第十六章 表观遗传学(答)
分子生物学之表观遗传学

分子生物学:表观遗传学表观遗传学( epigenetics):指非基因序列变化导致的基因表达的可遗传的改变。
细胞中生物信息的表达受两种因素的调控:遗传调控提供了“生产’维持生命活动所必需的蛋白质的“蓝本”,而表观遗传调控则指导细胞怎样、何时和何地表达这些遗传信息。
表观遗传学研究的主要内容:DNA的甲基化,染色质的物理重塑和化学修饰,非编码RNA基因调节。
依赖ATP的染色质的重塑由ATP水解释放的能量可以使DNA和组蛋白的构象发生改变;包括DNA的甲基化和组蛋白N端尾巴上特殊位点的化学基团修饰,同样可以直按或间接地影响染色质的结构和功能。
二者之间相互渗透,相互作用,共同影响着染色质的结构和基因的表达。
此外,近些年发现转录组(transcriptome)中组有多种非编码RNA广泛参与基因表达调控,非编码RNA的基因调节也可属于表观遗传学的研究的范畴。
DNA甲基化的概况DNA的甲基化既可以发生在腺嘌呤的第6位氮原子上,也可以发生在胞嘧啶的第5位碳原子上。
*在真核生物中,DNA甲基化只发生在胞嘧啶第5位碳原子上。
真核DNA甲基化由DNA甲基转移酶(Dnmt, DNA methyltransferase)催化,S-腺苷甲硫氨酸(SAM, S-adenosyl methionine)作为甲基供体,将甲基转移到胞嘧啶上,生成5一甲基胞嘧啶(5-mC)。
在哺乳动物中,DNA甲基化主要发生在CpG双核苷酸序列,全部CG二核苷酸中约70%~80%的C是甲基化(mCpG), 所以CpG称为甲基化位点。
CG抑制:DNA中CG的排列出现的概率小于期望值1/16(A42+4=16),如人的基因组中CG排列小于1%,而非随机期望的约6%(1/16).基因组中的CpG位点并非均一分布。
在某些区域中(大约有300~3 000 bp),CpG位点出现的密度高(50%或更高),这些区域即所谓的CpG岛。
大部分CpG岛(>200bp, C+G含量=/>50%. CpG观测值/期望值=/>0.6) 位于基因的5’端,包括基因的启动子区域和第一外显子区,而且60%的人类(哺乳动物40%)基因组的启动子区都含有CpG岛(几乎所有管家基因都存在CpG岛),它们在基因表达调控中可能发挥着重要的作用。
表观遗传学试题

选择题表观遗传学主要研究的是哪种类型的遗传变化?A. DNA序列的改变B. 基因表达的可遗传变化,不涉及DNA序列的改变(正确答案)C. 染色体的数量变化D. 蛋白质的氨基酸序列变化下列哪项不是表观遗传学的常见研究内容?A. DNA甲基化B. 组蛋白修饰C. 非编码RNA的调控D. 基因突变(正确答案)DNA甲基化通常发生在DNA分子的哪个部位?A. 磷酸基团上B. 脱氧核糖上C. 碱基上的特定位置(正确答案)D. 氢键上组蛋白修饰中,哪种修饰通常与基因转录的激活相关?A. 甲基化B. 乙酰化(正确答案)C. 磷酸化D. 泛素化下列哪项不是非编码RNA在表观遗传调控中的作用?A. 参与基因转录的调控B. 影响染色体的结构C. 直接参与蛋白质的合成(正确答案)D. 调控基因的表达水平表观遗传标记是如何在细胞分裂过程中传递给子细胞的?A. 通过DNA复制过程直接传递B. 通过特定的酶催化过程传递(正确答案)C. 通过细胞质分裂传递D. 通过细胞间的直接接触传递下列哪种疾病与表观遗传学的改变密切相关?A. 先天性心脏病B. 糖尿病C. 癌症(正确答案)D. 遗传性失明在表观遗传学中,研究基因表达调控的“开关”机制通常涉及哪种分子?A. 转录因子B. 染色质蛋白(正确答案)C. 酶类D. 受体下列关于表观遗传学与经典遗传学的说法,哪项是正确的?A. 两者研究的内容完全相同B. 两者都是研究DNA序列变化的遗传学(正确答案:否)C. 表观遗传学关注基因表达的可遗传变化,不涉及DNA序列的改变;而经典遗传学主要研究DNA序列的改变(正确答案)D. 表观遗传学是经典遗传学的过时理论。
表观遗传学(研究生)2024新版

细胞分化与表观遗传关系探讨
01
细胞类型特异性基因表达
在细胞分化过程中,不同类型的细胞表达不同的基因组合。表观遗传修
饰通过调控基因表达的时空特异性,参与细胞类型特异性基因表达的建
立。
02
转录因子与表观遗传修饰的互作
转录因子能够结合特定基因的启动子区域,调控基因表达。转录因子与
表观遗传修饰酶(如DNA甲基转移酶和组蛋白修饰酶)相互作用,共
人工智能技术在表观遗传学中应用前景
利用人工智能技术进行表观遗传数据 分析:人工智能技术可以对大规模的 表观遗传数据进行自动化处理和分析 ,提高数据处理的效率和准确性。例 如,利用深度学习技术对表观遗传数 据进行特征提取和分类,可以更加准 确地识别与特定生物学过程或疾病相 关的表观遗传标记。
基于人工智能技术的表观遗传调控网 络构建:利用人工智能技术可以构建 更加精细和复杂的表观遗传调控网络 模型。这些模型可以模拟生物体内复 杂的表观遗传调控过程,帮助我们更 加深入地理解表观遗传调控的机制和 功能。
研究DNA甲基化的方法包括重亚硫酸 盐测序、甲基化特异性PCR、甲基化 敏感的限制性内切酶等。
DNA甲基化的作用
DNA甲基化在基因表达调控、X染色 体失活、基因组印记等方面发挥重要 作用。
组蛋白修饰
01
组蛋白修饰定义
组蛋白修饰是指通过改变组蛋白 的结构或功能来影响基因表达的 一种表观遗传修饰方式。
跨物种间表观遗传比较研究
不同物种间表观遗传修饰的保守性和差异性
不同物种间在表观遗传修饰上既存在保守性也存在差异性。通过比较不同物种间 表观遗传修饰的特点和规律,可以深入了解表观遗传调控的进化机制和生物学意 义。
表观遗传修饰在跨物种间的功能研究
表观遗传学(共49张PPT)

• 1. DNA自身通过复制传递遗传信息;
• 2. DNA转录成RNA; • 3. RNA自身能够复制 (RNA病毒);
• 4. RNA能够逆转录成DNA;
• 5. RNA翻译成蛋白质。
• 1939年,生物学家 Conrad Hal Waddington首先在《现代遗传学导论》
微小RNA(microRNA ,miRNA—单链)。
• RNA干扰(RNAi):是通过小RNA分子在mRNA水平上介导mRNA 的降解诱导特异性序列基因沉默的过程。
• 诱导染色质结构的改变,决定着细胞的分化命运,还对 外源的核酸序列有降解作用以保护本身的基因组。
21
2.长链非编码RNA (long noncoding RNA, lncRNA)
DXPas34 长度超过200bp;
DNA甲基化状态的保
持
11
• (一)DNMTs(DNA methyltransferases)
DNA甲基转移酶 结构特点:
-NH2末端调节结构域,介导胞核定位,调节与其他蛋白相互 作用。DNMT2无。
-COOH末端催化结构域,参与DNA甲基转移反应。 • 1.DNMT1
20
• 三、其他表观遗传过程
• (一)非编码RNA的表观遗传学
• 非编码RNA(non-protein-coding RNA,ncRNA)
• tRNA,rRNA;短链非编码RNA,长链非编码RNA。
• 短链RNA(又称小RNA),小干涉RNA(short interfering RNA ,siRNA—双链) 和
S-腺苷甲硫氨酸: S-adenosylmethionine,SAM S-腺苷同型半胱氨酸:S-adenosylhomocysteine,SAH
表观遗传学

表观遗传学
❖ 经典遗传学以研究基因序列影响生物学功能为核心相比, ❖ 表观遗传学主要研究这些“表观遗传现象”的建立和维持
的机制。
多少年来,基因一直被认为是生物有机体一代代相传的一个 并且仅有的一个遗传载体。越来越多的生物学家发现了一 个被称为表观遗传的现象------生物有机体后天获得的非遗 传变异有时可以被遗传下去。有详细记录的100个关于代 间表观遗传的例子,提示非基因遗传要比科学家们以前想 象的多得多。
其他例子 Rats whose agouti gene is unmethylated (i.e., expressed) have a yellow-ish coat color and are
表观遗传学

细胞中两条X染色体中的一条随机失活,这就是X染色 母猫身上有可能会是花花的,既有棕色又有黄色,而公猫只有一种颜色,棕色或者黄色。
表观遗传学是与遗传学相对应的概念。
体失活。而且,一旦这个细胞启动了对某一条X染色体 遗传学是指基于基因序列改变所致基因表达水平变化,如基因突变和基因杂合丢失等;
性染色体,但是为了保证X染色体上的基因表达剂量在 在雌性哺乳动物的体细胞中,两条X染色体中的一条总是被异染色质化而失活,这个现象称为X染色体失活。
三色猫背后的生物学机制
对于只有一条X染色体的公猫,它的毛色要么是黄白要么是棕白。
一个合适的范围内,在胚胎发育到原肠胚的时期,体 在雌性体细胞内,虽然有两条X性染色体,但是为了保证X染色体上的基因表达剂量在一个合适的范围内,在胚胎发育到原肠胚的时期
对于只有一条X染色体的公猫,它的毛色要么是黄白 要么是棕白。对于虽然有两条X染色体,但是毛色基 因一致的雌猫,毛色也是黄白或者棕白。只有杂合体 的雌猫,拥有两条X染色体,但是一条上面带的是黄 色毛基因,另一条上面则是棕色毛基因。在胚胎发育 的早期,已经形成了多细胞的阶段,两条X染色体要 失活一条,失活的X染色体浓缩成染色较深的染色质 体。有些细胞保留黄色毛基因所在的X染色体的活性, 而有些细胞保留棕色毛基因所在的X染色体的活性。 而且,这些细胞再分裂出来的子代细胞,都保持一样 的失活程序。最后出生的小猫,身上的花斑就是这里 一块是黄色那里一块是棕色,这是因为同一色的斑块 实际上都来自于同一个前体细胞,并保留相同的X染 色体失活的选择(图1)。
有些细胞保留黄色毛基因所在的X染色体的活性,而有些细胞保留棕色毛基因所在的X染色体的活性。
条有活性的X染色体。在雌性体细胞内,虽然有两条X 在雌性哺乳动物的体细胞中,两条X染色体中的一条总是被异染色质化而失活,这个现象称为X染色体失活。
表观遗传学

表观遗传学Epigenetics1.达尔文“自然选择”:过度繁殖、生存竞争、遗传和变异、适者生存2.表观遗传学:没有DNA序列的变化,可发生生物体表现型的可遗传的改变。
表观遗传学是在以孟德尔式遗传为理论基石的经典遗传学和分子遗传学母体中孕育的、专门研究基因功能实现的一种特殊机制的遗传学分支学科。
表观遗传研究进一步促进了遗传学和基因组学的研究。
3.染色质DNA或蛋白质的各种修饰(染色质水平的基因表达调控)DNA修饰;组蛋白修饰;RNA干扰;基因组印迹;X染色体失活。
4.DNA甲基化(DNA methylation)甲基化位点:CpG中胞嘧啶第5位碳原子。
DNA甲基转移酶。
甲基来源:一碳单位;S-腺苷蛋氨酸;环境和饮食因素:叶酸、B121)基因组DNA CpG:70%~80%甲基化状态,CpG甲基化与基因组稳定性相关。
2)CpG岛:CpG双核苷酸局部聚集,形成GC含量较高、CpG双核苷酸相对集中的区域。
CpG岛CpG多为非甲基化状态;CpG岛CpG甲基化与基因表达抑制相关。
3)CpG岛分类:转录起始点附近的CpG岛(TSS–CGIs),正常组织是非甲基化的,肿瘤组织发生甲基化,与转录抑制相关。
转录起始点外的CpG岛(non-TSS CpG),正常组织:通常呈高度的甲基化。
肿瘤组织:甲基化程度降低,程度与患病程度相关。
4)CpG岛的分析:长度大于200 bp、GC含量大于50%、CpG含量与期望含量之比大于0.6的区域。
5)DNA甲基化转移酶DNMT:DNMT1:催化子链DNA半甲基化位点甲基化,维持复制过程中甲基化位点的遗传稳定性.DNMT3a和DNMT3b:催化从头甲基化,以非甲基化的DNA为模板,催化新的甲基化位点形成.6)甲基来源:S-腺苷蛋氨酸(胞嘧啶甲基化供体、蛋氨酸是必需氨基酸),一碳单位叶酸:参与一碳单位代谢,间接提供甲基。
补充S-腺苷蛋氨酸。
叶酸摄入不足时可导致DNA低甲基化。
7)DNA甲基化抑制基因转录的机制①直接抑制基因表达:启动子区CpG序列甲基化,影响转录激活因子与启动子识别结合。
第十六章-表观遗传学(答)

第十一章表观遗传学一、名词解释epigenetics;human epigenome project,HEP;histone code一、A 型题1、脆性X综合征是何基因发生重新甲基化而沉默导致?(D)A.H19基因 B.MeCP2基因 C.IGF2基因 D. FMR1基因2.对表观遗传的生物学意义的表述错误的是(D)A、补充了“中心法则”,阐明核酸并不是存储遗传信息的唯一载体。
B、“表观遗传修饰”可以影响基因的转录和翻译。
C、表观遗传学修饰的可遗传性在基因和环境的共同作用中起重要作用。
D、“表观遗传修饰”不能在个体世代间遗传。
3、Prader-Willi(PWS)综合征是由于印记基因缺失引起。
(A)A、父源15q11-q13 缺失B、母源15q11-q13 缺失C、父源和母源15q11-q13 缺失D、父源11P15.5缺失4、Amgelman(AS)综合征是由于印记基因缺失引起。
(B)A、父源15q11-q13 缺失B、母源15q11-q13 缺失C、父源和母源15q11-q13 缺失D、父源11P15.5缺失5、表观遗传学三个层面的含义不包括:(D)A、可遗传性,可在细胞或个体世代间遗传;B、基因表达的可变性;C、无DNA序列的变化。
D、可遗传性,可在细胞世代间遗传但不可在个体世代间遗传;6、siRNA相关沉默修饰的作用机制是:( A )A.与靶基因互补而降解靶基因 B.抑制靶mRNA 翻译C.去除靶mRNA的多聚腺苷酸尾巴,使其被3‘核酸外切酶水解D.互补而降解靶基因和抑制靶mRNA 翻译E.去除靶mRNA的多聚腺苷酸尾巴,使其被3‘核酸内切酶水解二、多选题1、表观遗传学信息主要包括等。
(A、B、C、D)A.DNA甲基化 B. 组蛋白修饰 C. RNA相关沉默 D. 遗传印记 E 以上都不是2、表观遗传的生物学意义包括。
(A、B、C、E)A.补充了“中心法则” B.表观遗传修饰可以影响基因的正常转录和翻译C.表观遗传修饰可以影响个体发育,而且可以遗传D. 表观遗传修饰可以影响个体发育,但不可以遗传E.表观遗传学修饰在基因和环境的相互作用中起重要作用3、肿瘤异常的DNA甲基化主要特点(A、B)A、肿瘤局部相关基因的高甲基化B、肿瘤中整体的低甲基化C、肿瘤局部相关基因的低甲基化D、肿瘤中整体的高甲基化E、肿瘤局部相关基因和肿瘤中整体基因均低甲基化4、表观遗传学三个层面的含义包括:(B、C、E)A、可遗传性,可在细胞世代间遗传但不可在个体世代间遗传。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第十一章表观遗传学
一、名词解释
epigenetics;
human epigenome project,HEP;
histone code
一、A 型题
1、脆性X综合征是何基因发生重新甲基化而沉默导致?(D)
A.H19基因 B.MeCP2基因 C.IGF2基因 D. FMR1基因
2.对表观遗传的生物学意义的表述错误的是(D)
A、补充了“中心法则”,阐明核酸并不是存储遗传信息的唯一载体。
B、“表观遗传修饰”可以影响基因的转录和翻译。
C、表观遗传学修饰的可遗传性在基因和环境的共同作用中起重要作用。
D、“表观遗传修饰”不能在个体世代间遗传。
3、Prader-Willi(PWS)综合征是由于印记基因缺失引起。
(A)
A、父源15q11-q13 缺失
B、母源15q11-q13 缺失
C、父源和母源15q11-q13 缺失
D、父源11P15.5缺失
4、Amgelman(AS)综合征是由于印记基因缺失引起。
(B)
A、父源15q11-q13 缺失
B、母源15q11-q13 缺失
C、父源和母源15q11-q13 缺失
D、父源11P15.5缺失
5、表观遗传学三个层面的含义不包括:(D)
A、可遗传性,可在细胞或个体世代间遗传;
B、基因表达的可变性;
C、无DNA序列的变化。
D、可遗传性,可在细胞世代间遗传但不可在个体世代间遗传;
6、siRNA相关沉默修饰的作用机制是:( A )
A.与靶基因互补而降解靶基因 B.抑制靶mRNA 翻译
C.去除靶mRNA的多聚腺苷酸尾巴,使其被3‘核酸外切酶水解
D.互补而降解靶基因和抑制靶mRNA 翻译
E.去除靶mRNA的多聚腺苷酸尾巴,使其被3‘核酸内切酶水解
二、多选题
1、表观遗传学信息主要包括等。
(A、B、C、D)
A.DNA甲基化 B. 组蛋白修饰 C. RNA相关沉默 D. 遗传印记 E 以上都不是2、表观遗传的生物学意义包括。
(A、B、C、E)
A.补充了“中心法则” B.表观遗传修饰可以影响基因的正常转录和翻译
C.表观遗传修饰可以影响个体发育,而且可以遗传
D. 表观遗传修饰可以影响个体发育,但不可以遗传
E.表观遗传学修饰在基因和环境的相互作用中起重要作用
3、肿瘤异常的DNA甲基化主要特点(A、B)
A、肿瘤局部相关基因的高甲基化
B、肿瘤中整体的低甲基化
C、肿瘤局部相关基因的低甲基化
D、肿瘤中整体的高甲基化
E、肿瘤局部相关基因和肿瘤中整体基因均低甲基化
4、表观遗传学三个层面的含义包括:(B、C、E)
A、可遗传性,可在细胞世代间遗传但不可在个体世代间遗传。
B、基因表达的可变性。
C、无DNA序列的变化。
D、可遗传性,可在个体世代间遗传但不可在细胞世代间遗传。
E、可遗传性,可在细胞或个体世代间遗传。
5、DNA甲基化的生物学意义有(A、C)
A、DNA甲基化可抑制基因的活化状态
B、抑癌基因启动子区的高甲基化造成基因活化;
C、抑癌基因启动子区的高甲基化造成基因沉默;
D、DNA甲基化可激活基因
E、抑癌基因启动子区的去甲基化造成基因沉默;
6、miRNA沉默修饰的作用机制是:(A;B;C )
A.互补而降解靶基因 B.抑制靶mRNA 翻译
C.去除靶mRNA的多聚腺苷酸尾巴,使其被3‘核酸外切酶水解
D.互补而降解靶基因和抑制靶mRNA 翻译
E.去除靶mRNA的多聚腺苷酸尾巴,使其被3‘核酸内切酶水解
三、填空题
1、1、表观遗传学信息主要包括、、和等。
(DNA甲基化、组蛋白修饰、 RNA相关沉默、遗传印记)
2、表观遗传学信息可为蛋白质制造者提供、、以及行使
遗传信息的指令。
(何时;何地;何种方式)
3、组蛋白在翻译后的修饰中会发生改变,发生组蛋白、和,由此构成多种多样的组蛋白密码。
(乙酰化、甲基化和磷酸化)
四、问答题
1、简述肿瘤异常的DNA甲基化主要特点。
2、表观遗传学的信息的内容?
3、短链非编码RNA作用机制?
4、表观遗传的生物学意义?
5、表观遗传学信息的意义?。