现代控制理论第五章

现代控制理论第一章答案1

习题解答 2-1 2-2 2-3 2-4 2-5 2-6 2-7 2-8 2-9 2-10 2-11 2-12 2-13 2-14 2-15 2-16 2-17 2-18

2-1 如题图2-1所示为RLC 电路网络,其中()i U t 为输入电压,安培表的指示电流)(t i o 为输出 量。试列写状态空间模型。 题图2-1 解: (1) 根据回路电压和节点电流关系,列出各电压和电流所满足的关系式. ()()() 1 ()()()()() i L C L C R C C d U t L i t U t dt d i t i t i t C U t U t dt R =+=+=+ (2) 在这个电路中,只要给定了储能R 元件电感L 和电容C 上的i L 和U C 的初始值,以及t ≥t 0 时刻后的输入量U i (t ),则电路中各部分的电压、电流在t ≥t 0时刻以后的值就完全确定了。也就是说,i L 和U C 可构成完整的描述系统行为的一组最少个数的变量组,因此可选i L 和为U C 状态变量,即 x 1(t )=i L , x 2(t )=u C (3) 将状态变量代入电压电流的关系式,有 1221211 11 i dx x U dt L L dx x x dt C RC =-+=- 经整理可得如下描述系统动态特性的一阶矩阵微分方程组--状态方程 11i 22110110x x L U L x x C RC ??-??????????=+???? ???? -???????????? (4) 列写描述输出变量与状态变量之间关系的输出方程, 1221110C x y U x x R R R ????===?? ?????? (5) 将上述状态方程和输出方程列写在一起,即为描述系统的状态空间模型的状态空间表达 式 11i 221211011010 x x L U L x x C RC x y x R ??-?????????? =+????????-? ??????????? ??? ?=????? ???

现代控制理论1-8三习题库

信息工程学院现代控制理论课程习题清单

正确理解线性系统的数学描述,状态空间的基本概念,熟练掌握状态空间的表达式,线性变换,线性定常系统状态方程的求解方法。 重点容:状态空间表达式的建立,状态转移矩阵和状态方程的求解,线性变换的基本性质,传递函数矩阵的定义。要求熟练掌握通过传递函数、微分方程和结构图建立电路、机电系统的状态空间表达式,并画出状态变量图,以及能控、能观、对角和约当标准型。难点:状态变量选取的非唯一性,多输入多输出状态空间表达式的建立。 预习题 1.现代控制理论中的状态空间模型与经典控制理论中的传递函数有何区别? 2.状态、状态空间的概念? 3.状态方程规形式有何特点? 4.状态变量和状态矢量的定义? 5.怎样建立状态空间模型? 6.怎样从状态空间表达式求传递函数? 复习题 1.怎样写出SISO系统状态空间表达式对应的传递函数阵表达式 2.若已知系统的模拟结构图,如何建立其状态空间表达式? 3.求下列矩阵的特征矢量 ? ? ? ? ? ? ? ? ? ? - - = 2 5 10 2 2 1- 1 A 4.(判断)状态变量的选取具有非惟一性。 5.(判断)系统状态变量的个数不是惟一的,可任意选取。 6.(判断)通过适当选择状态变量,可将线性定常微分方程描述其输入输 出关系的系统,表达为状态空间描述。 7.(判断)传递函数仅适用于线性定常系统;而状态空间表达式可以在定 常系统中应用,也可以在时变系统中应用. 8.如果矩阵A 有重特征值,并且独立特征向量的个数小于n ,则只能化为 模态阵。 9.动态系统的状态是一个可以确定该系统______(结构,行为)的信息集 合。这些信息对于确定系统______(过去,未来)的行为是充分且必要 的。 10.如果系统状态空间表达式中矩阵A, B, C, D中所有元素均为实常数时, 则称这样的系统为______(线性定常,线性时变)系统。如果这些元素 中有些是时间t 的函数,则称系统为______(线性定常,线性时变)系 统。 11.线性变换不改变系统的______特征值,状态变量)。 12.线性变换不改变系统的______(状态空间,传递函数矩阵)。 13.若矩阵A 的n 个特征值互异,则可通过线性变换将其化为______(对 角阵,雅可比阵)。 14.状态变量是确定系统状态的______(最小,最大)一组变量。 15.以所选择的一组状态变量为坐标轴而构成的正交______(线性,非线性) 空间,称之为______(传递函数,状态空间)。

习题解答_现控理论_第6章

6-1 对线性系统 A B C D =+?? =+? x x u y x u 作状态反馈v x u +-=K ,试推导出闭环系统的状态空间模型和传递函数。 解 将反馈律代入状态空间模型,则有 ()()()()A B K A BK B C D K C DK D =+-+=-+=+-+=-+x x x v x v y x x v x v 因此,闭环系统的状态空间模型和传递函数分别为 1()()()()()K A BK B C DK D G s C DK sI A BK B D -=-+?? =-+?=--++x x v y x v 6-2 对线性系统 A B C D =+?? =+? x x u y x u 作输出反馈u =-H y +v ,试推导出闭环系统的状态空间模型和传递函数。 解 将反馈律代入状态空间模型的输出方程,则有 () C D H C DH D =+-+=-+y x y v x y v 即 ()I DH C D +=+y x v 因此,当()I DH +可逆时,闭环系统输出方程为 11()()I DH C I DH D --=+++y x v 将反馈律和上述输出方程代入状态方程,则有 11() [()][()]A B A B H A BH I DH C BH I DH D B --=+=+-+=-++++x x u x y v x v 当闭环系统的状态空间模型和传递函数分别为 1111 11111[()][()]()()()()[()][()]()H A BH I DH C BH I DH D B I DH C I DH D G s I DH C sI A BH I DH C BH I DH D B I DH D ---------?=-++++?=+++?=+-++++++x x v y x v

现代控制理论第3章答案

第三章习题 3-1判断下列系统的状态能控性和能观测性。系统中a,b,c,d 的取值对能控性和能观性是否有关,若有关,其取值条件如何? (1)系统如图3.16所示: 图3.16 系统模拟结构图 解:由图可得: 3 43432112332 211x y dx x x cx x x x x cx x bx x u ax x =-=-+=++-=-=+-=???? 状态空间表达式为: []x y u x x x x d c b a x x x x 01 000001100 011000000 43214321=? ???????????+????????????????????????----=??????? ? ??????????? ? 由于? 2x 、?3x 、? 4x 与u 无关,因而状态不能完全能控,为不能控系统。由于y 只与3x 有关,因而系统为不完全能观的,为不能观系统。 (3)系统如下式:

x d c y u b a x x x x x x ?? ????=??????????+????????????????? ???---=?????? ?????????? ?00000012200010011321321 解:如状态方程与输出方程所示,A 为约旦标准形。要使系统能控,控制矩阵b 中相对于约旦块的最后一行元素不能为0,故有0,0≠≠b a 。 要使系统能观,则C 中对应于约旦块的第一列元素不全为0,故有0,0≠≠d c 。 3-2时不变系统 X y u X X ?? ????-=?? ? ???+??????--=? 111111113113 试用两种方法判别其能控性和能观性。 解:方法一: []?? ?? ??==?? ????-=????? ?=??????--=2-2-1 12-2-1 1AB B M 1111,1111,3113C B A 系统不能控。 ,21<=rankM ??? ? ? ???????----= ??????=44221111CA C N 系统能观。,2=rankN 方法二:将系统化为约旦标准形。 ()4 20133113 A I 212 -=-==-+=+--+= -λλλλλλ,

现代控制理论第三章

2.6 可控性与可观性 26 2.6.1 概述 经典控 制论中: 系统用传递函数描述。 只注重输入-输出间的直接关系! 低阶系统,输出可控制亦可测量。 可控性与可观性不是问题。

现代控制论中: 系统描述:状态方程+输出方程 由于状态?输入,输出?状态 所以要控制输出,首先要控制状态 并且使输出随状态发生变化输 (1)输入?状态间的问题: 输入是否使状态发生希望的变化? ? 可控性问题 要使状态发生某种变化,输入? 要使状态发生某种变化,输入=? ? 最优控制问题

(2)输出?状态间的问题: 状态可否从输出得到? ? 可观测性问题 如何从输出得到? ? 最优估计问题 &可控性、可观性为现代控制理论的基础,例如最优控制与最优估计的基础! &如何处理可控性?可观测性?

可控性:系统输入对系统状态的有效控制能力 可观性:系统输出对系统状态的确切反映能力 问题: 状态可控?系统可控? 状态不可控?系统不可控? 状态可观测系统可测观 状态可观测?系统可测观? 状态不可观测?系统不可观测?

个系统的可控性和可观测性 ?分析如下4个系统的可控性和可观测性:x x 111001/????+??????=u dt d []x 11=???y x x 101/????+???????=u dt d x x 001/??+???=u dt d []x 01110=? ??y x 11110=?????????x x 0111/? ???+???=u dt d []y []x 0110=???????y

?x x 111001/????+??????=u dt d []x 11=? ??y x ∫ ?1 u y 1 2 x ∫ 1?

现代控制理论-第7章

第六次课小结 一、 Lyapunov 意义下的稳定性问题基本概念 平衡状态的概念 Lyapunov 意义下的稳定性定义(稳定,一致稳定,渐进稳定,一致渐进稳定,大范围渐进稳定等) 纯量函数的正定性,负定性,正半定性,负半定性,不定性 二次型,复二次型(Hermite 型) 二、 Lyapunov 稳定性理论 第一方法 第二方法 三、 线性定常系统的Lyapunov 稳定性分析 应用Lyapunov 方程 Q PA P A H -=+ 来进行判别稳定性 四、 线性定常系统的稳定自由运动的衰减率性能估计 衰减系数,一旦定出min η,则可定出)(x V 随时间t 衰减上界。 计算min η的关系式 五、 离散时间系统的状态运动稳定性及其判据 离散系统的大范围淅近稳定判据,Lyapunov 稳定判据在离散系统中的应用

六、线性多变量系统的综合与设计的基本问题 问题的提法 性能指标的类型 研究的主要内容 七、极点配置问题 问题的提出 可配置条件 极点配置算法

爱克曼公式(Ackermann’s Formula) 考虑由式()给出的系统,重写为 Bu Ax x +=& 假设该被控系统是状态完全能控的,又设期望闭环极点为n s s s μμμ===,,,21Λ。 利用线性状态反馈控制律 Kx u -= 将系统状态方程改写为 x BK A x )(-=& 定义 BK A A -=~ 则所期望的特征方程为 ) ())((~ 11121=++++=---=-=+-* *--*n n n n n a s a s a s s s s A sI BK A sI ΛΛμμμ 由于凯莱-哈密尔顿定理指出A ~ 应满足其自身的特征 方程,所以

现代控制理论第2章l

第2章 线性系统理论 线性系统是实际系统的一类理想化模型,通常用线性的微分方程或差分方程描述。其基本特征是满足叠加原理,可分为线性定常系统和线性时变系统。 现代控制理论中,采用状态变量法描述系统,它既能反映系统内部变化情况,又能考虑初始条件,也为多变量系统的分析、综合提供了强有力的工具。 2.1 基本概念 输入:外部施加到系统上的全部激励。 输出:能从外部测量到的来自系统的信息。 状态变量:确定动力学系统状态的最小的一组变量。 状态向量:若n 个状态变量)(1t x ,)(2t x ,…,)(t x n 是向量)(t x 的各个分量,即 )(t x 为状态向量。 状态空间:以各状态变量作为基底组成的n 维向量空间。在特定的时间,状态向量)(t x 在状态空间中只是一个点。 状态轨迹:状态向量)(t x 在状态空间中随时间t 变化的轨迹。 连续时间系统:)(t x 的定义域为某时间域],[f 0t t 内一切实数。 离散时间系统:)(t x 的自变量时间t 只能取到某实数域内的离散值。 状态方程:描述系统状态变量与输入变量之间动态关系的一阶微分方程

组或一阶差分方程组。一般形式为 或 式中 u ——输入向量; k ——采样时刻。 状态方程表征了系统由输入引起的内部状态的变化。 输出方程:描述输出变量与系统输入变量和状态变量间函数关系的代数方程,具有形式 它是一个代数变换过程。 状态空间表达式:状态方程与输出方程联立,构成对动态系统的完整描述,总称为系统的状态空间表达式,又称动态方程。 线性系统的状态空间表达式具有下列一般形式: 1)连续时间系统 ? ??+=+=)()()()()()()()()()(t t t t t t t t t t u D x C y u B x A x & (2–1) 式中 A (t )——系统矩阵或状态矩阵,n ?n 矩阵; B (t )——控制矩阵或输入矩阵,n ?p 矩阵; C (t )——观测矩阵或输出矩阵,q ?n 矩阵; D (t )——输入输出矩阵,q ?p 矩阵; x ——状态向量,n 维; u ——控制作用,p 维; y ——系统输出,q 维。 2)离散时间系统

《现代控制理论》第3版课后习题答案

《现代控制理论参考答案》 第一章答案 1-1 试求图1-27系统的模拟结构图,并建立其状态空间表达式。 解:系统的模拟结构图如下: 系统的状态方程如下: 令y s =)(θ,则1x y = 所以,系统的状态空间表达式及输出方程表达式为 1-2有电路如图1-28所示。以电压)(t u 为输入量,求以电感中的电流与电容上的电压作为状态变量的状态方程,与以电阻2R 上的电压作为输出量的输出方程。 解:由图,令32211,,x u x i x i c ===,输出量22x R y = 有电路原理可知:? ? ? +==+=++3 213 222231111x C x x x x R x L u x x L x R 既得 2 221332 2222131111111111x R y x C x C x x L x L R x u L x L x L R x =+- =+-=+-- =? ? ? 写成矢量矩阵形式为: 1-4 两输入1u ,2u ,两输出1y ,2y 的系统,其模拟结构图如图1-30所示,试求其状态空间表达式与传递函数阵。 解:系统的状态空间表达式如下所示: 1-5系统的动态特性由下列微分方程描述 列写其相应的状态空间表达式,并画出相应的模拟结构图。 解:令.. 3. 21y x y x y x ===,,,则有 相应的模拟结构图如下: 1-6 (2)已知系统传递函数2 )3)(2() 1(6)(+++= s s s s s W ,试求出系统的约旦标准型的实现,并画出相应的模拟结构图 解:s s s s s s s s s W 31 233310)3(4)3)(2()1(6)(22++++- ++-=+++= 1-7 给定下列状态空间表达式 []??? ? ? ?????=???? ??????+????????????????????----=??????????321321321100210311032010x x x y u x x x x x x ‘ (1) 画出其模拟结构图 (2) 求系统的传递函数

王金城现代控制理论第一章知识题目解析

王金城化工出版社第1章习题参考答案: 1-1(a )选123123,,,,,y y y v v v 为状态变量,根据牛顿定律, 对1M ,有()1 1112121 dv M g K y K y y M dt ---= 对2M ,有()()2 22123232dv M g K y y K y y M dt +---= 对3M ,有()3 3323433dv M g K y y K y M dt +--= 令312112233415263,,,,,dy dy dy x y x y x y x v x v x v dt dt dt ===== ====,整理得 ()()()122214253641 11 23342332 51262322233 ,,,, ,K K K x x x x x x x x x g M M K K K K K x K K x x x g x x x g M M M M M +====-++++= -++=-+ () ()() 122 11 23222 22 3433 3 000100000010000000100000 01100010000K K K M M x x g K K K K M M M K K K M M ? ????? ??????? ? ??+??-????=+??????+?? ??- ? ? ???? ??? ? +- ?? ??? ? 100000010000001000y x ?? ??=?? ???? (b )选12,12,,y y v v 为状态变量,根据牛顿定律, 对1M ,有()1 1121111 dv M g B v v K y M dt +--= 对2M ,有()2 2221212dv f M g B v B v v M dt +---= 令1211223142,,,dy dy x y x y x v x v dt dt === ===,整理得 11113243134111 ,,K B B x x x x x x x x g M M M ===--++, 112434222 B B B f x x x g M M M +=-++

(完整word版)现代控制理论习题解答(第二章)

第二章 状态空间表达式的解 3-2-1 试求下列矩阵A 对应的状态转移矩阵φ(t )。 (1) ???? ??-=2010A (2) ?? ? ???-=0410A (3) ??????--=2110 A (4) ???? ??????-=452100010A (5)?? ??????? ???=000010000100 0010A (6)? ???? ? ??? ???=λλλλ000100010000A 【解】: (1) ???? ? ? ????? ?++=?? ????+-=-=Φ-----)2(10)2(11}201{])[()(11 111s s s s L s s L A sI L t ??? ? ????-=????? ? ??????++-=---t t e e s s s s L 22105.05.01)2(10)2(5.05.01 (2) ?? ? ???-=???? ? ? ??????+++- +=?? ????-=-=Φ-----t t t t s s s s s s L s s L A sI L t 2cos 2sin 22sin 5.02cos 44 441 4}41{])[()(222211 111 (3) ??? ? ? ?????? ?++-+++=?? ????+-=-=Φ-----222211 111)1()1(1)1(1 )1(2 }211{])[()(s s s s s s L s s L A sI L t ??? ? ????--+=Φ------t t t t t t te e te te e te t )( (4) 特征值为:2,1321===λλλ。 由习题3-1-7(3)得将A 阵化成约当标准型的变换阵P 为

《现代控制理论基础》第3章

第一和第二讲小结 一、状态空间表达式的标准形式 能控标准形 能观测标准形 对角线标准形 Jordan标准形 二、矩阵的特征值及对角线化 矩阵是能控标准形时的变换矩阵求法(1)特征值互异 (2)重根 (3)一般情形 三、利用MATLAB进行系统模型之间的相互转换 [A, B, C, D] = tf2ss (num, den) [num,den] = ss2tf [A,B,C,D,iu] 四、时域分析的基本概念 状态转移矩阵及其性质,凯莱-哈密尔顿定理 最小多项式 五、矩阵指数计算 级数法,对角线标准形与Jordan标准形法 拉氏变换法凯莱-哈密尔顿定理

II、分析部分 第三章线性多变量系统的能控性与能观测性分析 能控性(controllability)和能观测性(observability)深刻地揭示了系统的内部结构关系,由R.E.Kalman于60年代初首先提出并研究的这两个重要概念,在现代控制理论的研究与实践中,具有极其重要的意义,事实上,能控性与能观测性通常决定了最优控制问题解的存在性。例如,在极点配置问题中,状态反馈的的存在性将由系统的能控性决定;在观测器设计和最优估计中,将涉及到系统的能观测性条件。 在本章中,我们的讨论将限于线性系统。将首先给出能控性与能观测性的定义,然后推导出判别系统能控和能观测性的若干判据。 3.1 线性连续系统的能控性 3.1.1 概述 能控性和能观测性就是研究系统这个“黑箱”的内部的状态是否可由输入影响和是否可由输出反映。 例1.给定系统的描述为

u x x x x ??????+????????????-=??????2150042121 []?? ? ???-=2160 x x y 将其表为标量方程组的形式,有: u x x +=114 u x x 2522+-= 26x y -= 例3-2:判断下列电路的能控和能观测性 ) (t u + y C R ) (t u L y 2

现代控制理论基础第二章习题答案

第二章 状态空间表达式的解 3-2-1 试求下列矩阵A 对应的状态转移矩阵φ(t )。 (1) ???? ??-=2010A (2) ?? ? ???-=0410A (3) ??????--=2110 A (4) ???? ??????-=452100010A (5)?? ??????? ???=000010000100 0010 A (6)? ???? ? ??????=λλλλ000100010000A 【解】: (1) (2) (3) (4) 特征值为:2,1321===λλλ。 由习题3-1-7(3)得将A 阵化成约当标准型的变换阵P 为 ???? ??????=421211101P ,??????????----=-1211321201 P 线性变换后的系统矩阵为: (5) 为结构四重根的约旦标准型。 (6) 虽然特征值相同,但对应着两个约当块。 或}0 100010000{ ])[()(1 111----?? ??? ????? ??------=-=Φλλλλs s s s L A sI L t 3-2-2 已知系统的状态方程和初始条件 (1)用laplace 法求状态转移矩阵; (2)用化标准型法求状态转移矩阵; (3)用化有限项法求状态转移矩阵; (4)求齐次状态方程的解。 【解】:

(1) (2) 特征方程为: 特征值为: 2,1321===λλλ。 由于112==n n ,所以1λ对应的广义特征向量的阶数为1。 求满足0)(11=-P A I λ的解1P ,得: 0110000000312111=????????????????????--P P P ,???? ? ?????=0011P 再根据0)(22=-P A I λ,且保证1P 、2P 线性无关,解得: 对于当23=λ的特征向量,由0)(33=-P A I λ容易求得: 所以变换阵为: []??????????-==11001000132 1 P P P P ,???? ??????=-1100100011P 线性变换后的系统矩阵为: (3) 特征值为: 2,1321===λλλ。 即 (4) 3-2-3 试判断下列矩阵是否满足状态转移矩阵的条件,如果满足,试求对应的矩阵A 。 (1)??? ???????-=Φt t t t t sin cos 0cos sin 0001 )((2)????????-=Φ--t t e e t 220)1(5.01)( (3)???? ??? ?+--+--=Φ--------t t t t t t t t e e e e e e e e t 22222222)((4)? ??? ??? ?++-+-+=Φ----t t t t t t t t e e e e e e e e t 33335.05.025.025.05.05.0)( 【解】: (1) ∴不满足状态转移矩阵的条件。 (2) ∴满足状态转移矩阵的条件。 由)()(t A t Φ=Φ &,得A A =Φ=Φ)0()0(&。

现代控制理论基础_周军_第二章状态空间分析法

2.1 状态空间描述的基本概念 系统一般可用常微分方程在时域内描述,对复杂系统要求解高阶微分方程,这是相当困难的。经典控制理论中采用拉氏变换法在复频域内描述系统,得到联系输入-输出关系的传递函数,基于传递函数设计单输入-单输出系统极为有效,可从传递函数的零点、极点分布得出系统定性特性,并已建立起一整套图解分析设计法,至今仍得到广泛成功地应用。但传递函数对系统是一种外部描述,它不能描述处于系统内部的运动变量;且忽略了初始条件。因此传递函数不能包含系统的所有信息。由于六十年代以来,控制工程向复杂化、高性能方向发展,所需利用的信息不局限于输入量、输出量、误差等,还需要利用系统内部的状态变化规律,加之利用数字计算机技术进行分析设计及实时控制,因而可能处理复杂的时变、非线性、多输入-多输出系统的问题,但传递函数法在这新领域的应用受到很大限制。于是需要用新的对系统内部进行描述的新方法-状态空间分析法。 第一节基本概念 状态变量指描述系统运动的一组独立(数目最少的)变量。一个用阶微分方程描述含有个独立变量的系统,当求得个独立变量随时间变化的规律时,系统状态可完全确定。若变量数目多于,必有变量不独立;若少于, 又不足以描述系统状态。因此,当系统能用最少的个变量 完全确定系统状态时,则称这个变量为系统的状态变量。 选取状态变量应满足以下条件:给定时刻的初始值, 以及的输入值,可唯一确定系统将来的状态。而时 刻的状态表示时刻以前的系统运动的历史总结,故状态变量是对系统过去、现在和将来行为的描述。 状态变量的选取具有非唯一性,即可用某一组、也可用另一组数目最少的变量。状态变量不一定要象系统输出量那样,在物理上是可测量或可观察的量,但在实用上毕竟还是选择容易测量的一些量,以便满足实现状态反馈、改善系统性能的需要。

第七章---现场控制盘

第七章现场控制盘 在海上平台,一个大的处理系统,经常包含有多个子系统,如注水系统、分子筛干燥再 生系统、热油炉供热系统、丙烷制冷系统、三甘醇脱水及再生系统等。这些子系统规模较小,控制简单且相对独立,这些子系统的控制因此也常常采用现场控制PLC来实现子系统的控制,子控制系统PLC经过通讯方式与主控制系统相连,把它的数据信息传递给主控制系统,主控制系统又可将ESD信号通过硬线送到就地控制盘,实施对就地盘的关断,从而实现整个控制系统的集中管理与监视。也实现了平台控制系统的控制分散和危险分散的概念。 一、现场控制盘所用的控制系统 许多子系统都采用了性能好、可靠性高的A-B公司P LC的S LC500系列控制器,下面主要 介绍由SLC500系列控制器组成的现场控制系统。 1. 结构 SLC500系列控制器是为小规模应用而设计的可编程控制器,该系列有两种硬件结构:一种是用于固定式控制器,电源、CPU,I/O卡等都连为一体,不能随意配置;另一种用于模块式控制器,由于该系列可提供各种各样I/O模块,可以随意地、很经济地配置其控制系统。 一个SLC500系列的现场控制系统包括S LC硬件、显示终端、寻址、软件等。模块式现场 控制系统的结构如图4-1所示。 图7-1 模块式现场控制系统结构图 2. 硬件 SLC硬件包括安装框架、处理器模块、I/O模块、电源块等。 SLC安装框架均需要电源向处理器CPU及每个I/O槽供电。 处理器模块是现场控制系统的核心部分,它负责整个控制系统的数据处理、通讯、工作方式等。在处理器模块上有一个钥匙开关,使用钥匙开关可以改变处理器的操作方式。在处理器上有三种操作模式:运行(RUN)、编程(PROG)、远程(REM)。如表7-1 162

《现代控制理论》第3版课后习题答案

《现代控制理论参考答案》 第一章答案 1-1 试求图1-27系统的模拟结构图,并建立其状态空间表达式。 1 1K s K K p +s K s K p 1 +s J 11s K n 2 2s J K b - + + - +- ) (s θ)(s U 图1-27系统方块结构图 解:系统的模拟结构图如下: ) (s U ) (s θ-- - + ++图1-30双输入--双输出系统模拟结构图 1 K p K K 1p K K 1++ +p K n K ? ? ?1 1J ? 2 J K b ? ?- 1 x 2 x 3 x 4 x 5x 6x 系统的状态方程如下:

u K K x K K x K K x X K x K x x x x J K x J x J K x J K x x J K x x x p p p p n p b 161116613153 46 1 5141313322211 +-- =+-==++--== =??? ?? ? 令y s =)(θ,则1x y = 所以,系统的状态空间表达式及输出方程表达式为 []????? ? ??? ? ??????????=??????? ???????????????+?????? ?????????????????????????? ?? ??????????? ?----- =????????????????????????????? ?65432116543211111111 2654321000001000000 00000001001000000 000001 0x x x x x x y u K K x x x x x x K K K K K K J K J J K J K J K x x x x x x p p p p n p b 1-2有电路如图1-28所示。以电压)(t u 为输入量,求以电感中的电流和电容上的电压作为状态变量的状态方程,和以电阻2R 上的电压作为输出量的输出方程。

习题解答_现控理论_第2章

2-1 如题图2-1所示为RLC 电路网络,其中()i U t 为输入电压,安培表的指示电流)(t i o 为输出 量。试列写状态空间模型。 题图2-1 解: (1) 根据回路电压和节点电流关系,列出各电压和电流所满足的关系式. ()()() 1()()()()() i L C L C R C C d U t L i t U t dt d i t i t i t C U t U t dt R =+=+=+ (2) 在这个电路中,只要给定了储能R 元件电感L 和电容C 上的i L 和U C 的初始值,以及t ≥t 0 时刻后的输入量U i (t ),则电路中各部分的电压、电流在t ≥t 0时刻以后的值就完全确定了。也就是说,i L 和U C 可构成完整的描述系统行为的一组最少个数的变量组,因此可选i L 和为U C 状态变量,即 x 1(t )=i L , x 2(t )=u C (3) 将状态变量代入电压电流的关系式,有 12212 1111i dx x U dt L L dx x x dt C RC =-+ =- 经整理可得如下描述系统动态特性的一阶矩阵微分方程组--状态方程 11i 22110 110x x L U L x x C RC ?? - ?? ????????=+???????? -???????? ???? (4) 列写描述输出变量与状态变量之间关系的输出方程, 12211 10C x y U x x R R R ?? ??= = =???????? (5) 将上述状态方程和输出方程列写在一起,即为描述系统的状态空间模型的状态空间表达 式

赵明旺版习题解答_现控理论_第2章

习题解答 2-1 如题图2-1所示为RLC 电路网络,其中()i U t 为输入电压,安培表的指示电流)(t i o 为输出量。试列写状态空间模型。 题图2-1 解:?(1) 根据回路电压和节点电流关系,列出各电压和电流所满足的关系式. ()()()1 ()()()()() i L C L C R C C d U t L i t U t dt d i t i t i t C U t U t dt R =+=+=+ (2) 在这个电路中,只要给定了储能R 元件电感L 和电容C 上的i L 和U C 的初始值,以及t?t 0时 刻后的输入量U i (t ),则电路中各部分的电压、电流在t?t 0时刻以后的值就完全确定了。也就是说,i L 和U C 可构成完整的描述系统行为的一组最少个数的变量组,因此可选i L 和为U C 状态变量,即 x 1(t )=i L , x 2(t )=u C (3) 将状态变量代入电压电流的关系式,有 1221211 11 i dx x U dt L L dx x x dt C RC =-+=- 经整理可得如下描述系统动态特性的一阶矩阵微分方程组--状态方程 11i 22110110x x L U L x x C RC ?? -??????????=+????????-? ????? ?????? && (4) 列写描述输出变量与状态变量之间关系的输出方程, 1221110C x y U x x R R R ?? ? ?= ==????? ???

(5) 将上述状态方程和输出方程列写在一起,即为描述系统的状态空间模型的状态空间表达 式 1 1 i 221211011010 x x L U L x x C RC x y x R ??-?? ????????=+???????? -? ???????????????=????? ??? &&

最新现代控制理论知识点汇总

第一章 控制系统的状态空间表达式 1. 状态空间表达式 n 阶 Du Cx y Bu Ax x +=+=&1:?r u 1:?m y n n A ?: r n B ?: n m C ?:r m D ?: A 称为系统矩阵,描述系统内部状态之间的联系;B为输入(或控制)矩阵,表示输入对每个状态变量的作用情况;C 输出矩阵,表示输出与每个状态变量间的组成关系,D直接传递矩阵,表示输入对输出的直接传递关系。 2. 状态空间描述的特点 ①考虑了“输入-状态-输出”这一过程,它揭示了问题的本质,即输入引起了状态的变化,而状态决定了输出。 ②状态方程和输出方程都是运动方程。 ③状态变量个数等于系统包含的独立贮能元件的个数,n 阶系统有n 个状态变量可以选择。 ④状态变量的选择不唯一。 ⑤从便于控制系统的构成来说,把状态变量选为可测量或可观察的量更为合适。 ⑥建立状态空间描述的步骤:a 选择状态变量;b 列写微分方程并化为状态变量的一阶微分方程组;c 将一阶微分方程组化为向量矩阵形式,即为状态空间描述。 ⑦状态空间分析法是时域内的一种矩阵运算方法,特别适合于用计算机计算。 3. 模拟结构图(积分器 加法器 比例器) 已知状态空间描述,绘制模拟结构图的步骤:积分器的数目应等于状态变量数,将他们画在适当的位置,每个积分器的输出表示相应的某个状态变量,然后根据状态空间表达式画出相应的加法器和比例器,最后用箭头将这些元件连接起来。 4. 状态空间表达式的建立 ① 由系统框图建立状态空间表达式:a 将各个环节(放大、积分、惯性等)变成相应的模拟结构图;b 每个积 分器的输出选作i x ,输入则为i x &;c 由模拟图写出状态方程和输出方程。 ② 由系统的机理出发建立状态空间表达式:如电路系统。通常选电容上的电压和电感上的电流作为状态变量。 利用KVL 和KCL 列微分方程,整理。 ③由描述系统的输入输出动态方程式(微分方程)或传递函数,建立系统的状态空间表达式,即实现问题。实现是非唯一的。 方法:微分方程→系统函数→模拟结构图→状态空间表达式 注意:a 如果系统函数分子幂次等于分母幂次,首先化成真分式形式,然后再继续其他工作。 b 模拟结构图的等效。如前馈点等效移到综合反馈点之前。p28 c 对多输入多输出微分方程的实现,也可以先画出模拟结构图。 5.状态矢量的线性变换。也说明了状态空间表达的非唯一性。不改变系统的特征值。特征多项式的系数也是系统的不变量。 特征矢量 i p 的求解:也就是求0)(=-x A I i λ的非零解。 状态空间表达式变换为约旦标准型(A为任意矩阵):主要是要先求出变换矩阵。a 互异根时,各特征矢量按列排。b 有重根时, 设3阶系统,1λ=2λ,3λ为单根,对特征矢量1p ,3p 求法与前面相同, 2p 称作1λ的广义特征矢量,应满足121)(p p A I -=-λ。 系统的并联实现:特征根互异;有重根。方法:系统函数→部分分式展开→模拟结构图→状态空间表达式。 6.由状态空间表达式求传递函数阵)(s W D B A sI C s W ++-=-1)()( r m ?的矩阵函数[ij W ] ij W 表示第j 个输入对第i 个输出的传递关系。 状态空间表达式不唯一,但系统的传递函数阵)(s W 是不变的。 子系统的并联、串联、反馈连接时,对应的状态空间表达及传递函数阵)(s W 。方法:画出系统结构图,理清关系,用分块矩阵表示。 第二章 控制系统状态空间表达式的解

现代控制理论第二章

一: 基本概念 1:系统:所谓系统,是由相互制约的各个部分有机结合,且具有一定功能的整体。 2:静态系统:对于任意时刻t,系统的输出惟一地取决于同一时刻的输入,这类系统称为静态系统。 3:动态系统:对于任意时刻t,系统的输出不仅与t时刻的输入有关,而且与t时刻以前的累积有关(这种累积在t0(t0<t)) 4:状态变量:是构成系统状态的变量,是指能完全描述系统行为的最小变量组中的每个变量。 5:系统变量:输入变量、状态变量、输出变量统称为系统变量。6:状态方程:是描述系统状态变量与输入变量之间关系的一阶微分方程组(连续时间系统)或一阶差分方程组(离散时间系统)。 7:输出方程:是描述系统输出变量与系统状态变量和输入变量之间关系的代数方程。 8:状态:动态系统的状态是完全地描述动态系统运动状况的信息,系统在某一时刻的运动状况可以用该时刻系统运动的一组信息表征,定义系统运动信息的集合为状态。例如,由做直线运动的质点所构成的系统,它的状态就是质点的位置和速度。 9:状态向量:设系统的状态变量为x1(t),x2(t),………,x n(t),那么用它们作为分量所构成的向量就称为状态向量,记作

10:状态空间:以状态变量x 1(t),x 2(t),………,x n (t)为坐标轴构成的n 维空间称为状态空间。 11:状态轨迹:状态向量的端点在状态空间中的位置代表了某一特定时刻系统的状态。 二:状态方程形式:系统的状态方程表征了系统由输入引起的内部状态变化的规律。连续时间系统和离散时间系统状态方程的一般形式可分别表示为 和 式中,x(t)-连续时间系统的n 维状态向量; x(k)-离散时间系统在k 时刻的的n 维状态向量; u(t)-连续时间系统的r 维输入(控制)向量; u(k)-离散时间系统在k 时刻的r 维输入向量; f[.]-n 维向量函数,f[.]=[f 1(.),f 2(.),…,f n (.)]T . 三:输出方程形式:连续时间系统和离散时间系统输出方程的一般形式可分别表示为 y(t)=g[x(t),u(t),t] ()()()12n x t x t .()..x t x t ??????????=?? ??????????[] . ()(),(),x t f x t u t t =[] (1)(),(),x k f x k u k k +=

现代控制理论第版课后习题答案

现代控制理论第版课后 习题答案 Document number:WTWYT-WYWY-BTGTT-YTTYU-2018GT

《现代控制理论参考答案》 第一章答案 1-1 试求图1-27系统的模拟结构图,并建立其状态空间表达式。 解:系统的模拟结构图如下: 系统的状态方程如下: 令y s =)(θ,则1x y = 所以,系统的状态空间表达式及输出方程表达式为 1-2有电路如图1-28所示。以电压)(t u 为输入量,求以电感中的电流和电容上的电压作为状态变量的状态方程,和以电阻2R 上的电压作为输出量的输出方程。 解:由图,令32211,,x u x i x i c ===,输出量22x R y = 有电路原理可知:? ? ? +==+=++3 213 222231111x C x x x x R x L u x x L x R 既得 2 221332 2222131111111111x R y x C x C x x L x L R x u L x L x L R x =+- =+-=+-- =? ? ? 写成矢量矩阵形式为: 1-4 两输入1u ,2u ,两输出1y ,2y 的系统,其模拟结构图如图1-30所示,试求其状态空间表达式和传递函数阵。 解:系统的状态空间表达式如下所示: 1-5系统的动态特性由下列微分方程描述 列写其相应的状态空间表达式,并画出相应的模拟结构图。 解:令.. 3. 21y x y x y x ===,,,则有

相应的模拟结构图如下: 1-6 (2)已知系统传递函数2 )3)(2() 1(6)(+++=s s s s s W ,试求出系统的约旦标准型的实现, 并画出相应的模拟结构图 解:s s s s s s s s s W 31 233310)3(4)3)(2()1(6)(22++++- + +-=+++= 1-7 给定下列状态空间表达式 []??? ? ? ?????=???? ??????+????????????????????----=??????????321321321100210311032010x x x y u x x x x x x ‘ (1) 画出其模拟结构图 (2) 求系统的传递函数 解: (2)???? ??????+-+-=-=31103 201 )()(s s s A sI s W 1-8 求下列矩阵的特征矢量 (3)???? ??????---=6712203 010 A 解:A 的特征方程 0611667122301 23=+++=?? ?? ??????+---=-λλλλλλλA I 解之得:3,2,1321-=-=-=λλλ

相关文档
最新文档