第21讲对数平均不等式及其应用导数专题提升讲义)

合集下载

对数平均不等式的证明及应用

对数平均不等式的证明及应用

对数平均不等式的证明及应用对数平均不等式是数学中常见的不等式之一,它通常用于证明和推导各种数学问题。

本文将对对数平均不等式进行详细的证明和应用进行讨论。

对数平均不等式又称为几何平均与算术平均的不等式,通常表现为ln(x1) +ln(x2) >= 2ln(√(x1*x2))。

下面我们将对此公式进行证明。

假设x1和x2是两个大于0的实数,并且x1≠x2。

我们定义a = ln(x1)和 b = ln(x2),则有x1=e^a,x2=e^b。

对于任意两个实数a和b,我们有以下公式:e^a + e^b >= 2√(e^a * e^b)将x1和x2代入上式得:x1 + x2 >= 2√(x1 * x2)对上式两边取对数得:利用对数的性质ln(a* b) = ln(a) + ln(b),将右侧拆开得:将a和b重新代入得:ln(x1 + x2) >= ln(2) + 1/2 * ln(x1) + 1/2 * ln(x2)由于ln(2)为常数,我们令-ln(2) = k,那么有:将ln(x1 + x2)右侧移至左侧得:二、对数平均不等式的应用对数平均不等式可以应用于各种数学问题中,下面我们将举例说明其应用场景。

1. 几何平均和算术平均关系的证明ln(x1) + ln(x2) >= 2ln(√(x1*x2))ln(x1 * x2) >= 2ln(√(x1*x2))ln(x1 * x2) >= ln((√(x1*x2))^2)x1 * x2 >= (√(x1*x2))^2由上述推导可知,x1 * x2 >= (√(x1*x2))^2。

这表明x1 * x2的值大于或等于其平方根的平方,即x1 * x2的值大于或等于x1*x2。

我们可以得出结论:几何平均大于等于算术平均。

2. 凸函数的性质证明对数平均不等式也可以用于证明凸函数的性质。

假设f(x)是一个凸函数,我们需要证明对于任意x1和x2,有以下不等式成立:根据凸函数的性质和对数平均不等式,我们可以推导出上述不等式成立。

浅谈对数平均数在导数中的简单应用

浅谈对数平均数在导数中的简单应用

解题篇创新题高二数学2021年5月■河南省平顶山市第一中学在必修五关于不等式的学习中,我们对基本不等式有了初步认识,并学习了均值不2___等式,即“若",b#R十,则'"'+---"b"+b2'"^b2,当且仅当"=b时等号成立)今天,我向大家介绍一位新朋友“对数平均数)并分享它在导数中的简单应用。

对数平均数:如果",b#R+,且0V b V",,即为"Y b的对数平均数$ m a——m b如果把对数平均数放到均值不等式中,我们就可得到如下不等式链:若",b#R+,且0V b V",贝U0V b V21<"Va—b In"—In b"+b2"2+b2V"证明如下$(1)证明a—b In"—In b"+b2变形得,:n "2((b>"+b,即证山b>2(—1)构造函数7(')=^'—('>1)。

尤十丄则f f(')('一1)'('+1)2"°故7(')在(1,+7)上单调递增,7(')>7(1)=o,得证$()证明f"v@"—L b。

耿文泽(指导教师:于幸)变形得,n*v—"构造函数f(')=ln'—一+£('>1)。

一此处为了避免对根式求导,可将函数构造为f(=)=21n=一=+1(=>1)。

(—1)2则?()=—°=2丿'0$故f()在(1,+7)上单调递减,21n=V1t—一O=令==即得证$关于不等式链中对数平均数与其余平均数的关系可利用不等式的传递性证明,也可利用上面的构造法证明,这里不再赘述$下面和大家分享一下这些不等式在导数中的一些简单运用$!!已知函数f(')=E一1—ln',函数f(')恰有两个零点'1一2,证明:'1+ '2>2$证明:由题意知,=ln'1+---=ln'2+----$—2变形得,ln'1—ln'2-一一'2,也即1工2 '1―'2ln'1―ln'2'1'2$2由对数平均数不等式“———V"+bcl—b__.»2'1'2",I1----V'一2,艮卩'1+12'2>2$提示:关于[2[V l~~"一n b的证明,丄丄m a——rn b"+b34解题篇 题追根溯源高二数学 2021年5月即证 @ ¥ — b + $-V 0,构造函数 g (')=b Zt? 乙 a 「1 __@ '—可+ 厂('>1),即可证明$Z Z h!" 已知函数 7(') = e ' —1'2 —,'—1函数7(')有两个极值点'1 ,'$ $求证:'1 +'$ V 0 $证明:易得 7‘(')= e ' — ' —,$由题意知,e 1 — '1 — , = e 2 — '$ — , $整理得,e 1 — e 2 ='1 — '$ $令'1 V '$ ,则 0V e 1 V e 2 $由对数不等式 av U/a e '$$ (2010 年湖北卷)7(')=a'----十c (a >0)在(1,7(1))处的切线为夕='一1(1)用a 表示b 和c(2)求证:1 + 2 + 3--------+ 1 > l n (" +U+'S + D解析:(1)易知 b = a — 1 ,c = 1 — 2a2(2)由对数平均数不等式1~1a + b’ a — b ,可知 1 n a — ln b V (—b ( +b "In a ——In b2a b成立故 e 1 2 V 1,'1 + '$V 0令 a =$ + 1,b =$,贝U :(a — b ) (a +b )2a b2九+ 12$ (" +1)111$ $ +1! # 已知函数7 ('" = 1 — ' +cc' &若7 (')存在两个极值点'1,'$,求故 ln($ + 1)— 1 n $ V 111$ $ + 1l n 2 — l n 1V 11 + 1证明:因为7,(')= 一’$+,'一1,所以'1 + 1l n 3 一 l n 2 V 1'1 , ' $是方程'$ —,' +1 = 0的两解$则 '1 +' $ =,>0 ,'1'$ = 1 $因此,7( '1 "— 7( '$ "l n($ + 1) 一 1 n $V — (-----------—$ "十丄=-----------'$ 一'1 +, (In '1 一 @ '$ "'1*2因此,l n ($+ 1 )1/111 \1 n1+2 (—++ #)十——rv$23$ /$ + 1」= 2('$ —'1)+,(ln '1 一 In ' $" $7('1" 一7('$"@ '1 — @ '$=,------------------------------2C j C- 1 C j C- $ C j C- 1 C j C- $要证#1 —H$V ,一2成立,即证In '1 一 l n '□ —h $V 1由对数不等式“ aV @a —1 n b ”可知l n '1 一 l n '$故——1------------2 V 1成立,证毕1 —h $$ 1整理得,I n ($ + 1) +~ V 1 + 可 ++ 1 2--------+—,得证 $3 n通过以上例题,同学们是否感受到对数平均数在证明导数中的零点(极值点)偏移问 题时的便捷之处?直接运用对数平均数不等式可以避免参数换元或运用原函数单调性构造新的函数进行证明,但需要大家熟练掌握 对数不等式的证明(运用到解答题中需要给出证明)还需要大家针对题目所给的条件找到可以解决问题的对数平均数不等式$(责任编辑徐利杰"35。

对数均值不等式及变式在高考压轴题的应用

对数均值不等式及变式在高考压轴题的应用

对数均值不等式及变式在高考压轴题的应用对数均值不等式及变式在高考压轴题的应用引言:数学作为高考的一门重要科目,其中不等式是数学中的一个重要概念。

在高考中,有一类不等式常常被提及,那就是对数均值不等式及其变式。

本文将对对数均值不等式及变式的应用进行探讨,并从深度和广度两个方面阐述其在高考压轴题中的实际应用。

一、对数均值不等式的定义与简单应用1.1 对数均值不等式的定义对数均值不等式是数学中的一类不等式,它是由均值不等式推导而来。

对于两个正数a和b,可以定义它们的几何平均数M和算术平均数A 为:\[ M = \sqrt{ab} \]\[ A = \frac{a+b}{2} \]而对于这两个平均数的自然对数,我们可以定义为:\[ m = \ln{M} \]\[ a = \ln{a} \]则对数均值不等式可以表示为:\[ \frac{a+b}{2} \geq \sqrt{ab} \]即:\[ \frac{a+b}{2} \geq \ln{\sqrt{ab}} \]\[ \ln{(a+b)} \geq \ln{2} + \ln{\sqrt{ab}} \]\[ \ln{(a+b)} \geq \ln{2} + \frac{1}{2} \ln{ab} \]1.2 对数均值不等式的简单应用对数均值不等式在求证过程中往往与其他的不等式相结合,从而达到简化证明的目的。

例:设a、b、c为正数,证明以下不等式:\[ \frac{ab+bc+ca}{a+b+c} \leq \frac{(a+b)(b+c)(c+a)}{8abc}\] 解:由对数均值不等式可得:\[ \ln{(a+b)} \geq \ln{2} + \frac{1}{2} \ln{ab} \]\[ \ln{(b+c)} \geq \ln{2} + \frac{1}{2} \ln{bc} \]\[ \ln{(c+a)} \geq \ln{2} + \frac{1}{2} \ln{ca} \]将上述三个不等式相加,得到:\[ \ln{(a+b)} + \ln{(b+c)} + \ln{(c+a)} \geq 3 \ln{2} +\frac{1}{2}(\ln{ab}+\ln{bc}+\ln{ca}) \]\[ \ln{(a+b)(b+c)(c+a)} \geq 3 \ln{2} +\frac{1}{2}(\ln{ab}+\ln{bc}+\ln{ca}) \]由对数的性质可得:\[ (a+b)(b+c)(c+a) \geq 8abc \cdot \sqrt{2} \]将上述不等式代入原式,即可得到所要证明的不等式。

导数及其应用讲导数在不等式中的应用课件

导数及其应用讲导数在不等式中的应用课件

02
导数符号与单调性关系
当函数在某区间内的导数大于0时,函数在该区间内单调增加;当导数
小于0时,函数单调减少。
03
应用举例
例如,对于函数$f(x) = x^3 + 2x^2 - 5x - 7$,其导数为$f'(x) =
3x^2 + 4x - 5$,通过判断导数的符号可以确定该函数在哪些区间内单
调增加或单调减少。
利用导数求解不等式问题
不等式问题的转化
极值与最值的关系
利用导数的性质将不等式问题转 化为求函数极值或最值的问题。
函数的极值点可能是不等式问题 的解,而函数的最大值或最小值 可能是不等式问题的唯一解。
应用举例
例如,对于不等式$x^3 + 2x^2 - 5x - 7 > 0$,可以将其转化为 求函数$f(x) = x^3 + 2x^2 - 5x - 7$的最小值问题,通过求导并 判断导数的符号来确定函数的极 值点,从而得到不等式的解。
03
导数在其他领域的应用
导数在经济学中的应用
边际分析和最优化
导数可以用来分析经济函数的边际变 化,帮助确定经济活动的最优化条件 。
弹性分析
经济增长和收敛
导数可以用来研究经济增长的收敛性 和稳定性。
导数可以用来分析需求和供给的弹性 ,从而理解市场价格和产量的变化。
导数在物理学中的应用
运动学
导数可以用来描述物体的 运动状态,例如速度、加 速度和位移。
利用导数解决最值问题
最值问题的转化
利用导数的性质将最值问题转化为求函数极值或最值的问题。
极值与最值的关系
函数的极值点可能是最值问题的解,而函数的最大值或最小值可能是最值问题的唯一解。

对数平均不等式

对数平均不等式

对数平均不等式两个正数和的对数平均定义:(此式记为对数平均不等式)取等条件:当且仅当时,等号成立.a b(),(,)ln ln().a ba bL a b a ba a b-⎧≠⎪=-⎨⎪=⎩(,)2a bL a b+≤≤ab=只证:当,可设.(I……①a b≠(,)2abL a b+<<a b>(,)L a b<不等式①1ln ln ln2ln(1)aa b x x xb x⇔-<⇔<⇔<-=>中中构造函数,则.1()2ln(1)f x x x xx=-->22211()1(1f xx x x'=--=--因为时,,所以函数在上单调递减,故,从而不等式①成立;1x>()0f x'<()f x(1,)+∞()(1)0f x f<=(II)再证:……②(,)2a bL a b+<不等式②2(1)2()2(1)ln ln ln ln(1)(1)(1)aa b a xba b x xaa b b xb---⇔->⇔>⇔>=>+++中中构造函数,则.2(1)()ln,(1)(1)xg x x xx-=->+22214(1)()(1)(1)xg xx x x x-'=-=++因为时,,所以函数在上单调递增,故,从而不等式②成立;综合(I)(1x>()0g x'>()g x(1,)+∞()(1)0g x g<=II)知,对成立,当且仅当时,等号成立.,a b R+∀∈(,)2a bL a b+≤≤a b=题型一:指数换对数的证明极值偏移问题例1:(2010天津理)已知函数,如果且,证明:xxexf-=)(21xx≠)()(21xfxf=221>xx+解:212121)(0),()(xxxxxfxf≠∴=,且请读者自己证明>,>例2:已知是函数的两个零点,且.其极值点为,(1)求a的取值范围。

对数平均不等式学生

对数平均不等式学生

对数平均不等式学生文件排版存档编号:[UYTR-OUPT28-KBNTL98-UYNN208]对数平均不等式1.定义:设,0,,a b a b >≠则2ln ln a b a b a b+->>-ln ln a b a b -- 为对数平均数. 2.几何解释: 反比例函数()()10f x x x =>的图象,如图所示,AP BC TU KV ||||||,MN CD x ||||轴,(),0,A a 1,,P a a ⎛⎫ ⎪⎝⎭()1,0,,B b Q b b ⎛⎫ ⎪⎝⎭,,T 作()f x 在点2,2a b K a b +⎛⎫ ⎪+⎝⎭处的切线分别与,AP BQ 交于,E F ,根据左图可知,变形公式: )0.()(2ln ln >≥+-≥-b a ba b a b a 3.典例剖析对数平均数的不等式链,提供了多种巧妙放缩的途径,可以用来证明含自然对数的不等式问题.对数平均数的不等式链包含多个不等式,我们可以根据证题需要合理选取其中一个达到不等式证明的目的.(一) 0ln ln b ab a a b a 的应用 例1 (2014年陕西)设函数)1ln()(x x f +=,()()g x xf x '=,其中()f x '是)(x f 的导函数.(1)(2)(略)(3)设+∈N n ,比较()()()12g g g n +++与()n f n -的大小,并加以证明..(二) 220ln ln b b a b a b a 的应用 例 2 设数列{}n a 的通项n a =,其前n 项的和为n S ,证明:()ln 1n S n <+.(三) 02ln ln a b b a b a b a 的应用例3. 设数列{}n a 的通项111123n a n =++++,证明:()ln 21n a n <+. (四) 2011ln ln b ab a b a a b 的应用例 4. (2010年湖北)已知函数0b f xax c a x 的图象在点1,1f 处的切线方程为1y x .(1)用a 表示出,b c ;(2)(略) (3)证明:1111ln 11.2321n n n n n (五) 0ln ln b a ab b a b a 的应用例5. (2014福建预赛)已知1()ln(1)311f x a x x x =+++-+. (1)(略)(2)求证:()222223411ln 21411421431414n n n +++++>+⨯-⨯-⨯-⨯-对一切正整数n 均成立.强化训练 1. (2012年天津)已知函数()()()ln 0f x x x a a =-+>的最小值为0.(1)(2)(略)(3)证明:()()12ln 212*.21n i n n N i =-+<∈-∑ 2.(2013年新课标Ⅰ)已知函数()()()1ln 11x x f x x xλ+=+-+. (1)若0x ≥时, ()0,f x ≤求λ的最小值;(2)设数列{}n a 的通项111123n a n =++++,证明:21ln 24n n a a n -+>.。

对数平均值不等式

对数平均值不等式

对数平均值不等式
今天给大家介绍一个在解决关于对数或者指数中多变量问题一种很好用的工具——对数平均值不等式
下面来看一下一中竞赛班和实验班课后作业中的一道题目,运用上述的对数平均值不等式简直就是一剑封喉
总结:当一个题目是关于对数函数“lnx”的x1,x2的证明题型
时,不妨可以考虑用对数平均值不等式来证明,运用对数平均值不等式操作一般是以下三个步骤
1.利用题目条件(一般是零点或者极值点)建立参数与x1,x2的等式关系
2.利用等式(往往是两个等式相减或者相加)用x1,x2来表示参数,为后面证明中消参做准备
3.将要证明的式子中的参数利用2中建立的等式来消掉,然后利用代数的变形手段将x1,x2的式子逐步向对数平均值不等式靠拢即可下面配一道一中高三导数专题中的练习来感受一下对数平均值不等式的强大,读者自行证明
只是了解对数平均值还是不够的,对它的一个重要变形也应该熟练掌握
运用对数平均值不等式的变形,下面这道例题就没有多少思维量
总结:当一个题目是关于指数函数“ex”的x1,x2的证明题型时,不妨考虑对数平均值不等式的变形来证明,具体的操作步骤跟上述的
对数平均值不等式操作步骤几乎一摸一样,最后可能还需要再利用一下基本不等式来一个传递
同样配一道练习,供读者练习
下次更新的内容是处理导数多变量问题另外一种常见的解题策略——定主元。

对数ppt课件

对数ppt课件

,则
1 a
lg 2
,同理可得 1 b
lg 5
, 1 a
1 b
lg 2 lg 5
1
.
D 3.已知 ab 1, loga m 2 , logb m 3 ,则 logab m ( )
1
1
5
6
A. 6
B. 5
C. 6
D. 5
解析:由换底公式得, logm
a
1 loga
m
1 2
, logm
b
1 logb
边取以 c(c 0, 且c 1) 为底的对数,则 logc ax logc b ,即 x logc a logc b ,
x
logc logc
b a
③.由②③得 loga
b
logc logc
b a
(a
0, 且a
1; b
0; c
0, 且c
1)
.我
们把上式称为换底公式.
课堂巩固
C 1.已知 2a 5 , log8 3 b ,则 4a3b ( )
4.3 对数
学习目标
1.理解对数的概念 2.理解对数的运算性质 3.理解指数和对数的关系
学习重点
对数的概念与运算的性质
学习难点
对数概念的理解
新课导入
随看中国经济高速增长,人民生活水平不断 提高,旅游成了越来越多家庭的重要生活 方式,由于旅游人数不断增加A,B两地景区 自2001年起采取了不同的应对措施,A地 提高了景区门票价格,而B地则取消了景区 门票.右表给出了A,B两地景区2001年至 2015年的游客人次以及逐年增加量.
如果 a 0且a 1, M 0, N 0 ,那么:
(1) log a(MN) log a M log a N
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第14讲 对数平均不等式及其应用整理:广西南宁覃荣一、对数平均不等式及其证明设0b a >>,则211ln ln 2b a a b a b b a a b-+<<<<<-+,其中ln ln b a b a --叫做对数平均数,2a b+叫做几何平均数,211a b+叫做调和平均数,ln ln 2b a a bb a -+<<-称之为:“对数平均不等式”.ln ln 2b a a bb a -+<<-. (1ln ln b ab a-<-.ln ln b ab a -<-得ln ln b a -<,即ln b a <.记t =12ln t t t <-(1)t >.令1()2ln f t t t t=-+(1)t >, 221()1f t t t'=--2221t t t -+-=22(1)0t t --=<, 所以()f t 在(1,)+∞递减,而(1)0f =,因此当1t >时,1()2ln 0f t t t t=-+<恒成立,即lnb a < (2)再证ln ln 2b a a bb a -+<-. 由ln ln 2b a a b b a -+<-得2()ln ln b a b a a b --<+,即2(1)ln 1bb a b a a-<+.令b t a =(1)t >,则有2(1)ln 1t t t -<+(1)t >,设2(1)()ln 1t g t t t -=-+(1)t >,22214(1)()0(1)t(1)t g t t t t -'=-=>++,所以()g t 在(1,)+∞递增,而(1)0g =, 因此当1t >时,2(1)()ln 01t g t t t -=->+恒成立,即ln ln 2b a a bb a -+<-. 本证法,通过比值换元构造函数,再利用函数的单调性来证明不等式,这种把双变量变为单变量的方法是证明不等式的基本方法.几何意义:首先,我们先对对数平均不等式进行变形:2ln ln 1a b a b a b ab-<<+-,ln ln a b a b --表示经过曲线ln y x =上两点(,ln )A a a 和(,ln )B b b 的直线斜率,2a b +表示曲线ln y x =在2a bx +=ab表示曲线ln y x =在x ab = 由此可知2ln ln a b a b a b ab-<<+-的几何意义是:曲线ln y x =上两点连线的斜率大于曲线ln y x =在两端点横坐标算术平均数处的切线的斜率,小于曲线ln y x =在两端点横坐标几何平均数处的切线的斜率.于是ln ln 2a b a bab a b -+<-的几何意义为: 对于曲线ln y x =上任意两点(,ln )A a a 和(,ln )B b b ()a b <,在区间(,)a b 上都存在唯一实数0x ,使得曲线ln y x =在0x x =处的斜率等于割线AB 02a bab x +<<,这里的0x 就是a ,b 的对数平均,(这个表述实际上就是高等数学里的拉格朗日中值定理)拉格朗日(Lagrange )中值定理:若函数()f x 满足下列条件:①()f x 在闭区间[,]a b 上连续;②()f x 在开区间(,)a b 上可导,则在 (,)a b 内至少存在一点ξ,使得()()()f b f a f b aξ-'=-.拉格朗日中值定理的几种常见表达形式:①()()()()f b f a f b a ξ'-=-,b a ξ<<;②()()[()]()f b f a f a b a b a θ'-=+--,01θ<<; ③()()()f a h f a f a h h θ'+-=+,01θ<<.对数平均不等式主要是用来处理一些与指数、对数有关的不等式问题. 对数平均不等式解题范式:下面以“已知函数2()ln (2)f x x ax a x =-+-的两个零点为1x ,2x ,求证:12()02x x f +'< ”为例说明一下对数平均不等式解题范式. 步骤1:构建等量关系式.因为1x ,2x 是函数2()ln (2)f x x ax a x =-+-的两个零点,所以12()()0f x f x ==,即22111222ln (2)ln (2)x ax a x x ax a x -+-=-+-.步骤2:对等量关系式进行处理.对题目给出的是含自然底数的指数形式,我们通常需要把指数分离出来,然后再对等式两边同时取对数,而像本例本身就是含有自然底数的对数形式,不需要再进行两边取对数,我们通常把对数ln x 分离出来即可:22121221ln ln (2)(2)x x ax ax a x a x -=-+---.步骤3:恒等变形转化出对数平均数(或它的倒数),代入对数平均不等式(根据题目需要和放缩的方向,可以恰当选择调和平均数等其它形式)进行求解.变形可得:12121212ln ln ()()(2)()x x a x x x x a x x -=+----,转化出对数平均数(或它的倒数):2121121ln ln ()2x x x x a x x a -=-++-.步骤4:根据证明的目标,从不等式211ln ln 2b a a ba b b a a b-+<<<<<-+中恰当选择放缩的方向和放缩的工具.本题目标:证1212122()()202x x f a x x a x x +'=-++-<+,故工具的选择上应该是 ln ln 2b a a bb a -+<-,即211221121ln ln ()22x x x x x x a x x a -+=<-++-,再把12x x +当一个整体解出来代入目标1212122()()202x x f a x x a x x +'=-++-<+,从而证明目标. 当然,考虑到目标1212122()()202x x f a x x a x x +'=-++-<+的结构形式,将目标变形为:12122()2a x x a x x ++->+,步骤3转化出对数平均不等式的倒数212112ln ln 2x x x x x x ->-+,即12122()2a x x a x x ++->+更加有利于后面的操作,只需将12122()2a x x a x x ++->+左边移到右边,即可得到目标1212122()()202x x f a x x a x x +'=-++-<+.二、对数平均不等式在极值点偏移中的应用类型一:不含参数的极值点偏移问题【例1】(2010年高考天津理科第21题(3))已知函数()xf x xe-=()x R ∈,如果12x x ≠,且12()()f x f x =,证明:122x x +>.解析:由12()()f x f x =得1212x x x ex e --=,又12x x ≠,所以1x 和2x 同号,当0x <时,()(1)0xf x x xe -'=->,()f x 单调递增,若10x <,20x <,则由12()()f x f x =得12x x =,这与题设不符,所以10x >,20x >. 将等式1212x x x e x e --=两边同时取以自然对数得1122ln ln x x x x -=-,即2121ln ln x x x x -=-,所以21211ln ln x x x x -=-,由对数平均不等式得12212112ln ln x x x x x x +->=-,即1212x x+>,所以122x x +>.下面证明121212ln ln 2x x x xx x -+<-.证明:(比值换元+构造函数)11122212122(1)2()ln1x x x x x x x x x x -->=++,构造函数2(1)()ln 1t g t t t -=-+,所以214()(1)g t t t '=-+22(1)0(1)t t t -=≥+,所以()g t 是增函数,又因为121x x >,所以12()(1)0x g g x >=,即1122122(1)ln1x x x x x x ->+,故121212ln ln 2x x x xx x -+<-成立,命题得证. 【方法小结】利用对数平均不等式解题的一般步骤:步骤1:构建等量关系式;步骤2:对等量关系式进行处理;步骤3:恒等变形转化出对数平均数(或它的倒数),代入对数平均不等式(根据题目需要和放缩的方向,可以恰当选择调和平均数等其它形式)进行求解;步骤4:根据证明的目标,从不等式211ln ln 2b a a ba b b a a b-+<<<<<-+中恰当选择放缩的方向和放缩的工具.在这特别强调一下:利用对数平均不等式证明的时候,必须要证明一下对数平均不等式.本文为了节约篇幅,今后都把证明对数平均不等式省略,特此说明.【变式训练1】已知1212ln ln x x x x =12()x x ≠,求证:212x x e >.解析:设1212ln ln x x a x x ==,则1122ln ln x ax x ax =⎧⎨=⎩,两式相减得1212ln ln ()x x a x x -=-,即1212ln ln x x a x x -=-,不妨设12x x >,所以212x x e >两边取对数得12ln ln 2x x +>,由等比性质知结合1212ln ln x x a x x ==可得:1212ln ln x x a x x +=+,1212ln ln ()x x a x x +=+,故命题等价于证明12()2a x x +>成立,将1212ln ln x x a x x -=-代入12()2a x x +>得121212ln ln ()2x x x x x x -+>-,即121212ln ln 2x x x x x x -+<-,这就是对数平均不等式,显然成立. 类型二:含参数的极值点偏移问题【例2】已知函数2()ln f x x x ax =-+.(1)当(1,)x ∈+∞时,函数()f x 为递减函数,求a 的取值范围;(2)设()f x '是函数()f x 的导函数,1x ,2x 是函数()f x 的两个零点,且12x x <,求证:12()02x x f +'<. 解析:(1)1a ≤(过程略).(2)证明:由1x ,2x 是函数()f x 的两个零点,且12x x <,所以21112222ln 0ln 0x x ax x x ax ⎧-+=⎪⎨-+=⎪⎩,两式相减得:22221211ln ()()0x x x a x x x --+-=,所以211221ln()x x a x x x x =++-, 所以12()2x x f +'2112121221ln22()x x x x a x x x x x x =-++=+++-212121212()ln x x xx x x x x --+=-, 要证12()02x x f +'<,只需证2121212()ln 0x x x x x x --<+即可. 解法一(对数平均不等式)由2121212()ln 0x x x x x x --<+变形得211221ln ln 2x x x x x x -<+-.由对数平均不等式可知,上式显然成立.解法二(比值换元+构造函数)由2121212()ln 0x x xx x x --<+变形得2212112(1)ln 1x x x x x x ->+,记211x t x =>,则有2(1)ln 1t t t ->+(1)t >,构造函数2(1)()ln 1t h t t t -=-+(1)t >, 22214(1)()0(1)(1)t h t t t t t -'=-=>++(1)t >,()h t 在(1,)+∞单调递增,∴2(1)()ln (1)01t h t t h t -=->=+,∴2212112(1)ln 1x x x x x x ->+,∴12()02x x f +'<.【方法小结】本例跟例题1相比,要构建对数平均数(或它的倒数)的障碍就是参数m ,所以这种含参数的应该首先消去参数再按照常规的对数平均数解题范式进行解题. 【变式训练】(2016年4月湖北七市教科研协作体高三文科第21题) 已知函数1()ln f x m x x=--()x R ∈,若恰有两个零点1x ,2x 12()x x <,求证:122x x +>. 解析: 1x ,2x 是()f x 的两个零点,∴ 11221ln 1ln m x x m x x ⎧=+⎪⎪⎨⎪=+⎪⎩,得121211ln ln x x x x +=+,即212112ln ln x x x x x x -=-,所以2121121ln ln x x x x x x -=-, 又由对数平均不等式得2121ln ln x x x x -->即121x x >,则121x x >,所以122x x +>>,命题得证. 三、对数平均不等式在双变量中的应用【例1】(2015年合肥高三模拟最后一卷)已知函数()ln f x x kx =-()k R ∈. (1)若0k >,求函数()f x 的单调区间;(2)若函数()y f x =的两个相异的零点1x ,2x ,求证:212x x e >.解析:(1)()f x 的单调增区间为1(0,)k ;减区间为1(,)k+∞,过程略. (2)证明:因为1x ,2x 是函数()y f x =的两个相异的零点,必有0k >,不妨设210x x >>则有1122ln ln x kx x kx =⎧⎨=⎩,两式相减得:2121ln ln ()x x k x x -=-,可得 2121ln ln x x k x x -=-.要证212x x e >,即证:12ln ln 2x x +>,将1122ln ln x kx x kx =⎧⎨=⎩两式相加得1212ln ln ()x x k x x +=+,故只需证1212ln ln ()2x x k x x +=+>,即2121ln ln x x k x x -=-122x x >+,由对数平均不等式211221ln ln 2x x x xx x -+<-可知上式显然成立.【方法小结】用对数平均不等式解决双变量的不等式证明问题时,解题的模式还是用范式的步骤来解.这种问题往往需要对证明目标进行变形,然后将对数平均数对变形的结果进行整体代换即可.【变式训练2】(2015江南十校联考部分)已知函数()ln f x x ax =-.若函数()y f x =的图像在1x =处的切线平行于x 轴,且11(,)A x y ,22(,)B x y 12()x x <是函数()y f x =的图像上任意两个不同的点,设直线AB 的斜率为k ,证明:211111k x x -<<-. 证明:由题意知,1()f x a x '=-,1(1)01f a '=-=,即 1a =,所以()ln f x x x =-. 直线AB 的斜率为2122112121(ln )(ln )y y x x x x k x x x x ----==--2121ln ln 1x x x x -=--.故要证211111k x x -<<-,即证21111k x x <+<,只需证212211ln ln 11x x x x x x -<<-,由对数平均不等式知211221ln ln 2x x x x x x -<<+- 又12x x <,所以22212122x x x x x =<++,11x <=,故有212211ln ln 11x x x x x x -<<-,命题得证.四、对数平均不等式在证明数列不等式中的应用 1、应用ln ln b aa b b a-<<-(0)a >证明数列不等式.由对数平均不等式ln ln 2b a a b b a -+<<-(0)a b <<,可得ln ln 2b a b bb a -+<<-,即ln ln b a a b b a-<<-(0)a >.【例1】(2014年陕西卷理科第21题)设函数()ln(1)f x x =+,()()g x xf x '=,0x ≥,其中()f x '是()f x 的导函数.(1)导1()()g x g x =,1()(())n n g x g g x +=,n N +∈,求()n g x 的表达式; (2)若()()f x ag x ≥恒成立,求实数a 的取值范围;(3)设n N +∈,比较(1)(2)()g g g n +++与()n f n -的大小,并加以证明.解析:(1),(2)略;(3)证法一:(利用ln ln b a b b a -<-放缩证明)由题意,得()1xg x x=+,所以 12(1)(2)()231n g g g n n +++=++++111()231n n =-++++,而()ln(1)n f n n n -=-+,因此,只需比较12231nn ++++和ln(1)n +的大小关系即可.现证12ln(1)231nn n +>++++.当0b a >>时,有ln ln b a b b a -<-,即1()ln ln b a b a b-<-,令a n =,1b n =+,则1ln(1)ln 1n n n <+-+,对该式子赋值1,2,3,,n 得:1ln 2ln12<-, 1ln 3ln 23<-,1ln 4ln 34<-,,1ln(1)ln 1n n n <+-+,将以上式子左右两边分别相加可得:111ln(1)231n n +++<++,故12ln(1)231nn n +>++++得证,从而命题得证. (证法二:由对数平均不等式的单变量形式证明)由题意,得()1xg x x=+,所以12(1)(2)()231ng g g n n +++=++++,而()ln(1)n f n n n -=-+,由1(1)1ln 21()2g f n =>-=-进行猜想,有(1)(2)()()g g g n n f n +++>-,该不等式等价于12231nn ++++ln(1)n <+.由对平均不等式的单变量形式:当1x >-时,恒有ln 1x x x ≥+,可知当0x >时,恒有ln(1)1xx x +>+,令1x k =,有11ln(1)11k k k+>+,即1ln(1)ln 1k k k +->+,其中k N +∈,于是有111[ln(1)ln ]()1n nk k k k k ==+->+∑∑,即12ln(1)231nn n +>++++,猜想得证. 【方法小结】本题作为压轴题,难度较大,题目采取多步设问,层层递进的方式出题,上一 问的结论可用于下一问,其中第二问是为第三问做铺垫的“梯子”,但是还是步骤繁琐,求 解过程复杂.在这里,证法一利用对数平均不等式的变形ln ln b ab b a-<-,进一步变形为1()ln ln b a b a b-<-,再根据所要证明的式子的需要,对a ,b 进行赋值a n =,1b n =+ 从而使问题大大地简化,易于被学生接受.证法二则是利用对数平均不等式的单变量形式来 证明,这需要学生掌握对数平均不等式的单变量常见的几种形式:①当01x <≤2(1)ln 1x x x -≤≤+;②当1x ≥时,恒有2(1)ln 1x x x -≤≤+事实上,对于这两个命题,当1x =时,是显然成立的.当1x ≠ln ln 2b a a bb a -+<<-, 令1a =,b x =11ln 2x x x -+<,再注意到ln x 正,负两种情况,容易得到这两 个命题.③当1x >-时,恒有ln 1x x x ≤≤+,现证这个结论如下: 证明:当0x >时,(1)1(1)11ln(1)12x x x +-++<<<+-112xx =+<+,即11ln(1)1x x x <<++-⇔ln(1)1xx x x <+<+.当10x -<<时,(1)1(1)11ln(1)ln12x x x x +-+++<<<+-112x=+<,即11ln(1)x x x +<<+⇔11ln(1)x x x x <<++⇔ln(1)1xx x x <+<+,当且仅当0x =时等号成立.【变式训练1】(2012年天津卷理科第20题)已知函数()ln()f x x x a =-+的最小值为0,其中0a >. (1)求a 的值;(2)若对任意的[0,)x ∈+∞有2()f x kx ≤成立,求实数k 的最小值; (3)证明:122ln(21)222121ni n i n =-+<-<-+∑ ()n N*∈.解析:(1)、(2)略;(3)证明:由(1)知,1a =,所以待证不等式等价于:2222ln(21)35721n n ++++<+-. 当0a b <<时,ln ln b a b b a -<-,变形得1()ln ln b a b a b-<-,令21a n =-,21b n =+,则22ln(21)ln(21)2(1)121n n n n =<+--+-+,对该式子赋值1,2,3,,n 得:2ln 3ln 23<-,2ln 5ln 35<-,2ln 7ln 57<-,,22(1)1n +-ln(21)n <+ln(21)n --,将以上式子左右两边分别相加得:2222ln(21)35721n n ++++<+-, 即12ln(21)221ni n i =-+<-∑ ()n N *∈.2.应用211ln ln b ab aa b-<-+(0)b a >>证明数列不等式.[例2] (2013年大纲卷理科第22题)已知函数1()ln(1+)1x x f x x xλ(+)=-+.(1)若0x ≥时,()0f x ≤,求λ的最小值;(2)设数列}{n a 的通项111=1+23n a n +++,证明:21ln 24n n a a n -+>. (1) 解析:由已知(0)0f =,2212()1x x f x x λλ(-)-'=(+),(0)0f '=. 若12λ<,则当02(12)x λ<<-时,()0f x '>,所以()0f x >.若12λ≥,则当0x >时,()0f x '<,所以当0x >时,()0f x <.综上,λ的最小值是12.(2) 证法一:(利用211ln ln b ab a a b-<-+证明): 当0b a >>时,211ln ln b ab a a b-<-+,即111ln ln ()()2b a b a a b -<+-, 令a n =,1b n =+,则ln(1)ln n n +- 111()21n n <++,所以,ln(1)ln n n +-111()21n n <++,ln(2)ln(1)n n +-+ 111()212n n <+++,ln(3)ln(2)n n +-+111()223n n <+++,, ln 2ln(21)n n --111()2212n n<+-,将以上不等式左右两边分别相加得: 111111ln 2()2123214n n n n n n <+++++++++-11111122124n n n n n=+++++++-,即21ln 2()4n n a a n<-+,问题得证. 证法二:(对数平均不等式的单变量形式证明):由命题2知,当1x >时,有ln x <,令2x t =,可得12ln t t t <-(1)t >,再令1k t k +=,得112ln 1k k kk k k ++<-+ 111k k =++,即1111ln ()21k k k k +<++,分别令k n =,1n +,2n +,,21n -,得到n 个不等式,两边叠加,化简得111ln 2ln 21n n n n -<⋅++,两边叠加,化简可得ln 2ln n n -<1111212n n n ⋅++++1112122n n+++⋅-11111122124n n n n n =+++++++-,即21ln 2()4n n a a n<-+,问题得证. 证法三:(利用第一问结果证明)令12λ=.由(1)知,当0x >时,()0f x <,即2ln(1)22x x x x (+)>++,取1x k =,则211>ln 21k k k k k ++(+), 于是212111[] 422(1)n n n k n a a n k k -=-+=++∑212121n k n k k k -=+=(+)∑211ln n k nk k -=+>∑ln 2ln ln 2n n =-=,所以21ln 24n n a a n-+>.【方法小结】方法二利用对数平均不等式的单变量形式ln x <,先对x 赋值变形2x t =,再对t 进行赋值1k t k+=,构建对数不等式,最后对k 进行赋值,这个思路不宜想 到,另外操作赋值过多,难度较大;方法三借助第一问12λ=,2ln(1+)22x x x x(+)<+(0)x ≥,加以赋值,并进行变形,令1x k=,121111ln(1)<()2121k k k k k k ++=+(+)+,即ln(1)ln k k +- 111()21k k <++从而达到放缩的目的;方法一利用对数平均不等式衍生211ln ln b ab a a b-<-+,再变形为111ln ln ()()2b a b a a b-<+-,再结合结论进行恰当赋值令a n =,1b n =+,相对其他两种方法而言,还是比较容易操作.【变式训练2】(2010年高考湖北省理科数学第题)已知函数()bf x ax c x=++(0)a >的图像在点(1,(1))f 处的切线为1y x =-. (I )用a 表示b ,c ;(II )若()ln f x x ≥在(1,)+∞上恒成立,求a 的取值范围;(Ⅲ)证明:1111ln(1)232(1)nn n n ++++>+++ (1)n ≥.解析:(I )1b a =-,12c a =-;(II )1[,)2+∞(端点效应+分类讨论).(III )证明:当0b a >>时,211ln ln b ab a a b -<-+,即111ln ln ()()2b a b a a b -<+-,令a n =,1b n =+,则ln(1)ln n n +-111()21n n <++,所以, ln(1)ln n n +-111()21n n <++,因此111ln 2ln1()212-<+,111ln 3ln 2()223-<+, ,ln(1)ln n n +-111()21n n <++,将以上不等式左右两边分别相加得: 11111ln(1)()2232(1)n n n +<++++++,即11ln(1)123n +<+++1112(1)2n n ++-+,可化得1111ln(1)232(1)nn n n ++++>+++,命题得证.3ln ln b ab a->-(0)b a >>证明数列不等式. 【例3】设数列}{n a 的通项公式n a =n 项和为n S ,求证:ln(1)n S n <+.证明:当(0)b a >>ln ln b a b a ->-,即ln ln b a ->,令1b n =+,a n =,则ln(1)ln n n +->=n a >>,即ln(1)ln n a n n <+-,对该不等式两边的n 同时赋值1,2,3,,n 得1ln 2ln1a <-,2ln 3ln 2a <-,3ln 4ln 3a <-,,ln(1)ln n a n n <+-,将以上不等式左右两边分别相加得:122n a a a a ++++(ln 2ln1)(ln3ln 2)(ln 4ln3)<-+-+-+(ln(1)ln )n n ++-,即ln(1)n S n <+.4.应用ln ln 2b a a bb a -+<-(0)b a >>证明数列不等式.[例4]设数列}{n a 的通项公式111123n a n=++++,证明:ln(21)n a n <+.证明:当(0)b a >>时,ln ln 2b a a b b a -+<-,2()ln ln b a b a a b -->+,令21a n =-,21b n =+,则1ln(21)ln(21)n nn+-->,对该不等式两边的n 同时赋值1,2,3,,n 得:ln3ln11->,1ln 5ln 32->,1ln 7ln 53->,,1ln(21)ln(21)n n n+-->,将以上不等式左右两边分别相加化简得:111123n++++ln(21)n <+,ln(21)n a n <+.【变式训练】(2102年高考湖北文科第题)设函数()(1)nf x ax x b =-+ (0)x >,n 为正整数,a ,b 为常数,曲线()y f x =在(1,(1))f 处的切线方程为1x y +=. (1)求a ,b 的值;(2)求函数()f x 的最大值(3)证明:1()f x ne<.解析:(1)1a =,0b =;(2)1(1)nn n n ++; (3)证明:当(0)b a >>时,ln ln 2b a a bb a -+<-,令a n =,1b n =+,则(1)ln(1)ln n n n n +-+-(1)12n n n ++<<+,即(1)ln(1)ln n n n n +-+-1n <+,所以1ln(1)ln 1n n n +->+,即 11ln 1n n n +>+,该不等式两边同乘以1n +得11ln()1ln n n e n ++>=,即11()n n e n++<,所以11(1)n n n n ne +<+,由(2)知11()(1)n n n f x n ne+≤<+,命题得证. 5.应用ln ln b ab a->-(0)b a >>证明数列不等式.【例5】(2014年福建预选赛)已知函数1()ln(1)311f x a x x x =+++-+. (1)若0x ≥时,()0f x ≥恒成立,求a 的取值范围;(2)求证:2222234141142143141n n +++++⨯-⨯-⨯-⨯-1ln(21)4n >+,n N +∈. 解析:(1)a 的取值范围为[2,)-+∞.(2)证法一:(利用ln ln b a b a ->-证明)当(0)b a >>时,ln ln b ab a->-,变形得ln ln b a -<21a n =-,21b n =+,ln(21)ln(21)n n +--<,变形可得:2111[ln(21)ln(21)]441n n n n ++--<=<-,对该不等式的n 赋 值1,2,3,,n 得:212(ln 3ln1)4411-<⨯-,212(ln 5ln 3)4421-<⨯-, 312(ln 7ln 5)4421-<⨯-,,211[ln(21)ln(21)]441n n n n ++--<⨯-,将以上不等式 左右两边分别相加化简得:2222234141142143141n n +++++⨯-⨯-⨯-⨯- 1ln(21)4n >+,n N +∈. 证法二:(利用第一问进行赋值)由(1)知,当0x >时,有1312ln(1)1x x x +->++,令221x k =-()k N +∈,则有211211ln [ln(21)ln(21)]414214k k k k k k ++>=+--⨯--,对该不等式的k 赋值1,2,3,,n 得:221(ln 3ln1)4114>-⨯-,221(ln 5ln 3)4214>-⨯-,321(ln 7ln 5)4214>-⨯-,,2141n n +⨯- 1[ln(21)ln(21)]4n n >+--,将以上不等式左右两边分别相加化简得: 2222234141142143141n n +++++⨯-⨯-⨯-⨯-1ln(21)4n >+,n N +∈.【方法小结】证法一本题根据目标1ln(21)4n +和左边式子的通项公式2141n n +⨯-,恰当选择不等式ln ln b a -<,然后再对变量进行赋值21a n =-,21b n =+;证法二利用 第一问可得出的不等式1312ln(1)1x x x +->++进行对变量x 进行赋值令221x k =-,不 等式放缩的目标和通项公式是不等式证明的导航灯,它指引着我们解题工具的选用,赋值的选择,这恰恰是这种问题证明的最难之所在,例3,例4操作的方法也基本上通过这样的路 径来选择不等式证明的工具和对变量进行赋值. 三、巩固练习1.(2016年全国课标卷I 理科第21题)已知函数错误!未找到引用源。

相关文档
最新文档