复变函数第五章2留数的一般理论
合集下载
复变函数第五章留数

第五章 留数
§1 孤立奇点 §2 留数
1
§5.1 孤立奇点
一、孤立奇点定义
如果函数f z在z0不解析, 但在z0的某个去心邻域
0 z z0 内处处解析, 则称z0为f z的孤 立 奇 点.
例如
1 sin
1
, z0
=
0为奇点,
但不是孤立奇点.
z
z 1 n 1,2,为奇点, n , z 0,
]
sinz
cosz
zzk
sinz sinz
z
zk
1
tgzdz
C
2i 8 1 16i
31
例4 计算 z4 sin 1 dz, C为 z 1 2.
C
z
解 奇点:z 0, 奇点类型不清楚,
•
z4
sin 1 z
z4
1 z
1 3! z3
1 5! z5
1 7! z7
z3
z 3!
1 5! z
1 7! z3
Re
s
f
z,0
c1
1 120
C
z4
sin
1 z
dz
2i
Re
s
f
z,0
60
i
32
例5 计算
C
z z4 1
dz,C为 z
2,正向.
解 显然 z 1,i 都是 f z 的一级极点,
f z ( z z0 )m z ,
其中 z在z0解析,且 z0 0,m为正整数,
则
z
为
0
f
z
的m
级
零
点.
例如 对于 f z z(z 1)3,z0 0, z0 1分别是其一级
§1 孤立奇点 §2 留数
1
§5.1 孤立奇点
一、孤立奇点定义
如果函数f z在z0不解析, 但在z0的某个去心邻域
0 z z0 内处处解析, 则称z0为f z的孤 立 奇 点.
例如
1 sin
1
, z0
=
0为奇点,
但不是孤立奇点.
z
z 1 n 1,2,为奇点, n , z 0,
]
sinz
cosz
zzk
sinz sinz
z
zk
1
tgzdz
C
2i 8 1 16i
31
例4 计算 z4 sin 1 dz, C为 z 1 2.
C
z
解 奇点:z 0, 奇点类型不清楚,
•
z4
sin 1 z
z4
1 z
1 3! z3
1 5! z5
1 7! z7
z3
z 3!
1 5! z
1 7! z3
Re
s
f
z,0
c1
1 120
C
z4
sin
1 z
dz
2i
Re
s
f
z,0
60
i
32
例5 计算
C
z z4 1
dz,C为 z
2,正向.
解 显然 z 1,i 都是 f z 的一级极点,
f z ( z z0 )m z ,
其中 z在z0解析,且 z0 0,m为正整数,
则
z
为
0
f
z
的m
级
零
点.
例如 对于 f z z(z 1)3,z0 0, z0 1分别是其一级
第5章-留数及其应用02-留数

3 留数的计算方法
例1: 解: 因为
z 1, z 2,
f (z)dz
z 3
Re s[
f
( z ), 1]
lim
z1
( ห้องสมุดไป่ตู้
1)
(z
ez 1)( z
2)
lim
z1
ez z
2
e
Re s[
f
( z ),
2]
lim
z2
( z
2)
(z
ez 1)( z
2)
lim
z2
ez z
1
e
2
解:
注: 当极点的级数高(三级或者三级以上),则计算繁杂.
第五章 留数及其应用
第二讲 留数与留数定理
主要内容
1. 留数的定义 2. 留数定理 3. 留数的计算方法 4. 函数在无穷远点的留数
1 留数的定义
回顾:复变函数的积分 柯西-古萨基本定理: 柯西积分公式: 高阶导数公式: 闭路变形原理:
明星公式:
2 留数定理
如果函数 f(z) 在某区域 D 内除有限个孤立奇点外处处解析, 则利用复合闭路定理可以得到留数的一个基本定理. 定理: 设 f(z) 在区域内 D 除有限个孤立奇点z1, z2,…,zn外处处解 析, C 是 D 内包含所有奇点在其内部的分段光滑正向曲线, 则
f (z)dz
z 3
f (z)dz
z 2
4 函数在无穷远点处的留数
N 1
Res f (z), zk Res f (z), 0
k 1
《复变函数与积分变换》 留数—计算规则

三、在 ∞ 点的留数 定义 2.2 设 ∞ 是 f ( z ) 的孤立奇点 , 则 f ( z ) 在 R < z < +∞ 内解析 ,
C 是 R < z < +∞ 内一条简单闭
y C
O
§5.2 留 数 —— 在 ∞ 点的留数
R
x
定理 2.2 若 f ( z ) 在 C U {∞} 上有有限个奇点:z1 ,L , z n , ∞ , 则
1 P ( z ) , z = 0 是 f ( z ) 的 3 级极点 . z3 1
解二:把 f ( z ) 在 z = 0 点展成洛朗级数 :
z − sin z 1 = 6 z6 z = 1 3 1 5 1 7 z − z − 3! z + 5! z − 7! z + L
O
1 = − c1 . ∫ C f ( z ) dz, 则 Res f ( z ) , ∞ 2π i Ñ
× zn
f ( z ) ,∞ . = − 2π i Res
§5.2 留 数 —— 在 ∞ 点的留数
规则 IV Res [ f ( z ), ∞ ] = − Res f ( )
(5)
假设 z0 是 f ( z ) 的 k 级极点 , k < m ,
f ( z ) = c− k ( z − z0 )
−k
+ L + c−1 ( z − z0 ) + c0 + c1 ( z − z0 ) + L
−1 m− k
( z − z0 )
0
m
f ( z ) = c− k ( z − z0 )
§5.2 留 数 —— 计算规则
复变函数与积分变换5.2留数

m
f ( z )} ( m - 1)! c - 1 a ( z - z 0 )
令两端 zz0, 右端的极限是(m-1)!c-1, 两端除以(m-1)! 就是Res[f (z), z0], 即得规则2, 当 m=1时就是规则1。
规则 3
设 f ( z ) P z Q z , P (z)及 Q (z)在 z 0 都 解 析 ,
Res[ f ( z ), 0 ] lim z
z 0
e
z 2
z ( z - 1)
lim
e
z 2
z 0
( z - 1)
1.
z d e 2 R es[ f ( z ),1] lim ( z - 1) 2 ( 2 - 1)! z 1 d z z ( z - 1)
1 Q (z)
1 z - z0
( z ),
其 中 (z)在 z 0 解 析 , 且 (z 0 ) 0 . 故 z 0 为 f (z )的 一 级 极 点 .
根 据 规 则 1 , R es[ f ( z ), z 0 ] lim ( z - z 0 ) f ( z ) ,而 Q (z 0 )= 0 .
z
-1
d z 2 π i(
e 2
) 2 π i ch 1
2
我们也可以用规则3来求留数:
Res[ f ( z ),1] ze
z
2z
|
z 1
e 2
; e
-1
Res[ f ( z ), - 1]
ze
z
2z
|
z -1
2
.
这比用规则1要简单些.
例 2
f ( z )} ( m - 1)! c - 1 a ( z - z 0 )
令两端 zz0, 右端的极限是(m-1)!c-1, 两端除以(m-1)! 就是Res[f (z), z0], 即得规则2, 当 m=1时就是规则1。
规则 3
设 f ( z ) P z Q z , P (z)及 Q (z)在 z 0 都 解 析 ,
Res[ f ( z ), 0 ] lim z
z 0
e
z 2
z ( z - 1)
lim
e
z 2
z 0
( z - 1)
1.
z d e 2 R es[ f ( z ),1] lim ( z - 1) 2 ( 2 - 1)! z 1 d z z ( z - 1)
1 Q (z)
1 z - z0
( z ),
其 中 (z)在 z 0 解 析 , 且 (z 0 ) 0 . 故 z 0 为 f (z )的 一 级 极 点 .
根 据 规 则 1 , R es[ f ( z ), z 0 ] lim ( z - z 0 ) f ( z ) ,而 Q (z 0 )= 0 .
z
-1
d z 2 π i(
e 2
) 2 π i ch 1
2
我们也可以用规则3来求留数:
Res[ f ( z ),1] ze
z
2z
|
z 1
e 2
; e
-1
Res[ f ( z ), - 1]
ze
z
2z
|
z -1
2
.
这比用规则1要简单些.
例 2
复变函数 留数和留数定理讲解

另解: f1(z) 在点 z0 0 的去心邻域 0 z 内的
Laurent级数为
e
z z5
1
1 z5
1
z
1 z4
1 2! z 3
z2 2! 1
3! z 2
z3 3!
1 4! z
z4 4! 1
5!
z5 5! z
6!
z6
,6!
,
Res[ f1(z), 0] 1 ; Res[ f1(z),1] 0 于是由留数定理得积分值为
I1 2i[1 0] 2i
20
(2)
I2
z 2
esin z dz z 2 (z 2 1)
解: f2 (z) esin z [z 2 (z 2 1)] 在圆 z 2 的内部有一
2 当z0为f(z)=g(z-z0) 的孤立奇点时,若 g 为偶
函数,则f(z)在点z0的留数为零.
3 若z0为f(z) 的一级极点,则有
Re
s
f
(
z),
z0
lim
zz0
(
z
z0
)
f
(
z)
4 若z0为f(z) 的m级极点,则对任意整数 n m有
Re s
f (z), z0
个二级极点 z 0和两个一级极点 z i ,
于是利用留数的计算规则 2 和 1得
Res[
f
2
(
z
),0]
lim
z 0
(
ze2sinz1)
lim
高等数学课件-复变函数与积分变换 第五章 留数 §5.2 用留数定理计算实积分

§5.2 用留数定理计算实积分
引言
在实际问题中,往往会遇到求一些实 积分的值,计算比较复杂。但是,如果把 它们化为复变函数的积分,运用留数定理 计算可能要简捷的多。
首先,被积函数必须要与某个解析函 数密切相关。
其次,定积分的积分域是区间,而用 留数来计算要牵涉到把问题化为沿闭曲线 的积分。
一、形如
积分限化为从 到 ,又显然 lim f z 0 z
于是积分属于上述类型,可由(2.4)式计算
f z 可写成
f z
1 z2 a2
2
z
ia
1
2
z
ia
2
易见,f z 在上半平面只有一个二级极点
z ia,计算 f zeipz在 z ia 点的留数
Re s f
z eipz ,ia
Re s
f
z eiz , 2i
lim z
z2i
2i
f
z eiz
zeiz
1
lim
z2i z 2i
z2 1
6e2
Re
s
f
z eiz ,i
lim z
zi
i
f
z eiz
lim
zeiz
1
zi z2 4 z i 6e
将所得留数代入(2.5)式得:
I
xsin x dx
(x2 4)(x2 1)
奇点?在实轴上是否无奇点?
c.等式 lim zf z 0 是否成立? z
(2)计算 f z在上半平面奇点处的留数,
然后代入上述公式就得结果。显然结果必然
是实数,如果是复数,说明计算有误。
例2.3计算积分
x2
I
x2 1 2 dx
引言
在实际问题中,往往会遇到求一些实 积分的值,计算比较复杂。但是,如果把 它们化为复变函数的积分,运用留数定理 计算可能要简捷的多。
首先,被积函数必须要与某个解析函 数密切相关。
其次,定积分的积分域是区间,而用 留数来计算要牵涉到把问题化为沿闭曲线 的积分。
一、形如
积分限化为从 到 ,又显然 lim f z 0 z
于是积分属于上述类型,可由(2.4)式计算
f z 可写成
f z
1 z2 a2
2
z
ia
1
2
z
ia
2
易见,f z 在上半平面只有一个二级极点
z ia,计算 f zeipz在 z ia 点的留数
Re s f
z eipz ,ia
Re s
f
z eiz , 2i
lim z
z2i
2i
f
z eiz
zeiz
1
lim
z2i z 2i
z2 1
6e2
Re
s
f
z eiz ,i
lim z
zi
i
f
z eiz
lim
zeiz
1
zi z2 4 z i 6e
将所得留数代入(2.5)式得:
I
xsin x dx
(x2 4)(x2 1)
奇点?在实轴上是否无奇点?
c.等式 lim zf z 0 是否成立? z
(2)计算 f z在上半平面奇点处的留数,
然后代入上述公式就得结果。显然结果必然
是实数,如果是复数,说明计算有误。
例2.3计算积分
x2
I
x2 1 2 dx
复变函数 第五章留数
F(t)
c
n
t
n
cnt
n
(2)
n 1
n0
第五章 留数
相应地规定:如果 t = 0 是 F(t) 的可去奇点、m 级极点或本
性奇点,则称z 是 f (z) 的可去奇点、m 级极点或本性奇点。
将式(1)写成
f
(z)
c
n
z
n
c0
cn zn
(3)
n 1
n 1
将式(2)写成
F(t)
cn t n
c0
cnt
( n 0, 1, 2, , m 1)
f
(m) (z0 ) m!
a0
0
故必有 f (z) cm (z z0 )m cm1(z z0 )m1 cm2 (z z0 )m2
(z z0 )m[cm cm1(z z0 ) cm2 (z z0 )2 ]
(z z0)m (z)
根据 0 z z0 内 f (z) 的 Laurent 级数的不同,孤立奇点 分为三种类型。
第五章 留数
1、可去奇点
如果 Laurent 级数中不含 z z0 的负幂项,孤立奇点 z0 称为 f (z) 的可去奇点。
即
c0 c1(z z0 ) cn (z z0 )n
在 0 z z0 内收敛于 f (z) 。
lim f (z)
zz0
或
lim f (z)
z z0
第五章 留数
如果 f (z)以 z0为其孤立奇点,则下列四个条件是等价的。 它们中的任何一条都是 m 级极点的特征:
(1) f (z) 在以 z0 点为中心的去心邻域内的 Laurent 级数只 有有限多个 z z0 的负幂项;
复变函数之留数定理
∫ f
( z )在a点的留数:Res [
f
(z), a]
=
a−1
=
1
2π
i
f (ζ )dζ ,
C
它是f (z)在a的充分小去心邻域内洛朗展式中 z−1a 的系数。
故∫C f (ζ )dζ = 2π i Res[ f (z), a],
C:在a的使f (z)解析的去心邻域K 内 < 任一条围绕 a 的正向闭路。
第五章 留数及其应用
留数是复变函数又一重要概念,有着非常广泛的应用.
5.1 留数定理
一 、留数的定义和计算
设 a 是 f (z) 的孤立奇点, 则∃δ > 0,使得
f (z)在K : 0 < z − a < δ 解析,f (z)在K内可展为洛朗级数:
∑+∞
f (z) =
an(z − a)n,
n=−∞
留数定理(P103定理1):设f (z)在闭路C上解析, y
C
∫ ∑ 在C内部除n个孤立奇点a1, a2 ,, an外解析,则 n
a1 C1 a2 C2
C
f (z)d z
=
2π
i Res f (z), ak 。
k =1
0 a3 C3
证明 ∀k =1, 2,n, 以ak为圆心作充分小的圆周Ck ,
an Cn
x
使得C1,C2 ,,Cn都在C 的内部,且它们彼此完全分离(如图)。
由多连通区域柯西积分定理和留数定义得
n
n
∫ ∑ ∫ ∑ C
f (z)d z =
k =1
Ck
f (z)d z = 2π i Res f (z), ak 。#
k =1
数学物理基本方法5.2留数
应用留数定理求解微分方程
通过构造合适的复变函数,将微分方程的求解转化为复平面上留数 的计算。
典型例题的解析
例题1
例题3
求解一阶常系数线性微分方程。通过 构造指数形式的复变函数,利用留数 定理求解。
求解带有初值条件的一阶非线性微分 方程。通过构造满足初值条件的复变 函数,利用留数定理进行求解。
例题2
计算实轴上的定积分
利用留数定理,可以将某些实 轴上的定积分转化为复平面上 的围道积分,从而简化计算过 程。
计算围道上的线积分
对于某些围道上的线积分,可 以通过计算围道内奇点的留数 之和来得到积分结果。
判断函数的解析性
如果一个函数在某区域内解析 ,那么该函数在该区域内的任 意闭曲线上的积分为零。利用 留数定理可以判断一个函数是 否在某区域内解析。
留数定理的应用举例
计算实函数的定积分
通过构造复变函数,将实函数的定积分转化为复变 函数的线积分,再利用留数定理计算。
计算复变函数的线积分
对于某些特殊的复变函数,可以直接利用留数定理 计算其在某条曲线上的线积分。
解决物理问题
在物理学中,许多问题可以通过构造复变函数并应 用留数定理来解决,如计算电场、磁场等物理量的 分布。
求解二阶常系数齐次线性微分方程。 通过构造多项式形式的复变函数,利 用留数定理求解。
06
总结与展望
本文工作总结
研究背景
介绍了数学物理基本方法5.2留数 的研究背景和意义,了本文的主要研究内容, 包括留数的定义、性质、计算方法 和应用等方面的研究。
研究结果
通过洛必达法则,可以将求留数的问题转化为求导数的问题,从 而简化计算过程。
其他方法
幂级数展开法
当函数$f(z)$在奇点$z_0$处可以展开为幂级数时,可以通过幂级数的系数来计算留数。具体地,如果 $f(z) = sum_{n=0}^{infty} a_n (z - z_0)^n$,则留数可以表示为$text{Res}[f(z), z_0] = a_{-1}$,即幂 级数中$(z - z_0)^{-1}$的系数。
通过构造合适的复变函数,将微分方程的求解转化为复平面上留数 的计算。
典型例题的解析
例题1
例题3
求解一阶常系数线性微分方程。通过 构造指数形式的复变函数,利用留数 定理求解。
求解带有初值条件的一阶非线性微分 方程。通过构造满足初值条件的复变 函数,利用留数定理进行求解。
例题2
计算实轴上的定积分
利用留数定理,可以将某些实 轴上的定积分转化为复平面上 的围道积分,从而简化计算过 程。
计算围道上的线积分
对于某些围道上的线积分,可 以通过计算围道内奇点的留数 之和来得到积分结果。
判断函数的解析性
如果一个函数在某区域内解析 ,那么该函数在该区域内的任 意闭曲线上的积分为零。利用 留数定理可以判断一个函数是 否在某区域内解析。
留数定理的应用举例
计算实函数的定积分
通过构造复变函数,将实函数的定积分转化为复变 函数的线积分,再利用留数定理计算。
计算复变函数的线积分
对于某些特殊的复变函数,可以直接利用留数定理 计算其在某条曲线上的线积分。
解决物理问题
在物理学中,许多问题可以通过构造复变函数并应 用留数定理来解决,如计算电场、磁场等物理量的 分布。
求解二阶常系数齐次线性微分方程。 通过构造多项式形式的复变函数,利 用留数定理求解。
06
总结与展望
本文工作总结
研究背景
介绍了数学物理基本方法5.2留数 的研究背景和意义,了本文的主要研究内容, 包括留数的定义、性质、计算方法 和应用等方面的研究。
研究结果
通过洛必达法则,可以将求留数的问题转化为求导数的问题,从 而简化计算过程。
其他方法
幂级数展开法
当函数$f(z)$在奇点$z_0$处可以展开为幂级数时,可以通过幂级数的系数来计算留数。具体地,如果 $f(z) = sum_{n=0}^{infty} a_n (z - z_0)^n$,则留数可以表示为$text{Res}[f(z), z_0] = a_{-1}$,即幂 级数中$(z - z_0)^{-1}$的系数。
复变函数第五章
C
这是由于 z 0 为f ( z ) 的孤立奇点而使积分 ∫ f ( z )dz 留下”的值 “留下”
11
定义: 的孤立奇点, 定义 设 z0 为 f (z) 的孤立奇点, f (z) 在 z0 邻域内的洛朗级数中负 称为f 在 留数, 幂次项 (z- z0)–1 的系数 c–1 称为 (z)在 z0 的留数,记作 Res [f (z), z0] 或 Res f (z0)。 。 由留数定义, 由留数定义 Res [f (z), z0]= c–1 (1)
z2 z4 z 2n sin z (1) = 1 − + − L + ( −1) n +L z 3! 5! ( 2n + 1)!
特点:没有负幂次项 特点:
e z 1 +∞ z n +∞ z n −1 1 z z n −1 ( 2) = ∑ = ∑ = + 1+ +L+ +L z z n = 0 n! n = 0 n! z 2! n!
1 把扩充z平面上 平面上∞ 作变换 w = 把扩充 平面上∞的去心邻域 R<|z|<+∞映射成扩充 ∞ z w平面上原点的去心邻域: <| w |< 1 . 平面上原点的去心邻域: 平面上原点的去心邻域 0 R 1
又 f ( z ) = f ( ) = ϕ ( w) .这样 我们可把在去心邻域 这样, 这样 我们可把在去心邻域R<|z|<+∞对f (z)的研 ∞ 的研 w 1 的研究.显然 究变为在 0 <| w |< 1 内对ϕ (w)的研究 显然ϕ (w)在 0 <| w |< 内解 的研究 在 R R 所以w=0是孤立奇点 是孤立奇点. 析, 所以 是孤立奇点 在无穷远点 ∞ lim f ( z ) = lim ϕ ( w ) ⇒ f (z)在无穷远点 z=∞ 的奇点类型
这是由于 z 0 为f ( z ) 的孤立奇点而使积分 ∫ f ( z )dz 留下”的值 “留下”
11
定义: 的孤立奇点, 定义 设 z0 为 f (z) 的孤立奇点, f (z) 在 z0 邻域内的洛朗级数中负 称为f 在 留数, 幂次项 (z- z0)–1 的系数 c–1 称为 (z)在 z0 的留数,记作 Res [f (z), z0] 或 Res f (z0)。 。 由留数定义, 由留数定义 Res [f (z), z0]= c–1 (1)
z2 z4 z 2n sin z (1) = 1 − + − L + ( −1) n +L z 3! 5! ( 2n + 1)!
特点:没有负幂次项 特点:
e z 1 +∞ z n +∞ z n −1 1 z z n −1 ( 2) = ∑ = ∑ = + 1+ +L+ +L z z n = 0 n! n = 0 n! z 2! n!
1 把扩充z平面上 平面上∞ 作变换 w = 把扩充 平面上∞的去心邻域 R<|z|<+∞映射成扩充 ∞ z w平面上原点的去心邻域: <| w |< 1 . 平面上原点的去心邻域: 平面上原点的去心邻域 0 R 1
又 f ( z ) = f ( ) = ϕ ( w) .这样 我们可把在去心邻域 这样, 这样 我们可把在去心邻域R<|z|<+∞对f (z)的研 ∞ 的研 w 1 的研究.显然 究变为在 0 <| w |< 1 内对ϕ (w)的研究 显然ϕ (w)在 0 <| w |< 内解 的研究 在 R R 所以w=0是孤立奇点 是孤立奇点. 析, 所以 是孤立奇点 在无穷远点 ∞ lim f ( z ) = lim ϕ ( w ) ⇒ f (z)在无穷远点 z=∞ 的奇点类型
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
P( z0 ) Q( z0 )
是P(z)的0阶零点 z0是f (z)的一阶极点。
Res[ f (z), z0] 规则III
lim
zz0
f
(z)(z z0 ) P(z0)
Q( z0 )
lim
z z0
P(z) Q(z) (z z0)
lim
z z0
P(z) Q(z) Q(z0)
z z0
设z0为f
Re s[ f (z), z1] Re s[ f (z), zn ] Re s[ f (z), ] 0
证明: 在扩充复平面内,构造圆周C : z R, 使 z1, z2 , , zn 包含在C内, 根据留数定理得
C f (z)dz 2i{Re s[ f (z), z1] Re s[ f (z), zn ]}
1
2i
f (z) dz
c
为f (z)在孤立奇点z0 的留数,记作 Res[ f (z), z0 ]
其中,C : z z0 r R
c1 Res[ f (z), z0 ]
f (z)在z0去心邻域上罗朗级数中负幂项 c1 (z z0 )1的系数。
例1 :
计算 Res [
z(z
1
1)2
,1]
解:在z 1的去心邻域0 z 1 内罗朗级数为:
解: e z 在z 0的去心邻域内的罗朗级数为:
1
ez
1 (1)n
n0 n! z
1
ez
c
dz
{
1 (1)n} dz
c n0 n! z
11
{1
c
z
2! z 2
} dz
2课件 i
2
二.留数定义
(一般情形) 计算积分 c f (z) dz,其中c为z0去心邻域
内围绕z0的任意一条正向简单闭曲线
z1
(z
1 1)5
(z
1 1)4
(z
1 1)3
z 1 1
Res[
z(z
1 1)2
,1]
0
课件
6
3
例2:计算f (z) ze z 在z 0处留数;
3
解: ze z 在z 0的去心邻域内罗朗级数为:
3
ze z z
1 ( 3)n z 3 32
33
n0 n! z
2!z 3!z 2
Res[ze
z1
z1
1
C
ze z 1 z
dz
2i{Re
s[
f
(
z),0]
Re
s[
f
(z),1]}
4i
课件
18
四、无穷远点
设f (z)在R z 内解析,称 1 f (z)dz为f (z)
在点的留数,记为
2i C
1
Res[f (z),]
f (z)dz
2i C
其中,C为圆环域R z 内的圆周 z r R
若函数f
( z )在区域D内除有限个孤立奇点z1 ,
z2 ,
,
z
外
n
处
处解析,
且它在D的边界C上也解析,则
n
f (z)dz 2i Res[f (z), zk ].
C
k 1
证明:分别围绕z1, z2 , , zn 构造小的圆周c1, c2 , , cn
f
(z)在由C,c1, c2 ,
,
cn所围成
的区域上解析,根据定理3.2
c1
19
例子:
求函数f (z)
ez 1 在扩充复平面上各个奇点处的留数。 z2
解: f (z)在扩充复平面上的孤立奇点z 0,z ,
( f (z)在的去心邻域R z 解析)
z 0是f (z)的一阶极点
(z 0是(ez 1)的一阶零点,是z2的二阶零点)
Re
s[
e
z z2
1
,0]=lim z0
k为偶数
11
eiz 2) f (z) z(z2 1)2
解 z 0, z i为孤立奇点
z 0为z(z2 1)的一阶零点 z i为z(z2 1)2的二阶零点 eiz在z 0,i处不为零。
z 0是f (z)的一阶极点,z i是f (z)的二阶极点
eiz
Res[ f
(z),0]
lim
预备知识
例题3.6
dz
2πi
c(z z0 )n1 0
n n
0 ,
0
C
:围绕z0的任意闭曲线。
柯西定理:
f (z)在以简单闭曲线C为边界的有界闭区域D上解析,
则 C f (z)dz 0
课件
1
5.2 留数的一般理论
5.2.1 留数的定义及计算
一。引例
1
计算积分 e z dz,其中c为z 0的去心邻域内围绕z 0 c 的任意一条正向简单闭曲线。 1
z0
f
(z)
z
lim
z0
(z2
1)2
1
Res[ f (z),i] 1 lim d { f (z) (z i)2}
1! zi dz
lim
zi
d
eiz
{
dz z(z
i)2 }
3 4e
类似地,Res[
f
(z),i]
1 1!
l课im件
zi
d dz
{
f
(z)
(z
i)2}
1 412e
定理5.5(留数定理) 设D是复平面上一个有界闭区域,
f
是 cosz的一阶零点
2
0,1, 为f (z)的一阶极点,
(z)(z zk )
lim
z zk
z zk cos z
lim
z zk
1 (cos
z)'
1
1
sin z |zzk 1
k为奇数 (洛比塔法则)
k为偶数
或
1
1
Res[ f (z), zk ] (cosz)'|课z件zk 1
k为奇数
2
解 z 0为被积函数的一阶极点,z 1为二阶极点
且 z 0, z 1都在C内。 根据留数定理
C
ez z(z 1)2 dz
2i{Res ez
Res[ f (z),0] lim
z0 z(z
[f (z),0] Re
1)2 z 1
s[
f
(
z),1]}
Res[
f
(z),1]
(2
1 1)!
lim
1 2!
1 3!
1
4!
课件 n 0
1 n!
2
(
n0
zn )
n!
z1
2 e 17
2
Re s[ f (z),0] c1 e 2
1
z 1是 f (z) ze z 的一阶极点
1 z
1
(z 1,是(1 z)的一阶零点,是ze z的0阶零点)
1
Re s[ f (z),1] lim f (z)(z 1) lim (ze z ) e
于是
c1 (z z0 )m1 c0 (z z0 )m c1 (z z0 )m1
d m1 dz m1
[
f
(z)( z
z0 )m ]
c1 (m 1)!c0 (z
z0 )m
2
c1
1 lim
(m 1)! zz0
d m1 dz课m件1
[
f
(z)( z
z0 )m ]
9
特别:1)若z0 是f (z)的一阶极点时,则
C1
e
z
(z z
1)2
dz
C2
(
ez z
z 1)2
dz
2i(
(z
ez 1)2
)
|z0
2i
1!
ez (
z
)' |z 1
2i
注:留数定理的计算结果与第三章的结果相同.
思考题
g(z)
z0为f
(
z
)的m阶极
点,
f (z)dz
C
且在C的内部
高阶导数公式 留数定理
课件
f (z)
(z z0 )m
16
z0
f (z)在 z 0的去心邻域0 z 上的罗朗级数
1
ze z f (z)
1 z
( zn1) (
n0
n0
z 1 1
1 (1 n! z
z )n
1
ez
)
(
z zz
(
2
z
n0
z3
n)
(
1 n0 n! )(1
( 1 z
1 )n ) z 1
2!
1 z2
1 3!
1 z3
)
z 1的系数c1
z 0为孤立奇点
z 0的去心邻域上的罗朗级数为
f
(z)
z3 (sin 1)5 z
z3
(1 z
1 3!
1 z3
)5
z 1项不存在
Res[ f (z),0] 0
特别:z0 是f (z)的可去奇点时(罗朗展开式中不含负幂项)
Res[ f (z), z0 ] 0 课件
8
2. 极点处留数的计算
如果z0是f (z)的m阶极点,则
(
ez z2
1)
z
1
f (z)在R z 内的罗朗展开式
zn 1
f (z)
n0
n! z2
1 1 1 z z 2! 3!
ez 1
Re s[ z2 , ] 1