数理方程期末试题--0--B-答案

合集下载

数理方程 习题答案

数理方程 习题答案

数理方程习题答案数理方程习题答案数理方程是数学中一门重要的学科,它研究的是各种各样的方程。

在学习数理方程的过程中,习题是不可或缺的一部分。

通过解习题,我们可以加深对数理方程的理解,掌握解题的方法和技巧。

在这篇文章中,我将为大家提供一些数理方程习题的答案,希望能对大家的学习有所帮助。

1. 求解方程:2x + 5 = 17。

解:将方程化简,得到2x = 17 - 5,即2x = 12。

再将等式两边同时除以2,得到x = 6。

所以方程的解为x = 6。

2. 求解方程组:2x + y = 73x - 2y = 4解:可以使用消元法来求解这个方程组。

首先,将第一个方程乘以2,得到4x + 2y = 14。

然后将第二个方程与这个结果相加,得到7x = 18。

再将等式两边同时除以7,得到x = 18/7。

将x的值代入第一个方程,可以求得y的值为y = 7 - 2x = 7 - 2(18/7) = 7 - 36/7 = 7/7 - 36/7 = -29/7。

所以方程组的解为x = 18/7,y = -29/7。

3. 求解二次方程:x^2 - 5x + 6 = 0。

解:可以使用因式分解法来求解这个二次方程。

首先,将方程化简,得到(x - 2)(x - 3) = 0。

根据乘积为零的性质,可以得到x - 2 = 0或者x - 3 = 0。

解这两个方程,可以得到x = 2或者x = 3。

所以方程的解为x = 2或者x = 3。

4. 求解三次方程:x^3 - 3x^2 + 2x - 4 = 0。

解:可以使用综合除法来求解这个三次方程。

首先,将方程按照降幂排列,得到x^3 - 3x^2 + 2x - 4 = 0。

然后,尝试将方程的第一项x^3除以x的最高次数x^3,得到商为1。

将这个商乘以方程的所有项,得到x^3 - 3x^2 + 2x - 4 - (x^3 - 3x^2 + 2x - 4) = 0。

化简这个等式,可以得到0 = 0。

数理方程试题及解答二

数理方程试题及解答二

数理方程试题二一、填空:(10×2分=20分)1.边界条件2.初始状态3.定解条件.4.边值问题5.拉普拉斯方程的连续解6.狄利克莱问题7.牛曼问题8.()⎰⎰⎰⎰⎰⎰⎰⎰ΩΓΩ⋅-∂∂=∇dV gradv gradu dS n vudV v u 2 9.()()()0001114M M M M u M u m u M dS n r r n πΓ⎡⎤⎛⎫∂∂=--⎢⎥ ⎪ ⎪∂∂⎢⎥⎝⎭⎣⎦⎰⎰10.()()()()01!21220≥++Γ-=++∞=∑n m n m x x J m n mn mm n二、选择题:(5×4分,共20分)1.A; 2. B; 3. C; 4. C; . 5. D .三、(7分)解定解问题()()()()()⎪⎩⎪⎨⎧==≤≤='=><<=''-''=.0,,0,0;0,,0,;0,0,002t l u t u l x x g u x f x u t l x u c u t t xx tt解:令()()()()()()()2,0X x T t u x t X x T t X x c T t λ''''=≠⇒==-,()()()()20,0T t c T t X x X x λλ''''+=+=由方程()()()()000X x X x X X l λ''+=⎧⎪⎨==⎪⎩解出()()sin 1,2,3,n n n X x B x n l π== 由方程()()20T t c T t λ''+=解出:()()cos sin 1,2,3,.n nn n ct n ctT t C D n l lππ''=+= -----------4分 从而有:()(),cos sin sin 1,2,3,n n n n ct n ct n x u x t C D n l l l πππ⎛⎫=+= ⎪⎝⎭ 叠加起来:()()11,,cos sin sin ,n n n n n n ct n ct n x u x t u x t C D l l l πππ∞∞==⎛⎫==+ ⎪⎝⎭∑∑ 代入初始条件确定,n n C D 有:()()002sin 2sin l n l nn C x xdx l ln D x xdx n c l πϕπψπ⎧=⎪⎪⎨⎪=⎪⎩⎰⎰ ------------------------------------3分四、(7分)证明: ()[]()x xJ x xJ x01d d= 证明: ()()()()(),!21!32!2221222266244220 +-++-+-=k x x x x x J k k k()()().!1!21!4!32!3!22!22212127755331 ++-++⋅⋅-⋅⋅+⋅-=++k k x x x x x x J k k k---------------------4分将()x J 1乘以x 并求导数,得()[]()()⎥⎦⎤⎢⎣⎡++-++⋅-=++ !1!21!222d d d d 12223421k k x x x x x xJ x k k k()()+-++-=+221233!212k x x x k k k()()()(),!21!32!222122226624422⎥⎦⎤⎢⎣⎡+-++-+-= k x x x x x k k k即()[]()x xJ x xJ x01d d=---------------------------------------------------------------3分 五、(7分)由定解问题 ()()⎪⎩⎪⎨⎧+∞<<-∞='+∞<<-∞=''=''==x x u x x u u a u t t t xx tt ,,;002ψϕ导出达朗贝尔公式。

数理方程模拟试题8X

数理方程模拟试题8X

200__~200__学年第___学期《数理方程》期末模拟试卷8 题号 一 二 三 四 五 六 总分 得分一、 单项选择题( 每小题4分,共28分)1、下列边界条件是非齐次的为( )A 、 0||0x x x l u u ====B 、0|1,|2x x l u u ====C 、 0||0x x x x l u u ====D 、 0||0x x x l u u ====2、220xx xy yy y u u u u +++= (其中(,)u u x y =) 属于( )型偏微分方程 A 、 抛物 B 、双曲 C 、 椭圆 D 、 混合3、在用分离变量法求解定解问题2000,0,0|0,|0|(),|()tt xx x x x l t t t u a u x l t u u u x u x φψ====⎧=<<>⎪==⎨⎪==⎩时,得到的特征值问题的特征值为( )A 、2(),1,2,...n n l π= B 、2(),0,1,2,...n n lπ= C 、2(21)[],0,1,2,...2n n lπ-= D 、 2(21)[],1,2,...2n n l π-= 4、当初始扰动限制在有限区域上时,下列对二维波和三维波的说法错误的是( )A 、三维波“惠更斯原理”成立B 、二维波存在“有后效现象”C 、对空间一点的扰动,二维波有“前锋”无“阵尾”D 、他们均不出现“无后效现象” 5、下列式子错误的是( ) A 、 22[sin ](Re 0)L t s s ww w =>+B 、 [][][]L f g Lf Lg *=? C 、 00[()]()i x F f x x e F w w --= D 、 00[()]()i x F e f x F w w w =+ 6、下列说法错误的是( ) A 、弱极小函数一定是强极小函数B 、弱相等意义下 1()()(0)||ax x a a δδ=≠C 、弱相等意义下δ-函数是偶函数D 、Green 函数具有对称性7、设球域(,)B O R 内一点0M ,则用静电源像法求格林函数时,关于像点'M 的说法正确的是( )A 、0,'M M 的关系满足错误!未找到引用源。

数理方程期末试题B答案

数理方程期末试题B答案

北 京 交 通 大 学2007-2008学年第二学期《数理方程与特殊函数》期末考试试卷(B )(参考答案)学院_ ____________ 专业___________________ 班级________ ____学号_______________ 姓名___________ __一、 计算题(共80分,每题16分)1.求下列定解问题(15分)2222201200,0,0,|,|,|0,|0.x x l t t u ua A x l t t x u M u M u u t ====⎧∂∂=+<<>⎪∂∂⎪⎪==⎨⎪∂⎪==⎪∂⎩2.用积分变换法及性质,求解半无界弦的自由振动问题:(15分)2,0,0,(,0)0,(,0)0,(0,)(),lim (,)0.tt xx t x u a u x t u x u x u t t u x t φ→+∞⎧=<<+∞>⎪==⎨⎪==⎩ 3. 设弦的两端固定于0x =及x l =,弦的出示位移如下图所示。

初速度为零,又没有外力作用。

求弦做横向振动时的位移(,)u x t 。

[ 解 ] 问题的定解条件是1(,)(cos sin )sin n a n a n n n l l l n u x t C t D t x πππ∞==+∑由初始条件可得0, 1,2,...n D n ==222202()sin d ()sin d =sin, 1,2,...c lh n hn n lc l l c l c hl n c lc l c n C x x x x l x x n ππππ--⎡⎤=+--⎢⎥⎣⎦=⎰⎰4.证明在变换, x at x at ξη=-=+下,波动方程xx tt u a u 2=具有形式解0=n u ξ,并由此求出波动方程的通解。

5.用分离变量法解下列定解问题⎪⎪⎪⎩⎪⎪⎪⎨⎧=∂∂===><<+∂∂=∂∂====0|,0|0|,0|00sin sin 0002222222t t l x x l a l t uu u u t l x t x x u a t u ,,ππ [ 提示:1) 可以直接给出问题的固有函数,不必推导;2) 利用参数变易法。

西安邮电大学期末数理方程试题+答案

西安邮电大学期末数理方程试题+答案

数学物理方程与特殊函数09级试题选讲一、求解定解问题22200,0,(0,0)x x lt u u a t x u u x l t xx u x ===ì¶¶=ï¶¶ï¶¶ï==<<>í¶¶ïï=ïî)()(),(t T x X t x u =)()()()(2t T x X a t T x X ¢¢=¢22)()()()(b -=¢¢=¢x X x X t T a t T 0>b 设,代入原方程得,则)()(22=+¢t T a t T b 0)()(2=+¢¢x X x X b 则,0x x lu u xx==¶¶==¶¶'(0)'()0X X l Þ==又因为得固有值问题2()()0'(0)'()0X x X x X X l b ¢¢ì+=í==î22)(ln pb =()cos 0,1,2,n n n xX x A n lp ==则固有值固有函数,数学物理方程与特殊函数09级试题选讲)()()(2=+¢t T la n t T p 2()()n a tl n T t C ep -Þ=2()01(,)cosn a tln n n x u x t C C elp p ¥-==+å从而0t ux==有因为01cosnn n x x C C lp ¥==+å所以220022[(1)1]cos 12n ln l n x l C x dx l l nl C xdx lp p --====òò2()2212(1)1(,)cos 2n a ntln l l n xu x t enlp p p¥-=--=+å数学物理方程与特殊函数09级试题选讲二、求解定解问题2222,,0(),0(),0(0)(0)t x t x u ut x t t t x ux x u x x =-=ì¶¶=-<<>ï¶¶ïï=F £íï=Y ³ïïF =Y î解:特征变换为x t x tx h =-ìí=+î2u x h¶=¶¶原方程化为12()()u f f x h =+则它的通解为00(),()()(),()()2222t xt x ux u x u u h x x h x h x h=-====F =Y +-Þ=F =F =Y =Y 又因为数学物理方程与特殊函数09级试题选讲1212(0)()()2()(0)()2f f f f h h xx +=Y +=F 2112()()(0)2()()(0)2f f f f h h x x ì=Y -ïïÞíï=F -ïî12()()((0)(0))22()()(0)22u f f x t x tx h=F +Y -+-+=F +Y -F 则它的解为三、求解定解问题)0,(,0,3,03202022222>+¥<<-¥ïïïîïïíì=¶¶==¶¶-¶¶¶+¶¶==y x y ux u y uy x u x u y y 解:原方程的特征方程为22()23()0dy dydx dx --=13C x y +=2C x y +-=,则特征线为3x y x yx h =-ìí=+î特征变换20ux h¶=¶¶原方程化为12()()u f f x h =+则它的通解为数学物理方程与特殊函数09级试题选讲12(,)(3)()u x y f x y f x y =-++即203,y y u ux y==¶==¶又因为21212(3)()3(3)()0f x f x xf x f x ì+=í¢¢-+=î则可得C x x f¢-=2149)3(C x x f ¢+=2243)(C x x f¢-=2141)(222234)(34)3(),(yx y x y x y x u +=++-=22()()C Du vv u u v d v u ds n n s ¶¶Ñ-Ñ=-¶¶òòò 四、证明平面上的格林公式其中n 为曲线的外法线向量。

数学系常微分方程期末试卷B及答案教学内容

数学系常微分方程期末试卷B及答案教学内容

数学系常微分方程期末试卷B及答案试卷(B)考试本科考试科目常微分方程第 1 页(共 5页)年 月 日第2页(共 5 页)年月日第 3 页(共 5 页)年月日第4页(共 5 页)年月日12-13-2学期期末考试《常微分方程》B 参考答案及评分标准(数计学院 )制卷 审核一、填空题(每小题3分,本题共15分)1.1±=y 2.x x 2cos ,2sin3.xoy 平面4.充分必要 5.不能二、单项选择题(每小题3分,本题共15分)6.A 7.C 8.C 9.D 10.D三、简答题(每小题6分,本题共30分)11.解 分离变量得x y x y d e d e = (3分)等式两端积分得通积分C x y +=e e (6分)12.解 令u x y =,则xu x u x y d d d d +=,代入原方程,得 u u x u x u tan d d +=+,u x u x tan d d = (2分) 当0tan ≠u 时,分离变量,再积分,得 C xx u u ln d tan d +=⎰⎰ (4分) C x u ln ln sin ln += (5分)即通积分为:Cx xy =sin (6分)13.解 方程两端同乘以5-y ,得 x y xy y +=--45d d (2分) 令 z y =-4,则xz x y y d d d d 45=--,代入上式,得 x z x z =--d d 41 (3分) 通解为 41e 4+-=-x C z x 原方程通解为 41e 44+-=--x C y x (6分) 14.解: 因为xN x y M ∂∂==∂∂2,所以原方程是全微分方程 (2分) 取)0,0(),(00=y x ,原方程的通积分为C y y x xy yx =-⎰⎰020d d 2 (4分) 即 C y y x =-3231 (6分) 15.解: 因为方程组是二阶线性驻定方程组,且满足条件00≠=ac c ba ,故奇点为原点(0,0) 2分又由det(A-λE)=0)(02=++-=--ac c a c b a λλλλ得 c a ==21λλ 4分所以,方程组的奇点(0,0)可分为以下类型:a ,c 为实数⎪⎪⎪⎩⎪⎪⎪⎨⎧⎩⎨⎧>><<⎭⎬⎫=≠=⎪⎩⎪⎨⎧<⎩⎨⎧>><<>≠不稳定结点,稳定结点奇点为奇结点奇点为退化结点奇点为鞍点(不稳定)不稳定结点稳定结点奇点为结点,0,00,0,0,00,0,0,0,00c a c a b b c a ac c a c a ac c a 6分四、计算题(每小题10分,本题共20分)16.解:对应齐次方程的特征方程为052=-λλ (1分) 特征根为:特征根为01=λ,52=λ, (2分)齐次方程的通解为 x C C y 521e += (4分) 因为0=α是特征根。

数理方程试卷及答案2

数理方程试卷及答案2

长沙理工大学考试试卷…………………………………………………………………………………………………………………试卷编号 拟题教研室(或教师)签名 教研室主任签名…………………………………………………………………………………………………………………课程名称(含档次) 数学物理方程与特殊函数 课程代号专 业 层次(本、专) 本 科 考试方式(开、闭卷) 闭卷一.判断题:(本题总分25分,每小题5分)1.二阶线性偏微分方程062242=+++-y x yy xy xx u u u u u 属于椭圆型; ( )2.定解问题的适定性包括解的稳定性、解的唯一性和解的存在性; ( )3.如果格林函数),(0M M G 已知,且它在Γ+Ω上具有一阶连续偏导数,又若狄利克雷问题⎩⎨⎧=Ω∈=∆Γ ).,,(|,),,(0z y x f u z y x u 在Γ+Ω上具有一阶连续偏导数的解存在,那么其解可表示为=)(0M u dS nG z y x f ⎰⎰Γ∂∂-),,(; ( ) 4.设)(x P n 为n 次Legendre 多项式,则0)()(111050358⎰-=dx x P x P ; ( )5.设)(x J n 为n 阶Bessel 函数,则[])()(021ax xJ a ax xJ dxd =. ( ) 二.解答题:(本题总分65分) 1.(本小题15分)设有一根长为l 的均匀细杆,它的表面是绝热的,如果它的端点温度为1),0(u t u =,2),(u t l u =,而初始温度为0T ,写出此定解问题.2.(本小题20分)利用固有函数法求解下面的定解问题⎪⎪⎩⎪⎪⎨⎧====><<+=.0),(,0),0(,0)0,(,0)0,(),0,0(cos sin 2t l u t u x u x u t l x l x t A u a u x x t xx tt πω 其中ω,A 是常数.3.(本小题15分)求出方程xy u u yy xx =+的一个特解.第 1 页(共 2 页)4.(本小题15分)用试探法求解拉普拉斯方程狄氏问题:⎩⎨⎧+=≤≤<=∆ .sin cos ),()20,(,0),(22θθθπθθB A R u R r r u 三.证明题:(本题总分10分) 证明:函数⎰+-+++-=atx at x ds s a at x at x t x u )(212)()(),(ψϕϕ是下面的齐次方程的初值问题 ⎪⎩⎪⎨⎧==>+∞<<-∞=).()0,(),()0,(),0,(2x x u x x u t x u a u txx tt ψϕ 的解.第 2 页(共 2 页)长沙理工大学试卷标准答案课程名称: 数学物理方程与特殊函数(B) 试卷编号:03一.判断题:(本题总分25分,每小题5分)1.×; 2.√; 3.√; 4.√; 5.×.二.解答题:(本题总分65分)1.(本小题15分)泛定方程:xx t u a u 2=,)0,0(><<t l x ; …………………5分 边界条件:1),0(u t u =,2),(u t l u =; …………………10分 初始条件:0)0,(T x u =. …………………15分2.(本小题20分) 泛定方程相应的齐次方程满足齐次边界条件的固有函数系为⎭⎬⎫⎩⎨⎧l x n πcos ,故可设方程的解为∑∞==0cos)(),(n n lx n t u t x u π, ……………5分 将它代入泛定方程,得l x t A l x n t u l a n t u n n n πωππcos sin cos )()(02=⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫ ⎝⎛+''∑∞=, ……………10分 于是),1(0)()(2≠=⎪⎭⎫ ⎝⎛+''n t u l a n t u n n π .s i n )()(121t A t u l a t u ωπ=⎪⎭⎫ ⎝⎛+'' ……………12分 由初始条件,得 ),2,1(0)0()0( =='=n u u n n …………14分显然,当1≠n 时,0)(=t u n ;当1=n 时,解上面的微分方程得ττπωτπd t l a A a l t u t)(sin sin )(01-=⎰第1页(共3页)⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛-⋅=t l a l at l a a Al ωππωπωπsin sin 122, ……………18分 故所求的解为 l x t l a l at l a a Al t x u πωππωπωπcos sin sin 1),(22⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛-⋅=。

数理方程期末试题及答案

数理方程期末试题及答案

带入微分方程求解得:
k
a2
A 2
则得通解
T1
t
C1
cos
n l
a
t
D1
sin
n l
a
t
a2
A 2
sin t
带入初始条件得: C1
0,
D1
A a2 2
l a
则原定解问题的解为
u x,t
A a2 2
l sin a t cos
a l
l
x
2、 求解下列初值问题:(10 分)
uuttx,0u
xx
数; (3) 将形式解带入泛定方程以及初始条件,求解待定函数 Tn(t).
4、试述行波法的适用范围,并写出无限长弦自由振动的达朗贝尔公式。 答:行波法(特征线法)对双曲型方程是有效的,沿着双曲型方程两条特征线做
自变量替换总可以把双曲型方程化为可积形式,获得通解,由此行波法仅适用于
无界条件的波动方程。
3x x ,t sin x,ut x,0 x
0
解:应用达朗贝尔公式: u 1 (x at) (x at) 1
xat
( )d
其中
2
2a xat

x sin x, x x ,带入上式得:
u
1 2
sin
x
at
sin
x
at
1 2a
xat
d
xat
sin x cos at t
数学物理方程期末试题答案
一、 简述题:(每题 7 分,共 28 分) 1、 简述数学物理中的三类典型方程,并写出三类方程在一维情况下的具体形
式。
答:波动方程:
2u t 2
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

北 京 交 通 大 学
2007-2008学年第二学期《数理方程与特殊函数》期末考试试卷(B )
(参考答案)
学院_ ____________ 专业___________________ 班级________ ____ 学号_______________ 姓名___________ __
一、 计算题(共80分,每题16分)
1. 求下列定解问题(15分)
22
22201200,0,0,|,|,|0,|0.x x l t t u u
a A x l t t x u M u M u u t ====⎧∂∂=+<<>⎪∂∂⎪⎪==⎨⎪∂⎪==⎪∂⎩
2. 用积分变换法及性质,求解半无界弦的自由振动问题:(15分)
2,0,0,(,0)0,(,0)0,
(0,)(),lim (,)0.tt xx t x u a u x t u x u x u t t u x t φ→+∞
⎧=<<+∞>⎪
==⎨⎪==⎩ 3. 设弦的两端固定于0x =及x l =,弦的出示位移如下图所示。

初速度为零,又没有外力
作用。

求弦做横向振动时的位移(,)u x t 。

[ 解 ] 问题的定解条件是
1(,)(cos sin )sin n a n a n n n l l l n u x t C t D t x πππ

==+∑
由初始条件可得
0, 1,2,...n D n ==
2
22
2
02()sin d ()sin d =
sin
, 1,2,...
c l
h n h n n l
c l l c l c hl n c l
c l c n C x x x x l x x n ππ
ππ--⎡⎤=+--⎢⎥⎣⎦
=⎰⎰
4. 证明在变换, x at x at ξη=-=+下,波动方程xx tt u a u 2=具有形式解0=n u ξ,并由此求
出波动方程的通解。

5. 用分离变量法解下列定解问题
⎪⎪⎪⎩
⎪⎪⎪⎨⎧=∂∂===><<+∂∂=∂∂====0|,0|0|,0|00sin sin 0002222
222t t l x x l a l t u
u u u t l x t x x u a t u ,,
π
π [ 提示:1) 可以直接给出问题的固有函数,不必推导;2) 利用参数变易法。

]
[ 解 ] 对应齐次方程的定解问题的固有函数是x l
n π
sin ,其解可以表示成
1
(,)()sin n n l n u x t v t x π∞
==∑
把原问题中非齐次项
t x t x f l a l ππ22sin sin ),(=按照固有函数展开成级数
∑∞
===1
22sin )(sin sin ),(n l n n l a l x
t f t
x t x f ππ
π
因此有

⎨⎧===,...4,3,1,0;2,sin )(2n n t t f l a n π
利用参数变易法,有
,...
5,4,3,1,0),()
cos sin ()(sin sin
),(22240
2222==-=
-=⎰n t x v t t t d t t x v n l a l a a l a l t
l a l a a l π
πππ
π
ππ
τ
ττ
于是
x t t t t x u l l a l a a l a l πππππ22224sin )cos sin (),(-=
6. 用Bessel 函数法求解下面定解问题
⎪⎪⎪⎩
⎪⎪⎪⎨⎧=∂∂-=+∞
<=<<∂∂+∂∂=∂∂====0|,1||,0|0),(0001
2
2
22222t R r t r R r r t u u u u R r r u r u a t u [ 解 ] 用分离变量法求解。

令)()(),(t T R t u ρρ=,则可得


⎧==+0)0('0
)()(")(22T t T a t T I β 以及
⎩⎨
⎧=∞<=++0
)(,)(0)()(')(")(0222ρρρρβρρρρR R R R R II
设0ρβλn n =为Bessel 函数)(0x J 的正零点,则问题(II )的特征值和特征函数分别为
)
(
)()(0
02
2ρρβρλρ
λn
n J R n n ==
问题(I )的解为
t C t T n
a n n 0
cos )(ρλ=
于是原问题的解是
∑∑==t
J C t T R t u n
n a n n n 0
cos
)(
)()(),(0ρλρλρρρ
由初始条件
20
21)0,(ρρρ-
=u
得到
)
(8
)
()
(422)
(2
0)(2
13
212222
2
1200
20
2
2120)()()1(n n n n n n
n n n J J J n J J n J d J C λλλλλλρλρρρλ
ρρλρλρρρ=
=

=
-
=⎰
而且又有的零点,也即是由于,0)()(00=n n J x J λλ
)
()()(1220x J x J x J x =+ 故
n n n J J λλλ2
)
()
(12=
于是最后得到原问题的解是
∑∑∑===t J t
J C t T R t u n n n
n n n n
a J J a n n n 00
21
2200cos )(cos )()
()(),(0)()(40ρλρλλλλρλρλρρρρ
二、 证明题(共2分,每题10分) 7. 证明平面上的Green 公式
⎰⎰⎰∂∂∂∂-=∇-∇C
n v n u D ds u v d v u u v )()(2
2
σ
其中C 是区域D 的边界曲线,ds 是弧长微分。

[证明] 设),(),,(y x Q y x p 在D+C 上有一阶连续偏导数,n 为C 的外法线方向,其方向余弦
为βαcos ,cos ,则有
⎰⎰⎰-=-∂∂∂∂C
D
y P x Q ds P Q d )cos cos ()(βασ
再设u,v 在D 内有二阶连续偏导数,在D+C 上有一阶连续偏导数,令
y
v
x v u P u Q ∂∂∂∂-==, 得到
⎰⎰⎰⎰⎰⎰∂∂∂∂∂∂∂∂∂∂∂∂∂∂=+
=+
+∇C
n
v C
y
v x v D
y
v
y u x
v
x u
D
ds
u
ds u d vd u )cos cos ()(βασ
σ
交换u,v ,得到
⎰⎰⎰⎰⎰⎰∂∂∂∂∂∂∂∂∂∂∂∂∂∂=+
=+
+∇C
n
u C
y
u x u D
y
v y u x v x u D
ds
v
ds v d ud v )cos cos ()(
βασ
σ
上面第二式减去第一式,得到
⎰⎰⎰∂∂∂∂-=∇-∇C
n v
n u D
ds u v d v u u v )()(σ
证毕。

8. 证明关于Bessel 函数的等式:
1220100()d ()(1)()(1)()d n n n n x J x x x J x n x J x n x J x x --=+---⎰⎰
[此文档可自行编辑修改,如有侵权请告知删除,感谢您的支持,我们会努力把内容做得更好]。

相关文档
最新文档