反应体系中的引物浓度、探针浓度、退火温度等进行优化,确保检测体系的灵敏度和特异性。

2. 重复性实验:进行多次独立实验,验证检测方法的重复性。

3. 线性范围验证:通过制备不同浓度的标准品,构建标准曲线,验证检测方法的线性范围。

本研究成功建立了Bt汕优63外源插入结构的验证和定量检测方法,为后续转基因水稻的监管、研究和应用提供了有力的技术支持。

通过这些方法,可以确保Bt汕优63中外源基因的稳定性和表达量,为我国转基因作物的发展和安全提供保障。

六、实验操作注意事项1. DNA提取过程中的注意事项确保实验过程中使用的器械和容器无菌,避免DNA污染。

水稻转基因组织培养步骤

水稻转基因组织培养步骤

农杆菌介导的转化一.试剂1 6-BA (6-BenzylaminoPurine) Sigma Cat No. B-58982 KT (Kinetin) Sigma Cat No. K-07533 NAA (Napthalene acetic acid) Sigma Cat N-06404 IAA (Indole-3-acetic acid) Sigma Cat No. I-51485 2,4-D (2,4-Dichlorophenoxyacetic acid) Sigma Cat No. D-84076 Kanamycin USB Cat No. 179247 CH (Casein Enzymatic Hydrolysate) Sigma Cat No. C-72908 Hn (hygromycin B) GiBco BRL Cat No. 10687-0109 Cn (Carbenicillin) 国产分装10 Nicotinic acid Sigma Cat No. N-076511 Pyridoxine HCl Sigma Cat No. P-866612 Thiamine HCl Sigma Cat No. T-390213 Inositol Sigma Cat No. I-301114 Phytagel Sigma Cat No. P-816915 Dimethyl Sulfoxide-DMSO Sigma Cat No. D-587916 X-gluc (5-bromo-4-chloro-3-indolyl-D-galactoside) Sigma Cat No. B-378317 AS (Acetosringone) Aldrich chem., CO 01531 EG二.溶液1.MS maxNH4NO316.5gKNO319.0gKH2PO4 1.7gMgSO4∙7H2O 3.7gCaCl2∙2H2O 4.4g 或CaCl2 3.32g逐一溶解药品后,加dH2O定容到1000ml。

水稻转基因策略-第三版

水稻转基因策略-第三版

水稻转化体系的构建(第三版,2015年3年10日)N6D 诱导愈伤,前培养2N6-AS 共培养N6DS 筛选MS-NK 再分化MS-HF 生根AB 农杆菌生长MSL 侵染N6D 1LChu N6 Basal Medium w/ Vitamins(PhytoTechnology Laboratories)3.99gMyo-inositol 0.1gProline 2.878gCasamino acid 0.3gSucrose 30g2.4-D 2mg/LGellan gum(Gelrite) 3g/L(分装)PH5.8120℃15min2N6-AS 1LChu N6 Basal Medium w/ Vitamins(PhytoTechnology Laboratories)3.99gMyo-inositol 0.1gCasamino acid 0.3gSucrose 30gGlucose 10g2.4-D 2mg/LGellan gum(Gelrite) 3g/L(分装)PH5.8120℃15min 冷却至50℃加1ml AS(200mg/L)不要吹的太干,该培养基要湿度高一些较好。

N6DS 1LChu N6Basal Medium w/ Vitamins(PhytoTechnology Laboratories)3.99gMyo-inositol 0.1gProline 2.878gCasamino acid 0.3gSucrose 30g2.4-D 2mg/LGellan gum(Gelrite) 3g/L(分装)PH5.8120℃15min 冷却至50℃加1ml cef(100mg/ml) 1ml hyg(50mg/ml)MS-NK 1LMS Basal Medium w/ Vitamins(PhytoTechnology Laboratories)4.43g (包含0.1g Myo-inositol )Casamino acid 2gSucrose 30gSorbitol 30gNAA 0.02mg/LKinetin 2mg/LGellan gum(Gelrite) 3g/L(分装)PH5.8120℃15min 冷却至50℃加1ml cef(100mg/ml) 1ml hyg(50mg/ml)MS-HF 1LMS Basal Medium w/ Vitamins(PhytoTechnology Laboratories)4.43g (包含0.1g Myo-inositol )Sucrose 30gGellan gum(Gelrite) 3g/L(分装)PH5.8120℃15min 冷却至50℃AB 200mlGlucose 1gAgrose 3gAB Buffer(20倍) 10mlAB Salt (20倍) 10mlddH2O 180ml120℃15min 冷却至50℃加相应的抗生素。

水稻转基因方法及培养基配放个

水稻转基因方法及培养基配放个

根癌农杆菌介导的转化方法将水稻成熟种子去壳。

仔细剔除有霉菌点籽粒,取饱满清亮籽粒先用70%乙醇浸泡(表面消毒)1min ,再用含2%活性氯含量的NaClO溶液(加1-3滴Tween20)浸泡30min以上(最长可至1小时左右),并不断摇动,然后用无菌水冲洗4-5次;将灭菌后的成熟种子置于无菌滤纸上吸干多余水分,直接接种于N2D6培养基上,于24-26oC暗培养7-10 天,诱导出初生愈伤组织;将上述从成熟胚诱导的初生愈伤组织直接用于与农杆菌的共培养转化;农杆菌的准备是在含有50mg/mL km的LB 平板上划线,培养含有重组质粒的农杆菌,28oC培养36h。

挑取活化的单个农杆菌菌落,在28oC于3mL 含km 的LB培养基中振荡培养过夜,第2天按1.5/50(V/V)接种量在AB液体培养基中培养,培养程度以稍早于生长对数期为宜(OD600约为0.6-0.8 )。

离心回收新鲜培养的农杆菌,并重悬于约1/2-1/3体积的AAM(含100-400mol·L-1乙酰丁香酮)液体培养基中,至OD600约为0.8-1.0左右为宜;将愈伤组织切下,立即投入含农杆菌的AAM重悬液中,浸泡15-20分钟,并不断摇动。

将感染后的愈伤组织置于无菌滤纸上吸干多余的菌液,转入共培养基N6D2C上培养3天(26oC,暗培养)。

转入筛选培养基N6D2S1上与24-26oC 暗培养条件下筛选2周。

新鲜长出的抗性愈伤组织或不褐化的愈伤组织转入筛选培养基N6D2S2上,继续筛选培养2次,每次2周。

将抗性愈伤组织转入MSPR培养基上进行预分化处理14天,其中先在暗条件下培养7天,然后转入光条件下培养7天;经预分化处理的愈伤组织转入MSR培养基分化再生,在光下培养;再生的小苗在1/2MS0培养基上生根壮苗。

农杆菌介导转化水稻所用培养基-1-1 626蔗糖,2mg·L-1 2,4-D, 2.5g·L-1Phytagel( sigma) ,pH5.8N6D2S1N6D2,25mg·L-1潮霉素B(Roche),500mg·L-1头孢霉素(cefotaxime)N6D2S2N6D2,50mg·L-1潮霉素B,300mg/mL头孢霉素2424442 150mg·L-1KCl, 10mg·L-1CaCl2, 2.5mg·L-1FeSO4·7H2O, 5g·L-1葡萄糖,pH7.0AAM AA(Toriyama和Hinata,1985)盐分和氨基酸,MS(Murashige和Skoog 1962)维生素,0.5g·L-1酪蛋白水解物,36g·L-1葡萄糖,68.5g·L-1蔗糖,100-400µmol·L-1乙酰丁香酮,pH5.2N6D2C N6D2, 10g·L-1葡萄糖,100-400µmol·L-1乙酰丁香酮(用时现加),pH5.2预分化与分化再生MSPR MS(Murashige和Shog,1962)盐分和维生素,0.5g·L-1酪蛋白水解物,50g·L-1蔗糖,2mg·L-16-BA,1mg·L-1NAA, 5mg·L-1ABA ,3.0g·L-1Phytagel, pH 5.8,50mg·L-1潮霉素B,200mg·L-1头孢霉素。

转基因水稻品种

转基因水稻品种

转基因水稻品种一、转基因水稻的概念转基因水稻是指通过基因工程技术将外源基因导入水稻基因组中,从而使水稻获得新的性状或特性的水稻品种。

例如,可能导入抗虫基因使水稻能够抵抗特定害虫的侵害,或者导入抗除草剂基因方便田间杂草管理等。

1. 抗虫转基因水稻- Bt转基因水稻- 原理:将苏云金芽孢杆菌(Bt)中的杀虫蛋白基因导入水稻。

Bt蛋白能够特异性地毒杀鳞翅目害虫,如螟虫等。

当害虫取食转基因水稻后,Bt蛋白在害虫肠道内被激活,与肠道上皮细胞表面的特异性受体结合,造成肠道穿孔,最终导致害虫死亡。

- 优势:显著减少化学杀虫剂的使用量。

传统防治螟虫等害虫需要多次喷洒农药,这不仅成本高,而且农药残留会对环境和人类健康造成潜在威胁。

抗虫转基因水稻能在很大程度上解决这些问题,提高水稻产量的稳定性。

- CpTI转基因水稻- 原理:豇豆胰蛋白酶抑制剂(CpTI)基因被导入水稻。

CpTI能够抑制害虫体内的胰蛋白酶活性,从而影响害虫的消化过程,达到抗虫的目的。

- 优势:具有较广的抗虫谱,对多种害虫都有一定的抑制作用。

同时,由于其作用机制与Bt蛋白不同,两者结合使用可以延缓害虫对单一抗虫基因产生抗性。

2. 抗除草剂转基因水稻- 例如,导入抗草甘膦基因的水稻。

- 原理:草甘膦是一种广谱性的除草剂,它通过抑制植物体内的5 - 烯醇丙酮莽草酸 - 3 - 磷酸合成酶(EPSPS)的活性来杀死植物。

抗草甘膦转基因水稻中导入了经过修饰的EPSPS基因,这种基因编码的酶对草甘膦不敏感,从而使水稻在使用草甘膦除草剂时能够正常生长,而杂草被有效清除。

- 优势:方便田间杂草管理。

在传统水稻种植中,人工除草劳动强度大,化学除草容易对水稻产生药害。

抗除草剂转基因水稻可以在水稻生长期间精准地使用草甘膦进行除草,提高田间管理效率,减少杂草与水稻争肥、争光等情况,有助于提高水稻产量。

三、转基因水稻的安全性争议1. 环境安全方面- 基因漂移问题- 争议点:转基因水稻中的外源基因可能通过花粉传播等方式漂移到野生稻或其他近缘植物中,从而可能改变野生植物的基因组成和生态特性。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

在植物转基因过程中,为了有效地识别和筛选转化子,常将目的基因和标记基因构建在同一表达载体中。

这种载体结构导致转基因植物中目的基因和标记基因始终共存,而标记基因(尤其是抗生素抗性基因)的存在可能给转基因植物的生物安全带来隐患。

目前已研发了多种方法剔除转基因植物中的标记基因,其中最常见的是共转化法(Komari 1996,McCormac 等2001)。

共转化系统是采用2个质粒或1个含有两套T—DNA表达盒的表达载体共同转化植物,其中一套表达盒含有抗性选择标记基因,另一套表达盒含有目的基因,它们转化植物时可能整合到植物基因组的不同位置。

转基因植株在减数分裂过程中,标记基因和目的基因发生分离,从而可在转基因后代中筛选到只含目的基因而不含选择标记基因的个体。

共转化从根本上排除了转基因植物中的选择标记,是保证人畜和环境安全的重要措施,因此受到了广泛的重视。

Zhou 等(2003)认为,用分别含一个T-DNA区的两个载体共转化的效率低于双T-DNA区表达载体的共转化效率。

目前关于利用双T-DNA区表达载体,获得无选择标记转基因阳性株系的研究已有不少报道(唐俐等2006,张秀春等2006,于恒秀等2005)。

花药培养与遗传转化技术相结合,可以快速获得纯合转基因植株(斯华敏等,1999,付亚萍等,2001),但是应用花药培养快速获得只含目的基因而无选择标记的转基因研究尚未见报告。

水稻是最主要的粮食作物,转基因水稻的安全显得尤为重要。

本实验室通过农杆菌介导的水稻转化体系,将包含人乳铁蛋白(hLF)、高赖氨酸(SB401)、高甲硫氨酸(RZ10)基因的表达载体p13HSR成功转化脆茎稻,由于该表达载体采用双T-DNA结构,将检测出含选择标记潮霉素磷酸转移酶基因(hpt)和目的基因的转基因阳性T0植株按单株直接进行花药培养。

在189株二倍体花培植株中检出23株有目的基因没有选择标记hpt的转基因纯合植株,得率为9.87%。

RT-PCR检测结果显示外源基因已整合到转基因水稻基因组中并转录。

本文首次发现插入的外源基因间存在交换事件,从而改变了花培群体中无选择标记而目的基因阳性的转基因纯系的获得率。

同时还对农杆菌介导的同一载体上多个基因转化水稻后,会出现个别基因丢失的情况进行了讨论。

基因转化方法参照Hiei等(1994)的方法并加以修改。

取开花后12-15 d左右的稻穗脱粒,表面灭菌后接种在NB培养基上,26℃暗培养诱导愈伤组织。

约5-7d后取愈伤组织在相同条件下继代培养,用于共培养。

农杆菌于含50mg/L卡那霉素(Kam)的YM平板上划线,28℃黑暗培养3d,用金属匙收集农杆菌菌体,将其悬浮于共培养CM液体培养基中,调整菌体浓度至OD600为0.3-0.5,加入AS(终浓度为100mΜ),即为共培养转化水稻用的农杆菌悬浮液。

将继代培养4d后的愈伤组织浸于此菌液中,20min后取出并用无菌滤纸吸去多余菌液,随即转入铺有无菌滤纸的固体培养基上,于26℃下暗培养2~3d。

共培养后的愈伤组织在含有50mg/l潮霉素的筛选培养基上,26℃暗培养14d,再转到新鲜配制的筛选培养基上继续筛选14d。

然后选择生长旺盛的抗性愈伤组织转移到含有50mg/l潮霉素的分化培养基上,暗培养3天后转至15h/d 光照条件下培养,再生的小苗在1/2MS上生根壮苗两周左右。

选择高约10cm、根系发达的小苗,按编号移栽入土。

将双T载体p13HSR转化脆茎稻,共获得96株转基因苗(T0代)。

PCR检测表明其中41株既含潮霉素抗性基因又含目的基因,42株只有潮霉素抗性基因没有目的基因,4株有目的基因没有潮霉素抗性基因,9株目的基因和潮霉素抗性基因都没有。

双T-DNA区表达载体p13HSR在水稻中的共转化频率为42.7%。

没有选择标记的13株(13.5%)T0代转基因苗,是逃过抗生素的抑制幸存下来的,从技术上和理论上都无法控制其出现频率,即使含有目的基因也没有实际操作价值。

所以我们在实验中挑选了目的基因和选择标记都有的T0代植株进行后续的花培纯合实验。

从先期获得的6株T0植株中,检测出5株同时含选择标记基因和目的基因。

将这些植株按单株进行花药培养,共获得花培苗233株,其中189株二倍体,7株四倍体,37株单倍体。

二倍体植株的PCR检测结果表明,有68株既含潮霉素又含目的基因,24株只有潮霉素没有目的基因,74株目的基因和潮霉素都没有,23株有目的基因没有潮霉素。

无选择标记而目的基因阳性的转基因纯合植株的总得率为9.87%,这些植株生长正常,株高、分蘖、穗长、单穗粒数等参数和对照相仿(资料未显示)。

RT-PCR检测结果显示外源基因已整合到转基因水稻基因组中并转录(图2,3)。

以上结果表明,将遗传转化技术与花药培养相结合,快速获得了纯合的,同时含人乳铁蛋白(hLF)、高赖氨酸(SB401)、高甲硫氨酸(RZ10)基因但不含潮霉素抗性基因的二倍体转基因水稻(图4)。

2.3 DHT0代群体中选择标记基因和目的基因的分离5株T0转基因株分别进行花药培养,获得5个DHT0代群体。

对群体中的二倍体植株进行了目的基因(为方便计,记作G)与选择标记基因(S)的PCR检测。

结果表明5个株系中都有S+G+,S+G-,S-G+和S-G-四种类型的植株。

假定在农杆菌转化过程中,2个T-DNA分别独立插入到水稻基因组的不同源的染色体上,则其花培群体的分离比应为1:1:1:1。

卡平方测定结果(表2)表明,1、3、5号群体的分离比符合预期假设,但2、4号群体的分离比与预期结果不符,而且S+G+和S-G的比例明显高于S+G-和S-G+,提示双T结构可能插入到同源染色体的同一染色单体上,并在减数分裂期间发生了遗传交换。

由于花药培养获得的DH群体直接反映了交换事件,因此2、4号群体的交换频率分别为18.0%和28.6%。

2.4 双T-DNA区三价表达载体在转化过程中部分目的基因的丢失在对T0代和DHT0代进行选择标基因及目的基因检测的过程中,发现处于同一T-DNA区不同启动子启动的三个目的基因,在转基因植株中的出现频率也不是完全一致的。

T0代的45株目的基因阳性株系PCR检测结果表明有1株包含hLF无SB401和RZ10,1株无hLF有SB401和RZ10。

RT-PCR结果显示:DHT0代的91株中有6株有hLF无SB401和RZ10,3株无hLF有SB401和RZ10(图5)。

植物转基因对改良植物品质、增加抗性、提高产量等方面,都具有明显作用。

尽管WHO(1991)和FDA(1994)已经声明,食物中的标记基因本身并无安全性问题,但是从转基因作物的食用和环境安全性考虑,人们对抗性基因是否有向其他生物转移的可能性仍有诸多疑虑(Widmer等1996,1997;Kohli等1999)。

此外,就育种方法而言,转基因品种中标记基因的存在,对它再次进行转基因聚合育种也带来一定困难(Yoder and Goldsbrough 1994)。

因此,转基因植物标记基因的剔除,是转基因育种的一个重要内容。

本研究表明利用双T载体转化水稻,再通过花药培养技术即可快速获得有目的基因却不含选择标记的转基因株系,有效消除选择标记基因的安全隐患,大大加快了研究成果的应用速度。

在本研究中,无选择标记而目的基因阳性的转基因纯合植株的得率为9.87%。

于恒秀等(2005)用双T-DNA双元载体转化水稻,T0代共转化阳性的转基因植株自交后得到T1代植株中无选择标记基因而有目的基因AP1的比例介于25%-33%之间。

张秀春等(2006)利用双T载体获得的无选择标记的转基因大豆,T1代无选择标记基因而有目的基因的比例为18.75%,用同样的方法,Zhou等(2003)报告T1代的无选择标记基因而有目的基因的比例为19.5%。

由于这些T1代的目的基因存在纯合与杂合两种情况(比例约为1:2),因此虽然纯合基因型的比例与本实验基本一致,但还需要继续加代和检测才能获得纯合的植株。

而将双T载体转化与花药培养相结合的方法,仅一代就可获得纯合目的植株,大大加快了研究进度。

双T载体转化水稻在T0代有五种插入可能:1.选择标记区(简称S区)和目的基因区(简称G区)仍然相连,或者虽不相连,但插入在同一染色体的同一染色单体上;2. S区和G区分离,分别插在同一染色体的两个姐妹染色单体上;3.S区和G区分离,并分别插在不同的染色体上;4.S区发生T-DNA插入事件,G区被丢掉;5. G区发生T-DNA插入事件,S区被丢掉。

选取S+G+的T0代进行花药培养,淘汰了后两种情况,前三种类型在花培的DHT0代植株中又会出现新的分离情况(如表3)。

在已有的报道中,选择标记基因与目的基因的分离比数据所体现的均为表3中各种类型综合后的结果,无法明确双T载体的插入方式。

而本实验中我们选取了选择标记和目的基因双阳性的T0代植株并按株系进行花药培养,虽然进行花药培养的单株不多,也检出了3个T-DNA结构插入不同染色体(1,3,和5号群体)和同一染色单体(2和4号群体)两种类型,表明通过对DHT0群体的检测,有可能分析双T-DNA结构在转基因中的行为,为转化后载体插入方式的理论研究奠定了基础。

当然,个别DHT0群体的二倍体植株较少,可能影响生物统计的结论,因此今后开展同类研究需要保证一定的群体规模。

转化一、两个外源基因,往往不能满足育种上对多项农艺性状的要求,而多次转化又面临时间长,选择标记缺乏等难题,所以研究人员把多个外源基因一次性转入受体材料。

Cao 等(2005)将多元载体pYP1203E转化水稻,该载体在同一T-DNA区包含选择标记基因(hpt),报告基因(GUS)以及另外的三个各自独立使用启动子,终止子的外源基因(VHb,tzs和EPSPS),在113株T0代转基因单株中发现有8株发生了一个或两个外源基因丢失的情况。

本研究45株目的基因阳性的T0代株系中也有2株出现了部分目的基因丢失,所以我们推测大片段的T-DNA区在转化过程中会发生不完整插入的现象。

DHT0代91株中有9株目的基因片段不完整,说明较长的插入片段在后代遗传过程中有丢失其中一个表达盒的可能,由于基因转录必须具有完整的表达盒,所以RT-PCR结果显示的是hLF的缺失或是SB401和RZ10的缺失。

载体p13HSR中,共用启动子的SB401和RZ10表达盒是否会出现丢失其中一个基因,另外一个正常表达的情况,我们的实验结果不能体现,这是因为,RZ10是一个水稻内源的高甲硫氨酸含量的基因,为了便于检测,我们用SB401的序列设计了RZ10的5’端引物,用RZ10的序列设计了3’端引物,所以SB401和RZ10在我们的检测结果中始终是连锁的。

对这种可能性的研究需要构建其他特异的表达载体,转化受体材料后,进行分析。

相关文档
最新文档