动力学基础讲义

动力学基础讲义
动力学基础讲义

1. 动力学概述

结构动力学是结构力学的一个分支,着重研究结构对于动荷载的响应(如位移、应力等的时间历程),以便确定结构的承载能力和动力学特性,或为改善结构的性能提供依据。

1.1 结构动力体系

当荷载不同时,结构体系对于荷载要考虑的结构特征也随之变化。质量作为结构的固有属性,分析动力问题时,因为质量的存在,会在结构中产生惯性力。

1.2 动载的定义和分类

荷载的定义:作用在结构上的主动力。三要素:大小、方向和作用点。

荷载按照不同的要素可以有不同的分类:

作用时间:恒载活载

作用位置:固定荷载移动荷载

对结构产生的效应:静荷载动荷载

静荷载:大小、方向和作用点不随时间变化或变化很缓慢的荷载。

动荷载:大小、方向或作用点随时间变化很快的荷载。

快慢标准:是否会使结构产生显著的加速度。

显著标准:质量运动加速度所引起的惯性力与荷载相比是否可以忽略。

动荷载分类

确定性荷载:荷载的变化是时间的确定性函数。

例如:简谐荷载、冲击荷载、突加荷载等

非确定性荷载:荷载随时间的变化是不确定的或不确知的,又称为随机荷载。

例如:风荷载、地震荷载等

1.3 动力问题的基本特性

与结构静力学相比,动力学的复杂性表现在:

(1)动力问题具有随时间而变化的性质;

(2)数学解答不是单一的数值,而是时间的函数;

(3)惯性力是结构内部弹性力所平衡的全部荷载的一个重要部分;

(4)引入惯性力后涉及到二阶微分方程的求解;

(5)需考虑结构本身的动力特性:刚度分布、质量分布、阻尼特性分布的影响。

1.4 离散化方法

1.4.1 集中质量法

概念:把结构的分布质量按一定的规则集中到结构的某个或某些位置上,成为一系列离散的质点或质量块。

适用范围:大部分质量集中在若干离散点上的结构。

举例:

(1)房屋结构一般简化为层间剪切模型。

(2)简支梁结构

1.4.2 广义位移法

1.4.3 有限元法

1.5 运动方程的建立

运动方程:在结构动力分析中,描述体系质量运动规律的数学方程,称为体系的运动微分方程,简称运动方程。

运动方程的重要性:

运动方程的解揭示了体系在各自由度方向的位移随时间变化的规律。

建立运动方程是求解结构振动问题的重要基础。

常用的方法有:直接平衡法、虚功法、变分法。

直接平衡法,又称动静法,将动力学问题转化为任一时刻的静力学问题:根据达朗贝尔原理,把惯性力作为附加的虚拟力,并考虑阻尼力、弹性力和作用在结构上的外荷载,使体系处于动力平衡条件,按照静力学中建立平衡方程的思路,直接写出运动方程。

虚功法: 根据虚功原理,即作用在体系上的全部力在虚位移上所做的虚功总和为零的条件,导出以广义坐标表示的运动方程。

变分法: 通过对表示能量关系的泛函的变分建立方程。根据理论力学中的哈密顿原理或其等价形式的拉格朗日方程导出以广义坐标表示的运动方程。

2. 运动方程的建立

单自由度体系

对于单自由度体系模型

质量块m ,用来表示结构的质量和惯性特性;

自由度只有一个:水平位移y(t);

无重弹簧,刚度为 k ,提供结构的弹性恢复力;

无重阻尼器,阻尼系数c ,表示结构的能量耗散,提供结构的阻尼力;

随时间变化的荷载F(t)。

(1)建立计算模型

(2)取质点为隔离体画平衡力系

(3)建立平衡方程

()I D S F F F F t ++=

3. 自由振动反应

3.2 无阻尼自由振动

运动方程:0mv

kv += ; 通解:12()i t i t v t G e G e ωω-=+;

引人欧拉方程:cos sin i t

e t i t ωωω±=±; 得到无阻尼自由振动的位移反应:()sin cos v t A t B t ωω=+;

A 和

B 是由初始条件决定的常数。

代入初始条件:0(0)v v = 0(0)v

v = 得到单自由度无阻尼体系运动方程的解:00()sin cos v

v t t v t ωωω=+ ,

或者写成:()cos()v t t ρωθ=-。ρ=,00arctan v v θω= 。 振动波形:

3.3阻尼自由振动

运动方程:0mv

cv kv ++= ;

特征方程:220c s s m ω++=,2c s m =- 当c 的取值变化时,对应的振动情况是不同的,可以分成以下三种情况,临界阻尼体系、低阻尼体系、超阻尼体系。

3.3.1 临界阻尼体系

当根式中的值为零时,对应的阻尼值称为临界阻尼,记作Cc 。显然,应有Cc/2m=w ,即:2c c m ω=。

临界阻尼自由振动方程的解为:12()()t v t G G t e ω-=+

3.3.2 低阻尼体系

3.3.3 超阻尼体系

4. 谐荷载反应

4.1 无阻尼体系

4.2 阻尼体系

4.3 共振反应

5. 对周期性荷载的反应

6. 对冲击荷载的反应

7. 对一般荷载的反应

《结构力学》期末考试试卷(A、B卷-含答案)解析

***学院期末考试试卷 一、 填空题(20分)(每题2分) 1.一个刚片在其平面内具有 3 个自由度; 一个点在及平面内具有 2 自由 度;平面内一根链杆自由运动时具有 3 个自由度。 2.静定结构的内力分析的基本方法 截面法,隔离体上建立的基本方程是 平衡方程 。 3.杆系结构在荷载,温度变化,支座位移等因素作用下会产生 变形 和 位移 。 4.超静定结构的几何构造特征是 有多余约束的 几何不变体系 。 5.对称结构在对称荷载作用下,若取对称基本结构和对称及反对称未知力,则其 中 反对称 未知力等于零。 6.力矩分配法适用于 没有侧移未知量的超静定梁与刚架 。 7.绘制影响线的基本方法有 静力法 法和 机动法 法。 8.单元刚度矩阵的性质有 奇异性 和 对称性 。 9.结构的动力特性包括 结构的自阵频率;结构的振兴型; 结构的阻尼 。 10. 在自由振动方程0)()(2)(2. .. =++t y t y t y ωξω式中,ω称为体系的 自振频率 ,ξ称为 阻尼比 。

二、试分析图示体系的几何组成(10分) (1)(2)答案: (1)答:该体系是几何不变体系且无余联系。 (2)答:该体系是几何不变体系且无多余联系。 三、试绘制图示梁的弯矩图(10分) (1)(2) 答案: (1)(2) M图 四、简答题(20分) 1.如何求单元等效结点荷载?等效荷载的含义是什么?答案: 2.求影响线的系数方程与求内力方程有何区别? 答案: 3.动力计算与静力计算的主要区别是什么? 答案:

4.自由振动的振幅与那些量有关? 答案 五、计算题(40分) 1、用图乘法计算如图所示简支梁A 截面的转角A 。已知EI=常量。(10分) 答案: 解:作单位力状态,如图所示。分别作出p M 和M 图后,由图乘法得: 2.试作图示伸臂量的By F K M 的影响线。 答案: By F 的影响线 K M 的影响线

机械设计基础第十四章 机械系统动力学

第十四章 机械系统动力学 14-11、在图14-19中,行星轮系各轮齿数为123z z z 、、,其质心与轮心重合,又齿轮1、2对质心12O O 、的转动惯量为12J J 、,系杆H 对的转动惯量为H J ,齿轮2的质量为2m ,现以齿轮1为等效构件,求该轮系的等效转动惯量J ν。 2222 2121221 12323121 13212 1 13222 12311212213121313 ( )()()()1()()()( )()()()o H H H o H J J J J m z z z z z z z z z O O z z z z z z z O O J J J J m z z z z z z z z νννωωω ωωωω ωω ωωωωνω=+++=-= += +=+-=++++++解: 14-12、机器主轴的角速度值1()rad ?从降到时2()rad ?,飞轮放出的功 (m)W N ,求飞轮的转动惯量。 max min 122 2 121 ()2 2F F Wy M d J W J ?ν??ωωωω==-=-? 解: 14-15、机器的一个稳定运动循环与主轴两转相对应,以曲柄和连杆所组成的转动副A 的中心为等效力的作用点,等效阻力变化曲线c A F S ν-如图14-22所示。等效驱动力a F ν为常数,等效构件(曲柄)的平均角速度值25/m rad s ?=, 3 H 1 2 3 2 1 H O 1 O 2

不均匀系数0.02δ=,曲柄长度0.5OA l m =,求装在主轴(曲柄轴)上的飞轮的转动惯量。 (a) W v 与时间关系图 (b )、能量指示图 a 2 24()2 3015m Wy=25N m 25 6.28250.02 c va OA vc OA OA va F W W F l F l l F N Mva N J kg m νν=∏?∏=∏+==∏= =?解:稳定运动循环过程 14-17、图14-24中各轮齿数为12213z z z z =、,,轮1为主动轮,在轮1上加力矩1M =常数。作用在轮 2 上的阻力距地变化为: 2r 22r 020M M M ??≤≤∏==∏≤≤∏=当时,常数;当时,,两轮对各自中心的转动惯量为12J J 、。轮的平均角速度值为m ω。若不均匀系数为δ,则:(1)画出以轮1为等效构件的等效力矩曲线M ν?-;(2)求出最大盈亏功;(3)求飞轮的转动惯量F J 。 图14-24 习题14-17图 40Nm 15∏ 12.5∏ 22.5∏ 15Nm ∏ 2∏ 2.5∏ 4∏ 25∏ 1 1 z 2 z 2 r M 2 M ∏ 2∏ 2?

基于系统动力学的物流系统研究

基于系统动力学的物流系统研究 摘要:本文将系统动力学方法应用于物流运输这个复杂的系统当中,建立模型,对现实情况进行模拟,以期为物流企业提供定量的可持续发展预测分析,达到辅助企业科学决策的目的,引导物流企业沿着正确的方向发展壮大,提高物流企业生存竞争的能力,并进一步促进物流企业管理的科学化与现代化。 关键词:系统动力学;物流系统;管理科学 中图分类号:F252 文献标识码:A 文章编号:1006-4311(2010)08-0018-02 0 引言 系统动力学(system dynamics),简称SD,是一种以反馈控制理论为基础,以数字计算机仿真技术为手段的研究复杂社会经济系统的定量方法。[1]由美国麻省理工学院史隆管理学院JAY W.FORRESTER教授于创立,是一种研究大系统的计算机仿真方法。系统动力学模型的一大特点是能作长期的、动态的、战略性的定量分析研究。[2]通过计算机实验的方法来研究战略与策略,因此被誉为“战略与策略实验室”。系统动力学创造至今,在人口、经济、环境、能源、教育等领域都得到了广泛应用。[3]近些年来物流业在中国得到了前所未有的发展,物流活动的一个显著特征就是系统性,通过将系统动力学应用于物流系统领域,可以较为深入地从定性和定量的角度分析物流活动的动态发展运行机制,进而对制定物流决策提供辅助和参考。有学者甚至提出了“物流系统动力学”的边缘学科概念,以阐释将系统动力学引入物流系统分析领域的可能性和必要性。 本文就是将系统动力学应用于物流系统中,尝试建立物流系统的系统动力学模型,并进行仿真,进而为物流决策提供辅助和参考。 1 模型的建立 整个供应链包括生产商、物流公司和顾客,而我们研究的是物流系统,因此将其从供应链中分离出来。站在一个物流企业的角度分析整个物流系统。一个企业取得收益是最重要的目标,而利益是收入与成本之差,对于一个物流企业的收入就是将物资配送至目的地从而取得利益;而物流企业的成本包括配送费用和仓储费用,配送费用即物流公司用汽车、飞机等交通工具将客户的货物送至目的地的费用,仓储费用即物流公司用仓库存放货物而产生的费用。 在系统分析的过程中发现,仓库数是整个物流系统中很重要的一个指标,它直接关系到物流公司的收益。随着仓库数的增多,可以缩短客户响应时间,提高客户服务水平,因此会使物流企业的周转率提高从而提高收入,对整个企业的收益起正面作用;但是从另一个方面考虑,随着仓库数量的增加使得配送费用和仓储费用都提高了,从而使成本提高,对整个企业的收益起负面作用。因此仓库数是一个重要的指标。 根据系统分析的结果我们建立起因果关系。如因果关系所示,收益与收入成正向增长,与成本成负向增长,收入与仓库数为正因果关系;配送费用和仓储费用均与成本为正因果关系,配送量与配送费用同向增长,而仓库数与配送费用和仓储费用同向增长。 增加仓库数量可缩短客户响应时间,提高客户服务水平,从而提高周转率,增加一个仓库到底能缩短多少客户响应时间,使周转率能提高多少,很难一概而论,但是在物流行业有仓库销售率这一指标,它的含义是每增加一个仓库每个月能够带来的收入有多少。而成本方面有配送成本和仓储成本,配送成本受运输费

结构力学期末试题及答案

结构力学期末试题及答案 一、 选择题:(共10题,每题2分,共20分) 如图所示体系的几何组成为 。 (A )几何不变体系,无多余约束 (B )几何不变体系,有多余约束 (C )几何瞬变体系 (D )几何常变体系 第1题 2.图示外伸梁,跨中截面C 的弯矩为( ) A.7kN m ? B.10kN m ? C .14kN m ? D .17kN m ? 第2题 3.在竖向荷载作用下,三铰拱( ) A.有水平推力 B.无水平推力 C.受力与同跨度、同荷载作用下的简支梁完全相同 D.截面弯矩比同跨度、同荷载作用下的简支梁的弯矩要大 4.在线弹性体系的四个互等定理中,最基本的是( ) A.位移互等定理 B.反力互等定理 C.位移反力互等定理 D.虚功互等定理 5.比较图(a)与图(b)所示结构的内力与变形,叙述正确的为( ) A.内力相同,变形不相同 B.内力相同,变形相同 C.内力不相同,变形不相同 D.内力不相同,变形相同

第5题 6.静定结构在支座移动时,会产生( ) A.内力 B.应力 C. 刚体位移 D.变形 。 7.图示对称刚架,在反对称荷载作用下,求解时取半刚架为( ) A.图(a ) B.图(b ) C.图(c ) D.图(d ) 题7图 图(a ) 图(b ) 图(c ) 图(d ) 8.位移法典型方程中系数k ij =k ji 反映了( ) A.位移互等定理 B.反力互等定理 C.变形协调 D.位移反力互等定理 9.图示结构,各柱EI=常数,用位移法计算时,基本未知量数目是( ) A .2 B .4 C .6 D .8 第9题 第10题 10.FP=1在图示梁AE 上移动,K 截面弯矩影响线上竖标等于零的部分为( ) A .DE 、AB 段 B .CD 、DE 段 C .AB 、BC 段 D .BC 、CD 段 二、填空题:(共10题,每题2分,共20分) 1.两刚片用一个铰和_________________相联,组成无多余约束的几何不变体系。 2.所示三铰拱的水平推力FH 等于_______________。 q q (a) (b)

系统动力学课程论文

基于系统动力学对企业效率与员工之间关系的研究 摘要;企业效率不高的原因主要有:员工报酬不合理、工作量的多少、考核制度不规范、员工工作上的应付心理、企业成员之间间目标的不一致等。提高企业工作效率,要分清工作的轻重缓急;鼓励工作效果,兼顾工作过程;让员工了解工作的全部;进行企业薪酬体系设计,实现福利和薪酬;提高员工的精神激励,使工作效率在员工价值实现的过程中得以提高 关键词:系统动力学;企业效率;薪资变化;企业与员工;工作意识 1.研究背景。 提高企业工作效率就是要以最少的人力物力资源实现既定目标,在激烈的市场竞争中,提升企业市场竞争力。调查表明,我国企业员工实际的工作效率不足他们能达到的 50%,只是干满他们的工作时间,而没有尽力发挥他们的智慧去高效工作企业员工身上有很大的潜能可挖,员工能够比他们现在做得更好。如何提高员工的工作效率,使高效率地工作成为员工的工作习惯,已成为每一个企业管理实践中经常遇到的问题,这些的理论基础和经济背景各不相同,但有一个共同的核心思想或基本假设:员工的劳动效率与工资水平呈正向关系,生产率高的员工会得到高工资。工资依赖于员工的生产率,员工的生产率也依赖于工资,工资的高低可以影响企业员工的人数、辞职率、工作士气和对企业的忠诚等,追求利润最大化的企业存在很强的愿望去按生产率来选择效率员工。怎样把员工薪资与企业员工的绩效管理有机结合,相互促进,提出新思路和新建议,为提高企业效率,提升员工绩效管理水平提供思路和建议。 2.建立企业员工工作效率的流率基本入树模型 2.1确定流位流率系 在研究整个系统的的基础上,更具系统动力学级控制原理,按企业与员工之间的关系将主要影响因素将系统分为人口变化量、员工薪资、产工作量、企业效率、企业福利。并设计五个流位流率如下(其中,Li(t)(i=1、2…5)表示流位变量,Rj(t)(j=1、2…..5)表示留联系变量)。 人口数子系统:L1(t)、R1(t)人口数及其改变量 员工薪资子系统:L2(t)、R2(t)员工薪资及其改变量 工作量子系统:L3(t)、R3(t)工作量及其改变量 企业效率子系统:L4(t)、R14(t)企业效率及其改变量 企业福利子系统:L5(t)、R5(t)企业福利及其改变量 从而得到整个系统的流位流率系: { [L1(t),R1(t)],[L2(t),R2(t)],[L3(t),R3(t)],[L4(t),R4(t)],[L5(t),R5(t)。 2.2 建立二部分图及建立流率基本入树模型 在对系统中所有流位和流率变量之间的内在关系进行定性分析的基础上,根据系统动力学流位变量控制流率变量的建模思想,得到流位控制流率的定性分析二部分图

结构力学期末复习题答案

《结构力学》期末复习题答案 一. 判断题:择最合适的答案,将A、B、C或者D。 1.图1-1所示体系的几何组成为。 (A)几何不变体系,无多余约束(B)几何不变体系,有多余约束 (C)几何瞬变体系(D)几何常变体系 图1-1 答:A。 分析:取掉二元体,结构变为下图 DE,DG和基础为散刚片,由三铰两两相连,三铰不交一点,所以组成几何不变体系,无多余约束,因此答案为(A) 2.图1-2所示体系的几何组成为。 (A)几何不变体系,有多余约束(B)几何不变体系,无多余约束 (C)几何瞬变体系(D)几何常变体系 图1-2 答:A。

图中阴影三角形为一个刚片,结点1由两个链杆连接到刚片上,结点2由两个链杆连接到刚片上,链杆12为多余约束,因此整个体系为有一个多余约束的几何不变体系,因此答案为(A) 3.图1-3所示体系的几何组成为。 (A)几何不变体系,有多余约束(B)几何不变体系,无多余约束 (C)几何瞬变体系(D)几何常变体系 图1-3 答:A。 如果把链杆12去掉,整个体系为没有多余约束的几何不变体系,所以原来体系为有一个多余约束的几何不变体系,因此答案为(A) 4.图1-4所示体系的几何组成为。 (A)几何不变体系,无多余约束(B)几何不变体系,有多余约束 (C)几何瞬变体系(D)几何常变体系 图1-4 答:A。

刚片1478由不交一点的三个链杆连接到基础上,构成了扩大的地基,刚片365再由不交一点的三个链杆连接到地基上,因此整个体系为没有多余约束的几何不变体系,因此答案为(A ) 5.图1-5所示的斜梁AB 受匀布荷载作用,0≠θ,B 点的支座反力与梁垂直,则梁的轴力 (A )全部为拉力 (B )为零 (C )全部为压力 (D )部分为拉力,部分为压力 图1-5 答:C 。 B 点支座反力与梁垂直,对梁的轴力没有贡献,竖直方向匀布荷载总是使AB 梁受压,因此答案为( C )。 6.图1-6所示结构C 点有竖直方向集中荷载作用,则支座A 点的反力为 图1-6 (A )() ↑P F (B )。 (C ) () ↑P F 31 (D )()↑P F 3 2 答:B 。 根据B 点弯矩为零,知道A 点反力为零,因此答案为(B ) 7.图1-7标示出两结构几何尺寸和受载状态,她们的内力符合 (A )弯矩相同,轴力不同,剪力相同 (B )弯矩相同,轴力不同,剪力不同 (C )弯矩不同,轴力相同,剪力不同 (D )弯矩不同,轴力相同,剪力相同

系统动力学(自己总结)

系统动力学 1.系统动力学的发展 系统动力学(简称SD—system dynamics)的出现于1956年,创始人为美国麻省理工学院的福瑞斯特教授。系统动力学是福瑞斯特教授于1958年为分析生产管理及库存管理等企业问题而提出的系统仿真方法,最初叫工业动态学。是一门分析研究信息反馈系统的学科,也是一门认识系统问题和解决系统问题的交叉综合学科。从系统方法论来说:系统动力学是结构的方法、功能的方法和历史的方法的统一。它基于系统论,吸收了控制论、信息论的精髓,是一门综合自然科学和社会科学的横向学科。 系统动力学的发展过程大致可分为三个阶段: 1)系统动力学的诞生—20世纪50-60年代 由于SD这种方法早期研究对象是以企业为中心的工业系统,初名也就叫工业动力学。这阶段主要是以福雷斯特教授在哈佛商业评论发表的《工业动力学》作为奠基之作,之后他又讲述了系统动力学的方法论和原理,系统产生动态行为的基本原理。后来,以福雷斯特教授对城市的兴衰问题进行深入的研究,提出了城市模型。 2)系统动力学发展成熟—20世纪70-80 这阶段主要的标准性成果是系统动力学世界模型与美国国家模型的研究成功。这两个模型的研究成功地解决了困扰经济学界长波问题,因此吸引了世界范围内学者的关注,促进它在世界范围内的传播与发展,确立了在社会经济问题研究中的学科地位。 3)系统动力学广泛运用与传播—20世纪90年代-至今 在这一阶段,SD在世界范围内得到广泛的传播,其应用范围更广泛,并且获得新的发展.系统动力学正加强与控制理论、系统科学、突变理论、耗散结构与分叉、结构稳定性分析、灵敏度分析、统计分析、参数估计、最优化技术应用、类属结构研究、专家系统等方面的联系。许多学者纷纷采用系统动力学方法来研究各自的社会经济问题,涉及到经济、能源、交通、环境、生态、生物、医学、工业、城市等广泛的领域。 2.系统动力学的原理 系统动力学是一门分析研究信息反馈系统的学科。它是系统科学中的一个分支,是跨越自然科学和社会科学的横向学科。系统动力学基于系统论,吸收控制论、信息论的精髓,是一门认识系统问题和解决系统问题交叉、综合性的新学科。从系统方法论来说,系统动力学的方法是结构方法、功能方法和历史方法的统一。 系统动力学是在系统论的基础上发展起来的,因此它包含着系统论的思想。系统动力学是以系统的结构决定着系统行为前提条件而展开研究的。它认为存在系统内的众多变量在它们相互作用的反馈环里有因果联系。反馈之间有系统的相

系统动力学模型案例分析

系统动力学模型介绍 1.系统动力学的思想、方法 系统动力学对实际系统的构模和模拟是从系统的结构和功能两方面同时进行的。系统的结构是指系统所包含的各单元以及各单元之间的相互作用与相互关系。而系统的功能是指系统中各单元本身及各单元之间相互作用的秩序、结构和功能,分别表征了系统的组织和系统的行为,它们是相对独立的,又可以在—定条件下互相转化。所以在系统模拟时既要考虑到系统结构方面的要素又要考虑到系统功能方面的因素,才能比较准确地反映出实际系统的基本规律。系统动力学方法从构造系统最基本的微观结构入手构造系统模型。其中不仅要从功能方面考察模型的行为特性与实际系统中测量到的系统变量的各数据、图表的吻合程度,而且还要从结构方面考察模型中各单元相互联系和相互作用关系与实际系统结构的一致程度。模拟过程中所需的系统功能方面的信息,可以通过收集,分析系统的历史数据资料来获得,是属定量方面的信息,而所需的系统结构方面的信息则依赖于模型构造者对实际系统运动机制的认识和理解程度,其中也包含着大量的实际工作经验,是属定性方面的信息。因此,系统动力学对系统的结构和功能同时模拟的方法,实质上就是充分利用了实际系统定性和定量两方面的信息,并将它们有机地融合在一起,合理有效地构造出能较好地反映实际系统的模型。 2.建模原理与步骤

(1)建模原理 用系统动力学方法进行建模最根本的指导思想就是系统动力学的系统观和方法论。系统动力学认为系统具有整体性、相关性、等级性和相似性。系统内部的反馈结构和机制决定了系统的行为特性,任何复杂的大系统都可以由多个系统最基本的信息反馈回路按某种方式联结而成。系统动力学模型的系统目标就是针对实际应用情况,从变化和发展的角度去解决系统问题。系统动力学构模和模拟的一个最主要的特点,就是实现结构和功能的双模拟,因此系统分解与系统综合原则的正确贯彻必须贯穿于系统构模、模拟与测试的整个过程中。与其它模型一样,系统动力学模型也只是实际系统某些本质特征的简化和代表,而不是原原本本地翻译或复制。因此,在构造系统动力学模型的过程中,必须注意把握大局,抓主要矛盾,合理地定义系统变量和确定系统边界。系统动力学模型的一致性和有效性的检验,有一整套定性、定量的方法,如结构和参数的灵敏度分析,极端条件下的模拟试验和统计方法检验等等,但评价一个模型优劣程度的最终标准是客观实践,而实践的检验是长期的,不是一二次就可以完成的。因此,一个即使是精心构造出来的模型也必须在以后的应用中不断修改、不断完善,以适应实际系统新的变化和新的目标。 (2)建模步骤 系统动力学构模过程是一个认识问题和解决问题的过程,根据人们对客观事物认识的规律,这是一个波浪式前进、螺旋式上升的过程,因此它必须是一个由粗到细,由表及里,多次循环,不断深化的过程。系统动力学将整个构模过程归纳为系统分析、结构分析、模型建立、模型试验和模型使用五大步骤这五大步骤有一定的先后次序,但按照构模过程中的具体情况,它们又都是交叉、反复进行的。 第一步系统分析的主要任务是明确系统问题,广泛收集解决系统问题的有关数据、资料和信息,然后大致划定系统的边界。 第二步结构分析的注意力集中在系统的结构分解、确定系统变量和信息反馈机制。 第三步模型建立是系统结构的量化过程(建立模型方程进行量化)。 第四步模型试验是借助于计算机对模型进行模拟试验和调试,经过对模型各种性能指标的评估不断修改、完善模型。 第五步模型使用是在已经建立起来的模型上对系统问题进行定量的分析研究和做各种政策实验。 3.建模工具 系统动力学软件VENSIM PLE软件 4.建模方法 因果关系图法 在因果关系图中,各变量彼此之间的因果关系是用因果链来连接的。因果链是一个带箭头的实线(直线或弧线),箭头方向表示因果关系的作用方向,箭头旁标有“+”或“-”号,分别表示两种极性的因果链。

基于系统动力学的工程项目管理应用

项目管理,现在被广泛地应用在社会经济活动的各个领域和总分。但是由于项目管理者的经验和内外界因素复杂的变化,而导致的项目成本超支、时间拖延的现象比比皆是。在项目执行的过程中,经常有反直觉的案例产生,如软件项目开发中的布鲁克斯法则,即在一个已经延迟的项目中增加新的员工将导致项目的完成时间更晚。项目通常都是进行得很顺利,但是经常存在到项目后期甚至近乎结束时才发现一些应该在早期就解决的错误,而这就导致了项目的返工、加班和延误,影响项目成本及周期。 1系统动力学与项目管理的结合应用 系统动力学(SystemDynamics)是一门研究分析信息反馈系统的学科,其作为一种系统的建模理论,能够定性与定量地分析研究系统,从系统的微观结构处人手来构建系统的基本结构,进而模拟与分析系统的动态行为。现在国内外的学者,将系统动力学广泛的应用在各个领域,如用于分析价格和产品战略,在资本品行业的实用性;新药品的市场动态和困难,选择一个合适的市场进入战略研究;学习曲线理论创新实施检验时,组织政策等,其中,项目管理也是系统动力学的一个主要应用领域。 为什么要使用建模的方式来研究项目管理?一些专业人员包括项目管理者,都不擅长处理一个复杂系统内的动态反馈关系,毕竟对项目的关注度、了解程度及信息的充分性都有一定的约束,所以,人们面对这样复杂系统做出的解读和判断经常会产生错误。电脑建模的方式,能够很好地克服这些制约,因为模型可以由多人参与建立,模型能够同时处理多个内外部存在联系的因素,可以在一定的假设下运行,以帮助分析人员或管理人员更好的模拟不同真实情景下的系统。不过即使模型有这么多好处,也不是说其结果一定比项目管理人员的判断准确。任何一种作为工具的方法都有可能被错误的使用,总会有一些成功的案例和失败的案例。但是如果正确的使用系统图动力学建模的方法,其可以作为一个帮助项目管理者做决策的工具。 2系统动力学应用于工程项目管理的优势 2.1工程项目非常复杂,包含多个相互影响的关系 在系统中,一个因素的变化可能引起其他意想不到的影响。这一点和普遍的认识不同,无论是从时间的角度还是空间的角度,因果关系在一个复杂的系统内并不是密切相关。例如,改变工程图设计图纸里的一个管道

结构动力学期末复习题_2014

结构动力学期末复习题 1.试用哈密顿原理推证第二类拉格朗日方程。 日方程求出图示系统在指定的广义坐标 下的运动微分方程。若仅考虑小变形振 动,写出其运动微分方程。图中弹簧1 l,弹簧2未变形时的 未变形时的原长为 1 原长为a。 5. 试讨论对于多自由度体系如何形成一致质量矩阵、一致刚度(包括几何刚度)矩阵、一致荷载列阵并分析与集中质量矩阵的区别。 6. 一栋多层楼房,在地震地面运动作用下运动,若结构在运动中保持为弹性,

试述求解该结构弹性动力反应的振型叠加法的原理以及求解步骤。 7. 一栋多层楼房,在地震地面运动作用下运动,结构产生非线性变形,试讨论如果将结构简化为集中质量的串模型,如何采用逐步积分法分析该结构在地震地面运动作用下结构的非线性反应时程,写出线性加速度法、Wilson-θ法、Newmark-β法、中央差分法等几种方法中的一种方法分析求解非线性多自由度体系的动力反应的步骤,并就你所知,讨论用于结构非线性时程反应分析的这些逐步积分方法在稳定性和求解精度方面的优缺点,提出你的改进意见和方法。 8. 9. ()(l A x o =ρ)1()(l x EI x EI o +=试采用 10. kg m 10001=,kg m 5002=m KN k /350=波形,可表示为l z a x s π2sin =,其中,m l 5=。求拖车在满载和空载时的振幅比。

11. 试推导粘性阻尼力在一周内消耗的能量的表达式。 12. 试求振动系统02=++kx x x m n ζω在图示方波激励下的稳态受迫振动。 13. 图示结构,受到如图所示周期性荷载,可表示如下的正弦级数: t b t p n n n ωsin )(1∑∞ ==,其中,n n n p b )1(20 -- =π ,不考虑阻尼,且荷载频率与结构自振频率之比为: 4 3 1=ωω,试求出结构在此荷载作用下的稳态反应。 14. 长为L ,质量为m 的两个相同的单摆用刚度系数为k 的弹簧相连如图,当两摆在铅垂位置时,弹簧没有变形。试求系统在同一铅垂平面内作微幅振动的固有频率和振型,并由求得的振型向量证明振型矩阵对于质量矩阵和刚度矩阵的正交性。

结构力学期末复习题及答案

二、判断改错题。 1. 位移法仅适用于超静定结构,不能用于分析静定结构。( × ) 2位移法未知量的数目与结构的超静定次数有关。( × ) .3 位移法的基本结构为超静定结构。( × ) 4. 位移法中角位移未知量的数目恒等于刚结点数。(×) 提示:与刚度无穷大的杆件相连的结点不取为角位移未知量。 1. 瞬变体系的计算自由度一定等零。 2. 有多余约束的体系一定是几何不变体系。 1、三刚片用三个铰两两相联不一定成为几何不变体系。(×) 2、对静定结构,支座移动或温度改变不会产生内力。(×) 3、力法的基本体系不一定是静定的。(×) 4、任何三铰拱的合理拱轴不一定是二次抛物线。(×) 5、图乘法不可以用来计算曲杆。(×) 6、静定结构的影响线全部都由直线段组成。(√) 7、多跨静定梁若附属部分受力,则只有附属部分产生内力。(×) 8、功的互等定理成立的条件是小变形和线弹性。(√) 9、力法方程中,主系数恒为正,副系数可为正、负或零。(√) 10.三个刚片用不在同一条直线上的三个虚铰两两相连,则组成的体系是无多余约束的几何不变体系。( √) 三、选择题。 1. 体系的计算自由度W≤0是保证体系为几何不变的 A 条件。 A.必要 B.充分 C.非必要 D. 必要和充分 1、图示结构中当改变B点链杆方向(不能通过A铰)时,对该梁的影响是( d ) A、全部内力没有变化 B、弯矩有变化 C、剪力有变化 D、轴力有变化

2、图示桁架中的零杆为( b ) A 、DC, EC, DE, DF, EF B 、DE, DF, EF C 、AF, BF, DE, DF, EF D 、DC, EC, AF, BF 4、右图所示桁架中的零杆为( b A 、CH BI DG ,, B 、DG DE ,, C 、AJ BI BG ,, D 、BI BG CF ,, 5、静定结构因支座移动,( b ) A 、会产生内力,但无位移 B 、会产生位移,但无内力 C 、内力和位移均不会产生 D 、内力和位移均会产生 7、下图所示平面杆件体系为( b ) A 、几何不变,无多余联系 B 、几何不变,有多余联系 C 、瞬变体系 D 、常变体系

系统动力学定义(精)

系统动力学定义 系统动力学出现于1956年,是美国麻省理工学院JayW.Forrester福瑞斯特教授最早提出的一种对社会经济问题进行系统分析的方法论和定性与定量相结合的分析方法,是一门以系统反馈控制理论为基础,以计算机仿真技术为主要手段,定量地研究系统发展的动态行为的一门应用学科,属于系统科学的一个分支。复旦大学管理学院王其藩教授在他所著的《高级系统动力学》中给出了系统动力学的内涵曰:系统动力学是一门研究信息反馈系统的学科,是一门探索如何认识和解决系统问题的科学,是一门交叉、综合性的学科。系统动力学认为,系统的行为模式与特性主要地取决于其内部的动态结构与反馈机制,系统在内外动力和制约因素的作用下按一定的规律发展和演化。系统动力学是从运筹学的基础上改进发展起来的。鉴于运筹学太拘泥于“最优解”这一不足,系统动力学从观点上做了基本的代写硕士论文改变,它不依据抽象的假设,而是以现实存在的世界为前提,不追求“最佳解”,而是寻求改善系统行为的机会和途径。由此,系统动力学在传统管理程序的背景下,引进信息反馈和系统力学理论,把社会问题流体化,从而获得描述社会系统构造的一般方法,并且通过电子计算机强大的记忆能力和高速运算能力而获得对真实系统的跟踪,实现了社会系统的可重复性实验。不同于运筹学侧重于依据数学逻辑推演而获得解答,系统动力学是依据对系统实际的观测所获得的信息建立动态仿真模型,并通过计算机实验室来获得对系统未来行为的描述。当然,系统动力学建立的规范模型也只是实际系统的简化与代表。一个模型只是实际系统一个断面或侧面,系统动力学认为,不存在终极的模型,任何模型都只是在满足预定要求的条件下的相对成果。模型与现实系统的关系可用下图形象地加以说明。

(完整word版)系统动力学步骤

系统动力学分析步骤 (1)系统分析(分析问题,剖析要因) 1)调查收集有关系统的情况与统计数据 2)了解用户提出的要求、目的与明确所要解决的问题 3)分析系统的基本问题与主要问题、基本矛盾与主要矛盾、变量与主要变 量 4)初步划分系统的界限,并确定内生变量、外生变量和输入量 5)确定系统行为的参考模式 (2)系统的结构分析(处理系统信息,分析系统的反馈机制) 1)分析系统总体的与局部的反馈机制 2)划分系统的层次与子块 3)分析系统的变量、变量之间的关系,定义变量(包括常数),确定变量的 种类及主要变量。 4)确定回路及回路间的反馈耦合关系,初步确定系统的主回路及它们的性 质,分析主回路随时间转移的可能性 (3)确定定量的规范模型 1)确定系统中的状态、速率、辅助变量和建立主要变量之间的关系; 2)设计各非线性表函数和确定、估计各类参数; 3)给所有N方程、C方程与表函数赋值; (4)模型模拟与政策分析 1)以系统动力学的理论为指导进行模型模拟与政策分析,进而更深入地剖 析系统的问题; 2)寻找解决问题的决策,并尽可能付诸实施,取得实践结果,获取更丰富 的信息,发现新的矛盾与问题; 3)修改模型,包括结构与参数的修改; (5)模型的检验和评估 这一步骤的任务不是放在最后一起来做的,其中相当一部分是在上述过程中分散进行的。 参考模式:用图形表示重要变量,并推论和绘出与这些最有关的其他重要的两,从而突出、集中的勾画出有待研究的问题的发展趋势和轮廓,我们称这类随时间变化的变量图形为行为参考模式。在建模的过程中,要反复地参考这些模式。当系统的模型建成后,检验其有效性标准之一就是看模型产生的行为模式与参考模式是否大体一致。

基于系统动力学的人口预测

3.2基于系统动力学的人口预测 21世纪是人类面临三大问题:第一是人口膨胀,第二是就业困难,第三是环境污染,这三大问题的焦点在于人口。因此,如何对未来的人口进行预测和控制,一直是人们关心的重要领域。 本课题是在宋健人口模型的基础上,考虑到上海作为一个开放城市,改良建立了双线性开放/动态人口模型。采用上述基于人口结构模型,预测上海2010—2050年的人口年龄、性别结构。为了更准确地研究人口系统,我们将人口按0-4岁、5-9岁、10-14岁、…、95-99岁、100岁及以上分群,分为21个群,并假设女性的生育时间以不同的概率分布在15-49岁之间。然后以政策系数和生育时间的分布概率为政策参数进行仿真分析和政策试验。 3.2.1系统模拟的一些基本假设 ●人口分年龄数据 2000年人口普查的数据上海常住人口总数为1640万,而根据上海统计年鉴2000年上海常住人口总数为1608万。因为后续计算都是采用上海统计年鉴上的数据,所以按上海统计年鉴的常住人口总数1608万对2000年人口普查的数据 《上海市2000年人口普查资料》、 《2005进行了同比例调整。通过《上海统计年鉴》、 年上海市1%人口抽样调查资料》等文献的搜索,得2000年上海市分年龄段的男、女人数数据见表1。 ●妇女生育时间 根据人口生育的一般规律可知,对出生有贡献的只有15-49岁的女性人口。出生率受人口政策的影响,如果严格实行“一对夫妇一个孩”的人口政策,那么

任何一个女性在一生中只能生育一次。我们假设生育时间是在15-49岁之间均匀分布,于是有出生率=1/35≈2.9%。通过对统计资料和参考文献的整理和分析,可得妇女生育时间到俄分布规律如表所示。 ●性别比 性别比是一个统计数据,是指新生婴儿中男性人口与女性人口的比例。新出生的人口可能是男性,也可能是女性。在自然出生的情况下,男性和女性的概率都是50%。但是根据前面的分析,新生婴儿中,男性与女性的平均性别比为105:100。 ●政策系数 政策系数是一个政策参数,表明计划生育政策执行的严格程度。如果严格执行“一对夫妇一个孩”的人口政策,政策系数=1,随着执行程度的放松,其值增加。例如,如果实施“一对夫妇两个孩”的人口政策,政策系数=2。 ●男、女性出生速率 根据政策系数,有 男性出生速率=“女性15-49”*出生率*(性别比)/(100+性别比)*政策系数;女性出生速率=“女性15-49”*出生率*100/(100+性别比)*政策系数。 ●死亡率 但不同年龄组死亡率存在差异。0-10岁组是少年儿童阶段,死亡率呈下降趋势,10-14岁组死亡率水平为最低,以后随着年龄的增长,死亡率逐步上升。由于上海市2008年男性预期寿命为79.06岁,女性预期寿命为83.50岁,人均寿命已经达到较高的水平,接近许多世界发达国家的水平,上升的空间已经不是很大,故在未来若干年中死亡率减低的速度必然逐步减弱。以2000年男性、女性死亡率为基期我们假设截止2050年上海人均死亡率每十年分别较上一个十年下降10%。 表3 上海市分年龄死亡率对比分析 1990年(?)1995年(?)2000年(?)2005年(?)0-4岁 2.88 0.939 1.1 0.98 5-9岁0.32 0.298 0.24 0.07 10-14岁0.33 0.375 0.21 0.23

结构力学期末考试题库

一、判断题(共223小题) 1。结构的类型若按几何特征可分为平面结构和空间结构。(A) 2、狭义结构力学的研究对象是板、壳结构(B)。 3 单铰相当于两个约束。(A) 4、单刚节点相当于三个约束。(A) 5、静定结构可由静力平衡方程确定全部约束力和内力。A 6、超静定结构可由静力平衡方程确定全部约束力和内力B。 7 无多余约束的几何不变体系是静定结构。A 8 三刚片规则中三铰共线为可变体系。B 9 两刚片用一个单铰和一个不通过该铰的链杆组成的体系为静定结构。A 10 两刚片用一个单铰和一个不通过该铰的链杆组成的体系为超静定结构B。 11链杆相当于两个约束。B 12 平面上的自由点的自由度为2 A 13 平面上的自由刚体的自由度为3 A 14 铰结点的特征是所联结各杆可以绕结点中心自由转动。A 15 有多余约束的几何不变体系是超静定结构。A 16 无多余约束的几何可变体系是超静定结构。B 17、无多余约束的几何可变体系是静定结构。B 18刚结点的特征是当结构发生变形时汇交于该点的各杆端间相对转角为零。A 19 三刚片规则中三铰共线为瞬变体系。A 20三个本身无多余约束的刚片用三个不共线的单铰两两相连,则组成的体系为静定结构。A 21 一个刚结点相当于3个约束。22 一个连接3个刚片的复铰相当于2个单铰。A 23 一个铰结三角形可以作为一个刚片。A 24 一个铰结平行四边形可以作为一个刚片。B 25 一根曲杆可以作为一个刚片。A 26 一个连接4个刚片的复铰相当于2个单铰.B 27 任意体系加上或减去二元体,改变体系原有几何组成性质。B 28 平面几何不变体系的计算自由度一定等于零。B 29 平面几何可变体系的计算自由度一定等于零。B 30 三刚片体系中若有1对平行链杆,其他2铰的连线与该对链杆不平行,则该体系为几何不变体系。A 31 三刚片体系中,若有三对平行链杆,那么该体系仍有可能是几何不变的。B 32 三刚片体系中,若有2对平行链杆,那么该体系仍有可能是几何不变的。A 33 一个单铰相当于一个约束。B 34 进行体系的几何组成分析时,若体系通过三根支座链杆与基础相连,可以只分析体系内部。B 35 三刚片体系中,若有两个虚铰在无穷远处,则该体系一定为几何可变。B 36 有多余约束的体系为静定结构。B 37 静定结构一定几何不变。A 38 超静定结构一定几何不变.A 39 几何不变体系一定是静定结构。B 40几何不变体系一定是超静定结构。B 41力是物体间相互的机械作用。A 42 力的合成遵循平行四边形法则。A 43 力的合成遵循三角形法则。A 44 力偶没有合力。A 45 力偶只能用力偶来平衡。A 46 力偶可以和一个力平衡。B 47 力偶对物体既有转动效应,又有移动效应。B 48 固定铰支座使结构在支承处不能移动也不能转动。B 49 可动铰支座使结构在支承处能够转动,但不能沿链杆方向移动。A 50 结点法求解桁架内力应按照结构几何组成相反顺序来求解。A 51 将一个已知力分解为两个力可得到无数解答。A 52 作用力和反作用力是作用在同一物体上的两个力。B 53 作用力和反作用力是作用在不同物体上的两个力。A 54 两个力在同一轴上的投影相等,此两力必相等B 55 力偶对平面内任一点的矩等于力偶矩 A 56 力偶在坐标轴上的投影的代数和等于零A 57 一个固定铰支座相当于两个约束。A 58三个本身无多余约束的刚片用三个不共线的单铰两两相连,则组成的体系为超静定结构 B 59 桁架是“只受结点荷载作用的直杆、铰结体系”。A 60桁架结构的内力有轴力。A 61 拱的合理拱轴线均为二次抛物线。B 62无铰拱属于超静定结构。A 63 三铰刚架和三铰拱都属于推力结构。A 64 简支刚架属于推力结构。B 65 三铰拱属于静定结构。A 66 相同竖向载荷作用下,同跨度拱的弯矩比代梁的弯矩大得多。B 67 桁架结构中,杆的内力有轴力和剪力。B 68 竖向载荷作用下,简支梁不会产生水平支反力.A 69 竖向载荷作用下,拱不会产生水平支反力。B

岩土工程专业土动力学课件(非常完整!)

第一章绪论 土动力学是研究各种动荷载作用下土的变形、强度特性及土体稳定性的一门学科。 一、动荷载的类型及特点 有两类常见的动荷载:冲击荷载与振动荷载。 1.冲击荷载。爆破、爆炸以及各种冲击引起的荷载,这类荷载对土体的作用主要体现在荷载的速率效应对土体强度与变形的影响。 2.振动荷载。地震,波浪,交通,大型机器基础等引起的荷载,这类荷载对土体的作用主要体现在3个方面: (1)荷载的速率效应对土体强度与变形的影响 (2)荷载循环次数的影响(疲劳) (3)荷载幅值的大小 二、土动力学的研究任务 探求动荷载作用下土体变形、强度变化的规律性,运用近代力学的原理,分析研究土工建筑物及建筑物地基在各种动力影响下的变形与破坏规律。研究内容包括两大方面的内容: 土的动力特性 土的动力稳定性 6个方面的研究问题,包括: (1)工程建筑中的各种动荷作用及其特点 (2)土体中波的传播 (3)土的动力特性:土的动强度、动变形、土的震动液化等。

(4)动荷载作用下的土体本构关系(土的动应力应变关系问题)(5)土动力特性测试方法与测试技术 (6)动荷载作用下土体的稳定性,包括动荷作用下土与结构物的相互作用,地基承载力,土坡稳定性以及挡土墙的土压力。 三、土动力学发展阶段与发展趋势 第1阶段(20世纪30年代)动力机器基础研究 第2阶段(2次世界大战以后)冲击荷载作用下土的动力学问题研究 第3阶段(20世纪60年代以后)振动荷载作用下土的动力学问题研究(地震、海洋、交通等) 当前的主要发展趋势(4点): (1)注重研究土体的动力失稳机理 (2)进一步深化对土的动应力应变关系的研究 (3)进一步深化土与结构物相互作用的研究,即利用更加真实的土动应力应变关系,将结构物与土体相互作用过程中的变形与破坏作为一个整体进行仿真计算分析。 (4)注重现场观测结构、模型试验结果、计算分析结果的相互印证研究 第二章土的动力特性 土的动力特性是指动荷载作用下土的动强度特性与土的动变形特性。 研究土的动力特性,就是依据动荷载作用特点,揭示土的动力破

基于系统动力学的博弈建模仿真及案例实践

《基于系统动力学的博弈建模仿真及案例实践》教学大纲 一、课程信息 课程编号: 课程中文名称:基于系统动力学的博弈建模仿真及案例实践 课程英文名称:Modeling and Simulation of Game based on System Dynamics and Case Study 适用专业:计算机软件与理论、计算机应用技术 开课时间:2015.3 总学时: 60(其中理论学时:16,实践学时:44) 总学分: 二、课程内容简介 课程主要介绍了系统科学与复杂理论在经济学博弈论的应用,以及基于系统动力学的社会科学计算机模型。简单介绍系统科学与复杂理论、博弈论方法,及其学科前沿的应用,重点介绍系统动力学基本理论及其应用,针对目前动态博弈的建模仿真问题进行案例讨论。 三、教学目标 该门课程主要培养学员的数学建模思想与计算机仿真手段的综合应用能力,提高学员在各个领域的计算机应用能力,能综合利用计算机仿真手段,分析现实社会中的某些复杂的现象,从而为分析解决现实中的这些问题提供决策支持。该门课程对于计算机网络、数据挖掘、公共安全甚至是社会信息经济等领域等的理论建模方面具有重要的作用。 通过本课程的学习,学员能够学习到以下几点: 1、了解系统科学与复杂理论的基本知识及其应用 2、熟悉博弈论基本理论和经典案例,系统动力学的应用

3、了解基于系统动力学的动态博弈建模仿真的技术实现路线 四、教学方法 课程的讲解从生活中的博弈论引入,以分析解决某个博弈案例为前提,在过程组织上,先介绍案例背景,再阐述分析方法与过程,最后完成博弈案例的建模和仿真的顺序进行,在介绍建模过程的同时穿插系统科学与复杂理论基本知识,简单的动手操作训练,加深理解和掌握。 五、及教学重难点 本课程的重点是系统科学的视角下,利用系统动力学分析动态博弈演化过程,难点是针对具体应用的分析建模、技术实现路线。 六、教学内容及学时安排

相关文档
最新文档