人教版高中数学选修2-2学案3.1.2复数的几何意义

人教版高中数学选修2-2学案3.1.2复数的几何意义
人教版高中数学选修2-2学案3.1.2复数的几何意义

3.1.2复数的几何意义

【学习目标】

1.理解复数与复平面内的点、平面向量是一一对应的.

2.能根据复数的代数形式描出其对应的点及向量.

【新知自学】 知识回顾:

1.复数的定义:形如a +b i (a ,b ∈R )的数叫复数,a 叫复数的_______,b 叫复数的_______.全体复数所成的集合叫做复数集,用字母C 表示.

2.复数a +b i (a ,b ∈R )在满足什么条件下,分别是实数,虚数,纯虚数?

3.如果a ,b ,c ,d ∈R ,那么a +b i =c +d i

?___________________.

新知梳理:

1.实数可以与数轴上的点一一对应,类比实数,复数与平面内的点或有序实数对

________.

2.复数的几何意义是:

(1)复平面:以x 轴为___轴,y 轴为____轴,建立直角坐标系,得到的平面叫复平面;

(2)实数都落在____轴上,纯虚数落在____轴上,除原点外,虚轴上的点都表示_______;

(3)每一个复数,有复平面内_______的一个点和它对应;反过来,复平面内的每一个点,有唯一的一个复数和它对应,所以,复数集C 与复平面内的点所成的集合是一一对应的,即

Z a bi =+?一一对应

复数复平面内的点Z(a,b)

(4)复平面内每一个点又唯一对应到复平面内的一个向量,即:

?u u r 一一对应复平面内的点Z(a,b)平面向量OZ

结合归纳知:复数集C 与复平面内的向量所成的集合也是一一对应的,即:

Z a bi =+?u u r 一一对应复数平面向量OZ ,

特别地:实数0与_______对应;

(5)复数),(R b a bi a z ∈+=的模:向量oz u u r 的模r 叫做复数),(R b a bi a z ∈+=的模,记作z 或a bi +,且|z|=r=____________________________.

说明:常把复数z a bi =+说成点Z 或是向量oz u u r ,

规定:相等的向量表示同一个复数

对点练习:

1.在复平面内,描出表示下列各复数的点:

(1)i 52+ ; (2)i 23+- ;

(3)i 42- ; (4)i --3;

(5)5 ; (6)i 3- .

2.已知复数i +2,i 42+-,i 2-,4,

i 42

3-,在复平面内画出这些复数对应的向量.

y x :a bi

+

3.求下列复数的模:

(1)3-4i ;(2)-4;(3)-5i ;(4)

i 2

3-21.

4.能说3+4i>2+i 吗?|3+4i|>|2+i|呢?

【合作探究】 典例精析:

例1.(1)若复数22(34)(56)Z m m m m i =--+--表示的点在虚轴上,求实数m 的取值.

变式练习:

例1中,若z 表示的点在复平面的左半平面,试求实数m 的取值范围.

例2.在复平面内,O 是原点,向量OA 对应的复数是i 2,如果点A 关于实轴的对称点为点B ,求向量对应的复数.

变式练习:

如果例2中点B关于虚轴的对称点为点C,求点C对应的复数.

例3.已知复数z的虚部为3,在复平面内复数z对应的向量的模为2,求复数z.

变式练习:

已知复数z=3+ai ,且|z|<4,求实数a 的取值范围.

【课堂小结】

【当堂达标】

1.已知20<

A.()5,1

B.()3,1

C.()5,1

D.()

3,1

2设z =(2t 2+5t -3)+(t 2+2t +2)i ,t ∈R ,则以下结论中正确的是( )

A .z 对应的点在第一象限

B .z 一定不是纯虚数

C .z 对应的点在实轴上方

D .z 一定是实数

3.如果P 是复平面内表示复数),(R b a bi a z ∈+=的点,分别指出在下列条件下点P 的位置:

(1)0,0>>b a ; (2)0,0>

(3)0,0≤=b a ; (4)0

4.实数m 取什么值时,复平面内表示复数z =2m +(4-m 2)i 的点

(1)位于虚轴上;

(2)位于一、三象限;

(3)位于以原点为圆心,以4为半径的圆上.

【课时作业】

1.如果复数a +b i(a ,b ∈R)在复平面内的对应点在第二象限,则( )

A .a >0,b <0

B .a >0,b >0

C .a <0,b <0

D .a <0,b >0

2.在复平面内,复数6+5i ,-2+3i 对应的点分别为A ,B .若C 为线段AB 的中点,则点C 对应的复数是( )

A .4+8i

B .8+2i

C .2+4i

D .4+i

3.当23

C .第三象限

D .第四象限

4.下列命题中假命题是( )

A .复数的模是非负实数

B .复数等于零的充要条件是它的模等于零

C .两个复数模相等是这两个复数相等的必要条件

D .复数z 1>z 2的充要条件是|z 1|>|z 2|

5.已知复数z =(x -1)+(2x -1)i 的模小于10,则实数x 的取值范围是 ( )

A .-45

-45 D .x =-45

或x =2 6.在平面内指出与复数

123412,2z i z z z i =+==-+对应的点1234,,,Z Z Z Z ,

试判断这4个点是否在同一个圆上?

7.设C z ∈,且满足下列条件,在复平面内复数z 对应的点Z 的集合是什么图形?

(1)1

四川省岳池一中数学(人教A)选修2-2学案 复数的几何意义

§3.1.2 复数的几何意义 学习目标 : 1.理解可以用复平面内的点或以原点为起点的向量来表示复数及它们之间的一一对应关系. 2.掌握实轴、虚轴、模等概念. 3.掌握用向量的模来表示复数的模的方法. 学习重点:复数的几何意义,理解复数相关概念. 学习难点:复数的几何意义,理解复数相关概念的运用. 课前预习案 教材助读: 阅读教材的内容,思考并完成下列问题: 1.复数的几何意义 (1)复平面的定义 建立了直角坐标系来表示复数的平面叫做________,x 轴叫做______,y 轴叫做______.实轴上的点都表示实数;除了原点外,虚轴上的点都表示纯虚数. (2)复数与点、向量间的对应 ①复数z =a +b i(a ,b ∈R) 复平面内的点______; ②复数z =a +b i(a ,b ∈R) 平面向量___________. 2.复数的模 复数z =a +b i(a ,b ∈R)对应的向量为OZ →,则OZ → 的模叫做复数z 的模,记作|z |,且|z |= _________. 一、新课导学: 探究点一 复数与复平面内的点 问题1:实数可用数轴上的点来表示,类比一下,复数怎样来表示呢? 问题2:判断下列命题的真假: ①在复平面内,对应于实数的点都在实轴上;

②在复平面内,对应于纯虚数的点都在虚轴上; ③在复平面内,实轴上的点所对应的复数都是实数; ④在复平面内,虚轴上的点所对应的复数都是纯虚数; ⑤在复平面内,对应于非纯虚数的点都分布在四个象限. 探究点二复数与向量 问题1:复数与复平面内的向量怎样建立对应关系? 问题2:怎样定义复数z的模?它有什么意义? 二、合作探究 例 1:在复平面内,若复数z=(m2-m-2)+(m2-3m+2)i对应的点 (1)在虚轴上;(2)在第二象限;(3)在直线y=x上,分别求实数m的取值范围. 例2:已知复数z=3+a i,且|z|<4,求实数a的取值范围. 三、当堂检测 1. 在复平面内,复数z=i+2i2对应的点位于() A.第一象限B.第二象限C.第三象限D.第四象限 2.实数m取什么值时,复数z=(m2+5m+6)+(m2-2m-15)i (1)对应的点在x轴上方;(2)对应的点在直线x+y+4=0上. 四、课后反思 课后训练案 1. 当2 3

复数几何意义的应用学案.

复数几何意义的应用学案 一、复数相关知识 1.复数z a bi (a,b R)的几何意义是什么? 2. I z I的几何意义是什么? 3. 复数z1,z 2差的模I Z1-Z 2 I的几何意义是什么? 二、轨迹问题 (一)圆的定义:平面内到定点的距离等于定长的点的集合(轨迹) 设Z(x,y)以Z0(x0, y0)为圆心,r(r 0)为半径的圆上任意一点,则点 Z(x,y)满足ZZ o r (r0) 1. 该圆向量形式的方程是什么 2. 该圆复数形式的方程是什么 3.该圆代数形式的方程是什么(二)椭圆的定义:平面内与两定点Z1,Z2的距离的和等于常数(大于乙Z2 ) 的点的集合(轨迹) 设Z(x, y)是以Z i(x i, y2)Z2(X2,y2)为焦点,2a为长轴长的椭圆的上任 意一点,则点Z(x, y)满足ZZ1ZZ22a (2a 乙Z?) 1.该椭圆向量形式的方程是什么

2.该椭圆复数形式的方程是什么 变式(1):在上面方程中若把"2a乙Z2"改为"2a Z1Z2"那么点Z的轨 迹是什么? 变式(2):在上面方程中若把"2a乙Z2"改为"2a Z1Z2"那么点Z的轨 迹是什么? (三)双曲线的定义:平面内与两定点Z1, Z2的距离的差的绝对值等于 常数(小于乙Z2 )的点的集合(轨迹) 设Z(x, y)是以Z i(x i, y2)Z2(X2, y2)为焦点,2a为实轴长的椭圆的上 任意一点,则点Z(x, y)满足ZZ1ZZJ 2a (2a 乙Z2) 1.该双曲线向量形式的方程是什么 2.该双曲线复数形式的方程是什么 变式(1):在上面方程中若把"2a乙Z2"改为"2a Z1Z2"那么点Z的轨 迹是什么? 变式(2):在上面方程中若把"2a乙Z2"改为"2a 0"那么点Z的轨迹是什么?

高中数学竞赛基础平面几何知识点总结

高中数学竞赛平面几何知识点基础 1、相似三角形的判定及性质 相似三角形的判定: (1)平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似; (2)如果一个三角形的两条边和另一个三角形的两条边对应成比例,并且夹角相等,那么这两个三角形相似(简叙为:两边对应成比例且夹角相等,两个三角形相似.); (3)如果一个三角形的三条边与另一个三角形的三条边对应成比例,那么这两个三角形相似(简叙为:三边对应成比例,两个三角形相似.); (4)如果两个三角形的两个角分别对应相等(或三个角分别对应相等),则有两个三角形相似(简叙为两角对应相等,两个三角形相似.). 直角三角形相似的判定定理: (1)直角三角形被斜边上的高分成两个直角三角形和原三角形相似; (2)如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似. 常见模型: 相似三角形的性质: (1)相似三角形对应角相等 (2)相似三角形对应边的比值相等,都等于相似比 (3)相似三角形对应边上的高、角平分线、中线的比值都等于相似比 (4)相似三角形的周长比等于相似比 (5)相似三角形的面积比等于相似比的平方 2、内、外角平分线定理及其逆定理 内角平分线定理及其逆定理: 三角形一个角的平分线与其对边所成的两条线段与这个角的两边对应成比例。如图所示,若AM平分∠BAC,则 该命题有逆定理: 如果三角形一边上的某个点与这条边所成的两条线段与这 条边的对角的两边对应成比例,那么该点与对角顶点的连

线是三角形的一条角平分线 外角平分线定理: 三角形任一外角平分线外分对边成两线段,这两条线段和夹相应的内角的两边成比例。 如图所示,AD平分△ABC的外角∠CAE,则 其逆定理也成立:若D是△ABC的BC边延长线上的一点, 且满足,则AD是∠A的外角的平分线 内外角平分线定理相结合: 如图所示,AD平分∠BAC,AE平分∠BAC的外角 ∠CAE,则 3、射影定理 在Rt△ABC中,∠ABC=90°,BD是斜边AC上的高,则有射 影定理如下: BD2=AD·CD AB2=AC·AD BC2=CD·AC 对于一般三角形: 在△ABC中,设∠A,∠B,∠C的对边分别为a,b,c,则有 a=bcosC+ccosB b=ccosA+acosC c=acosB+bcosA 4、旋转相似 当一对相似三角形有公共定点且其边不重合时,则会产生另 一对相似三角形,寻找方法:连接对应点,找对应点连线和 一组对应边所成的三角形,可以得到一组角相等和一组对应 边成比例,如图中若△ABC∽△AED,则△ACD∽△ABE 5、张角定理 在△ABC中D为BC边上一点,则 sin∠BAD/AC+sin∠CAD/AB=sin∠BAC/AD 6、圆内有关角度的定理 圆周角定理及其推论: (1)圆周角定理指的是一条弧所对圆周角等于它所对圆心角的一半 (2)同弧所对的圆周角相等 (3)直径所对的圆周角是直角,直角所对的弦是直径

复数的几何意义--教案

复数的几何意义 教学目标 1. 了解复数的几何意义,会用复平面内的点和向量来表示复数。 2. 了解复数加、减法的几何意义,进一步体会数形结合的思想。 教学重点 复数的几何意义与复数的加、减法的几何意义。 教学过程 前面我们是从“数”的角度研究了复数的概念及其四则运算,本节课我们将从“形”的角度来研究复数的几何表示和复数加减法的几何意义。 一、 问题情境 我们知道,实数与数轴上的点是一一对应的,实数可以用数轴上的点来表示,那么,复数是否也能用点来表示呢? 二、 学生活动 知识回顾: ①形如bi a +的数叫复数,通常用字母z 表示,即bi a z +=),(R b a ∈,其中a 与b 分别叫做复数的实部与虚部。???=≠=+=时为纯虚数)当虚数 (实数 (复数0)(0) 0a b b bi a z 。 ②两个复数相等的充要条件是它们的实部与虚部分别相等 即 ???==?+=+d b c a di c bi a 。 问题1 复数相等的充要条件表明,任何一个复数bi a +都可以由一个有序实数对),(b a 惟一确定,而有序实数对),(b a 与平面直角坐标系中的点是一一对应的,那么,我们怎么用平面内的点来表示复数呢?

问题2 我们知道平面直角坐标系中的点A 与以原点O 为起点、A 为终点的向量OA 是一一对应的,那么复数能用平面向量来表示吗? 三、 建构数学 师生共同活动: 1. 在平面直角坐标系xOy 中,以复数bi a z +=的实部a 为横坐标、虚部b 为纵坐标就确定了点),(b a Z ,我们可以用点),(b a Z 来表示复数bi a +,这就是复数的几何意义。 2. 建立了直角坐标系来表示复数的平面叫做复平面(也称为高斯平面),x 轴叫做实轴,y 轴叫做虚轴。实轴上的的点都表示实数,除原点外虚轴上的点都表示虚数。 3. 因为复平面内的点),(b a Z 与以原点O 为起点、Z 为终点的向量一一对应(实数0与零向量对应),所以我们也可以用向量OZ 来表示复数bi a +,这也是复数的几何意义。 4. 根据上面的讨论,我们可以得到复数bi a z +=、复平 面内的点),(b a Z 和平面向量OZ 这间的关系(如图)。今后, 常把复数bi a z +=说成点Z 或向量(并且规定相等的 向量表示同一个复数) 5. 相对于复数的代数形式bi a z +=,我们把点),(b a Z 称为复数z 的几何形式,向量称为复数的向量形式。 四、数学运用 运用1 (1)例1 在复平面内,分别用点和向量表示下列复数 4,i +2,i -,i 31+-,i 23-

高中数学竞赛平面几何中的几个重要定理

平面几何中几个重要定理及其证明 一、 塞瓦定理 1.塞瓦定理及其证明 定理:在?ABC 内一点P ,该点与?ABC 的三个顶点相连所在的三条直线分别交?ABC 三边AB 、BC 、CA 于点D 、E 、F ,且D 、E 、F 三 点均不是?ABC 的顶点,则有 1AD BE CF DB EC FA ??=. 证明:运用面积比可得 ADC ADP BDP BDC S S AD DB S S ????== . 根据等比定理有 ADC ADC ADP APC ADP BDP BDC BDC BDP BPC S S S S S S S S S S ??????????-=== -, 所以APC BPC S AD DB S ??=.同理可得APB APC S BE EC S ??=,BPC APB S CF FA S ??=. 三式相乘得 1AD BE CF DB EC FA ??=. 注:在运用三角形的面积比时,要把握住两个三角形是“等高”还是“等底”,这样就可以产生出“边之比”. 2.塞瓦定理的逆定理及其证明 定理:在?ABC 三边AB 、BC 、CA 上各有一点D 、E 、F ,且D 、E 、F 均不是? ABC 的顶点,若 1AD BE CF DB EC FA ??=,那么直线CD 、AE 、BF 三线共点. A B C D F P

证明:设直线AE 与直线BF 交于点P ,直线CP 交 AB 于点D /,则据塞瓦定理有 // 1AD BE CF D B EC FA ??=. 因为 1AD BE CF DB EC FA ??=,所以有/ /AD AD DB D B =.由于点D 、D /都在线段AB 上,所以点D 与D /重合.即得D 、E 、F 三点共线. 注:利用唯一性,采用同一法,用上塞瓦定理使命题顺利获证. 二、 梅涅劳斯定理 A B C D E F P D /

北师大版数学高二-选修1学案 导数的几何意义

第二章 变化率与导数 第三课时 3.2.2 导数的几何意义 一、教学目标: 1、通过函数的图像直观地理解导数的几何意义; 2、理解曲线在一点的切线的概念; 3、会求简单函数在某点处的切线方程。 二、教学重点: 了解导数的几何意义 教学难点:求简单函数在某点出的切线方程 三、教学方法:探析归纳,讲练结合 四、教学过程: 复 习 回 顾 1.平均变化率 . ],[)()()(0)(00000的平均变化率在为函数称时,比值 当及其附近有定义,在点已知函数x x x x f x x f x x f x y x x x x f y ?+?-?+=??≠?== 2.瞬时变化率 . )() ()(0x 000的瞬时变化率在点则这个常数称为函数常数, 时,平均变化率 当x x f x x f x x f →?-?+→? 3.导数的定义 x x f x x f x f y x f x x x f x x x x ?-?+='''=→?=) ()(( lim )(|)()(000 00000,故或记作处的导数在为的瞬时变化率,就定义函数在 4.点斜式直线方程: y-y 0=k(x-x 0) 曲线的切线 y=f(x) y 0=f(x 0), y 1=f(x 1)

当自变量从x0变化到x1时,相应的函数值从f(x0)变化到f(x1) 自变量的增量△x= x1- x0 函数值的增量△y= f(x1)- f(x0) Q(x0+ △x,y0+ △y) △y=f(x0+ △x)-f(x0) 曲线在某一点处的切线的定义 设曲线C是函数y=f(x)的图象,在曲线C上取一点(x0,y0)及邻近一点(x0+△x,y0+△y) 过P,Q两点作割线当点Q沿着曲线无限接近于点P即△x→0时, 如果割线PQ有一个极 限位置PT, 那么直线PT叫做曲线在点P处的切线。

高中数学竞赛讲义_平面几何

平面几何 一、常用定理(仅给出定理,证明请读者完成) 梅涅劳斯定理 设',','C B A 分别是ΔABC 的三边BC ,CA ,AB 或其延长线上的点,若',','C B A 三点共线,则 .1''''''=??B C AC A B CB C A BA 梅涅劳斯定理的逆定理 条件同上,若.1''''''=??B C AC A B CB C A BA 则',','C B A 三点共线。 塞瓦定理 设',','C B A 分别是ΔABC 的三边BC ,CA ,AB 或其延长线上的点,若',','CC BB AA 三线平行或共点,则.1''''''=??B C AC A B CB C A BA 塞瓦定理的逆定理 设',','C B A 分别是ΔABC 的三边BC ,CA ,AB 或其延长线上的点,若.1''''''=??B C AC A B CB C A BA 则',','CC BB AA 三线共点或互相平行。 角元形式的塞瓦定理 ',','C B A 分别是ΔABC 的三边BC ,CA ,AB 所在直线上的点,则',','CC BB AA 平行或共点的充要条件是.1'sin 'sin 'sin 'sin 'sin 'sin =∠∠?∠∠?∠∠BA B CBB CB C ACC AC A BAA 广义托勒密定理 设ABC D 为任意凸四边形,则AB ?CD+BC ?AD ≥AC ?BD ,当且仅当A ,B ,C ,D 四点共圆时取等号。 斯特瓦特定理 设P 为ΔABC 的边BC 上任意一点,P 不同于B ,C ,则有 AP 2=AB 2?BC PC +AC 2?BC BP -BP ?PC. 西姆松定理 过三角形外接圆上异于三角形顶点的任意一点作三边的垂线,则三垂足共线。 西姆松定理的逆定理 若一点在三角形三边所在直线上的射影共线,则该点在三角形的外接圆上。 九点圆定理 三角形三条高的垂足、三边的中点以及垂心与顶点的三条连线段的中点,这九点共圆。 蒙日定理 三条根轴交于一点或互相平行。(到两圆的幂(即切线长)相等的点构成集合为一条直线,这条直线称根轴) 欧拉定理 ΔABC 的外心O ,垂心H ,重心G 三点共线,且.2 1GH OG = 二、方法与例题 1.同一法。即不直接去证明,而是作出满足条件的图形或点,然后证明它与已知图形或点重合。 例1 在ΔABC 中,∠ABC=700,∠ACB=300,P ,Q 为ΔABC 内部两点,∠QBC=∠QCB=100,∠ PBQ=∠PCB=200,求证:A ,P ,Q 三点共线。 [证明] 设直线CP 交AQ 于P 1,直线BP 交AQ 于P 2,因为∠ACP=∠PCQ=100,所以 CQ AC QP AP =1 ,①在ΔABP ,ΔBPQ ,ΔABC 中由正弦定理有

复数的几何意义 说课稿 教案 教学设计

复数的几何意义 一、教学目标: 1.理解复平面、实轴、虚轴等概念. 2.理解并掌握复数的几何意义,并能简单应用. 3.理解并会求复数的模,了解复数的模与实数绝对值之间的区别与联系. 二、教学重点: 重点:理解并掌握复数的几何意义. 难点:复平面内的点(,),,z a b OZ z a bi =+的关系;复数模的问题. 三、教学过程 【使用说明与学法指导】 1.课前用20分钟预习课本P 104-105内容.并完成书本上练、习题及导学案上的问题导学. 2.独立思考,认真限时完成,规范书写.课上小组合作探究,答疑解惑. 【问题导学】 1. 复平面? 2.复数的几何意义? 3.复数的模? 4.复平面的虚轴的单位长度是1,还是i? 【合作探究】 问题1:复数与复平面内点的关系 1.复数2z i =对应的点在复平面的( B ) A. 第一象限内 B. 实轴上 C. 虚轴上 D. 第四象限内 2.在复平面内,复数sin 2cos2z i =+对应的点位于( D ) A. 第一象限 B. 第二象限 C. 第三象限 D. 第四象限 3.在复平面内表示复数()3z m =-+的点在直线y x =上,则实数m 的值为 9 . 4.已知复数() ()2232z x x x i =--+-在复平面内的对应点位于第二象限,求实数x 的取值范围. 解:23x << 问题2:复数与复平面内向量的关系 1.向量1OZ 对应的复数是54i -,向量2OZ 对应的复数是54i -+,则1OZ +2OZ 对应的复数是 0 . 2. 复数43i +与25i --分别表示向量OA 与OB ,则向量AB 表示的复数是68i --.

3.1.2复数的几何意义(学、教案)

3. 1.2复数的几何意义 课前预习学案 课前预习: 1、复数与复平面的点之间的对应关系 1、复数模的计算 2、共轭复数的概念及性质 4、 提出疑惑: 通过你的自主学习,你还有哪些疑惑,请把它填在下面的表格中 疑惑点 疑惑内容 课内探究学案 学习目标: 1. 理解复数与复平面的点之间的一一对应关系 2.理解复数的几何意义 并掌握复数模的计算方法 3、理解共轭复数的概念,了解共轭复数的简单性质 学习过程 一、自主学习 阅读 课本相关内容,并完成下面题目 1、复数z =a +bi (a 、b ∈R )与有序实数对(a ,b )是 的 2、 叫做复平面, x 轴叫做 ,y 轴叫做 实轴上的点都表示 虚轴上的点除原点外,虚轴上的点都表示 3、复数集C 和复平面内所有的点所成的集合是一一对应关系,即 复数 ←???→一一对应复平面内的点 ←???→一一对应 平面向量 4、共轭复数 5、复数z =a +bi (a 、b ∈R )的模 二、探究以下问题 1、实数与数轴上点有什么关系?类比实数,复数是否也可以用点来表示 吗? 2、复数与从原点出发的向量的是如何对应的? 3、复数的几何意义你是怎样理解的? 4、复数的模与向量的模有什么联系? 5、你能从几何的角度得出共轭复数的性质吗? 三、精讲点拨、有效训练 见教案

反思总结 1、你对复数的几何意义的理解 2、复数的模的运算及含义 3共轭复数及其性质 当堂检测 1、判断正误 (1) 实轴上的点都表示实数,虚轴上的点都表示纯虚数 (2) 若|z 1|=|z 2|,则z 1=z 2 (3) 若|z 1|= z 1,则z 1>0 2、()12m z i =当<时,复数+m-1在复平面上对应的点位于( ) A 、第一象限 B 、第二象限 C 、第三象限 D 、第四象限 3、已知a ,判断z=i a a a a )22()42(22+--+-所对应的点在第几象限 4、设Z 为纯虚数,且|z+2|=|4-3 i |,求复数Z

导数的几何意义的教学设计

导数的几何意义 【教学目标】 1.理解切线的定义 2.理解导数的几何意义 3.学会应用导数的几何意义。 【教学重点与难点】 重点:理解导数的几何意义及应用于解决实际问题,体会数形结合的思想方法。 难点:发现、理解及应用导数的几何意义。 【教学过程】

第二步:求瞬时变化率()0000 () ()lim x f x x f x f x x ?→+?-'=?. (即0x ?→,平均变化率趋近..于的确定常数....就是该点导数.. ) (2) 类比平均变化率得出导数,同样我们可以利用平均变化率的几何意义,得出导数的几何意义,我们观察函数()y f x =的图象,平均变化 率()00() f x x f x y x x +?-?=?? 的几何意义是什么 生:平均变化率表示的是割线n PP 的斜率 教师板书,便于学生 数形结合探究导数的几何意义。 突破平均变化率的 几何意义,后面在表示割线斜率时能直接联系此知识。同时引出本节课的研究问题——导数几何意义是什么 二、引导探究、获得新知 1.得到切线的新定义 要研究导数的几何意义,结合导数的概念,即要探究0x ?→,割线的变化趋势....... , ◆多媒体显示: 曲线上点P 处的切线PT 和割线n PP ,演示点n P 从右边沿着曲线逼近点P ,即0x ?→,割线n PP 的变化趋势。 教师引导学生观察割线与切线是否有某种内在联系呢 生:先观察后发现,当0x ?→,随着点n P 沿着曲线逼近点P ,割 以求导数的两个步骤为......... 依据.. ,从平均变化率的几何意义入手探索导数的几何意义,抓住0x ?→的联系,在图形上从割线入手来研究问题。 用逼近的方法体会割线逼近切线。

高中数学常用平面几何名定理

高中数学常用平面几何名定理 定理1 Ptolemy定理托勒密(Ptolemy)定理 四边形的两对边乘积之和等于其对角线乘积的充要条件是该四边形内接于一圆。 定理2 Ceva定理 定理3 Menelaus定理 定理4 蝴蝶定理定理 内容:圆O中的弦PQ的中点M,任作两弦AB,CD,弦AD与BC分别交PQ于X,Y,则M为XY之中点。 定理5 张角定理 在△ABC中,D是BC上的一点。连结AD。张角定理指出:sin∠BAD/AC+sin∠CAD/AB=sin∠BAC/AD 定理6 Simon line西姆松(Simson)定理(西姆松线) 从一点向三角形的三边所引垂线的垂足共线的充要条件是该点落在三角形的外接圆上。 定理7 Eular line: 同一三角形的垂心、重心、外心三点共线,这条直线称为三角形的欧拉线;且外心与重心的距离等于垂心与重心距离的一半 定理8 到三角形三定点值和最小的点——费马点 已知P为锐角△ABC内一点,当∠APB=∠BPC=∠CPA=120°时,PA+PB+PC的值最小,这个点P称为△ABC 的费尔马点。 定理9 三角形内到三边距离之积最大的点是三角形的重心 定理10到三角形三顶点距离的平方和最小的点是三角形的重心 在几何里,平面是无限延展的,是无大小的,是不可度量的,是无厚度的,通常画平行四边形来表示平面 0、勾股定理,即直角三角形两直角边的平方和等于斜边的平方。这是平面几何中一个最基本、最重要的定理,国外称为毕达哥拉斯定理。 1、欧拉(Euler)线: 同一三角形的垂心、重心、外心三点共线,这条直线称为三角形的欧拉线;且外心与重心的距离等于垂心与重心距离的一半 2、九点圆: 任意三角形三边的中点.三条高线的垂足.垂心与各顶点连线的中点,这9点共圆,这个圆称为三角形的九点圆;其圆心为三角形外心与垂心所连线段的中点,其半径等于三角形外接圆半径的一半。

第三章 §3.1 3.1.2 复数的几何意义(优秀经典公开课比赛教案)

[A 组 学业达标] 1.复数z =-1-2i(i 为虚数单位)在复平面内对应的点位于( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限 解析:z =-1-2i 对应点Z (-1,-2),位于第三象限. 答案:C 2.已知复数z =(m -3)+(m -1)i 的模等于2,则实数m 的值为( ) A .1或3 B .1 C .3 D .2 解析:依题意可得 (m -3)2+(m -1)2=2,解得m =1或3,故选A. 答案:A 3.已知z =(m +3)+(m -1)i 在复平面内对应的点在第四象限,则实数m 的取值范围是( ) A .(-3,1) B .(-1,3) C .(1,+∞) D .(-∞,-3) 解析:由题意知????? m +3>0,m -1<0, 即-3

5.如果复数z 满足条件z +|z |=2+i ,那么z =( ) A .-34+i B.34-i C .-34-i D.34+i 解析:设z =a +b i(a ,b ∈R),由复数相等的充要条件,得????? a +a 2+ b 2=2,b =1,解得??? a =34,b =1, 即z =34 +i. 答案:D 6.在复平面内,复数z =sin 2+cos 2i 对应的点位于________象限. 解析:由π2<2<π,知sin 2>0,cos 2<0 ∴复数z 对应点(sin 2,cos 2)位于第四象限. 答案:第四 7.i 为虚数单位,设复数z 1,z 2在复平面内对应的点关于原点对称,若z 1=2-3i ,则z 2=________. 解析:复数z 1=2-3i 对应的点为(2,-3),则z 2对应的点为(-2,3).所以z 2=-2+3i. 答案:-2+3i 8.已知在△ABC 中,AB →,AC →对应的复数分别为-1+2i ,-2-3i ,则BC →对应的 复数为________. 解析:因为AB →,AC →对应的复数分别为-1+2i ,-2-3i ,所以AB →=(-1,2),AC →= (-2,-3),又BC →=AC →-AB →=(-2,-3)-(-1,2)=(-1,-5),所以BC →对应的 复数为-1-5i. 答案:-1-5i

(浙江专版)201X年高中数学 第三章 数系的扩充与复数的引入 3.1.2 复数的几何意义学案 新人

3.1.2 复数的几何意义 预习课本P104~105,思考并完成下列问题 (1)复平面是如何定义的,复数的模如何求出? (2)复数与复平面内的点及向量的关系如何?复数的模是实数还是复数? [新知初探] 1.复平面 2.复数的几何意义 . 3.复数的模 (1)定义:向量OZ ―→ 的模r 叫做复数z =a +b i(a ,b ∈R)的模. (2)记法:复数z =a +b i 的模记为|z |或|a +b i|. (3)公式:|z |=|a +b i|=r =a 2 +b 2 (r ≥0,r ∈R). [点睛] 实轴、虚轴上的点与复数的对应关系 实轴上的点都表示实数;除了原点外,虚轴上的点都表示纯虚数,原点对应的有序实数对为(0,0),它所确定的复数是

z =0+0i =0,表示的是实数. [小试身手] 1.判断(正确的打“√”,错误的打“×”) (1)在复平面内,对应于实数的点都在实轴上.( ) (2)在复平面内,虚轴上的点所对应的复数都是纯虚数.( ) (3)复数的模一定是正实数.( ) 答案:(1)√ (2)× (3)× 2.已知复数z =i ,复平面内对应点Z 的坐标为( ) A .(0,1) B .(1,0) C .(0,0) D .(1,1) 答案:A 3.向量a =(1,-2)所对应的复数是( ) A .z =1+2i B .z =1-2i C .z =-1+2i D .z =-2+i 答案:B 4.已知复数z 的实部为-1,虚部为2,则|z |=________. 答案: 5 复数与点的对应关系 [典例] 求实数a 分别取何值时,复数z =a +3 +(a 2 -2a -15)i(a ∈R)对应的点Z 满足下列条件: (1)在复平面的第二象限内. (2)在复平面内的x 轴上方. [解] (1)点Z 在复平面的第二象限内, 则????? a 2 -a -6a +3<0,a 2-2a -15>0, 解得a <-3. (2)点Z 在x 轴上方, 则? ?? ?? a 2 -2a -15>0,a +3≠0, 即(a +3)(a -5)>0,解得a >5或a <-3. [一题多变]

模式一1.1.3导数的几何意义

1. 1.3导数的几何意义 课前预习学案 一. 预习目标 1.了解平均变化率与割线斜率之间的关系; 2.理解曲线的切线的概念; 3.通过函数的图像直观地理解导数的几何意义,并会用导数的几何意义解题。 二. 预习内容 1.曲线的切线及切线的斜率 (1)如图3.1-2,当(,())(1,2,3,4)n n n P x f x n =沿着曲线()f x 趋近于点00(,())P x f x 时, 即0→?x 时,割线n PP 趋近于确定的位置,这个确定位置的直线PT 称为 . (2)割线n PP 的斜率是00 ()()n n n f x f x k x x -=-,当点n P 沿着曲线无限接近点P 时, n k 无限趋近于切线PT 的斜率k ,即k = = 2.导数的几何意义 函数)(x f y =在0x x =处的导数等于在该点00(,())x f x 处的切线的斜率, 即0()f x '= . 三.提出疑惑 疑惑点 疑惑内容 课内探究学案 一. 学习目标 1.了解平均变化率与割线斜率之间的关系; 2.理解曲线的切线的概念; 3.通过函数的图像直观地理解导数的几何意义,并会用导数的几何意义解题 二. 学习过程 (一)。复习回顾 1.平均变化率、割线的斜率 2。瞬时速度、导数 (二)。提出问题,展示目标 我们知道,导数表示函数)(x f y =在0x x =处的瞬时变化率,反映了函数)(x f y =在

0x x =附近的变化情况,导数0()f x '的几何意义是什么呢? (三)、合作探究 1.曲线的切线及切线的斜率 (1)如图3.1-2,当(,())(1,2,3,4)n n n P x f x n =沿着曲线()f x 趋近于点00(,())P x f x 时,割线n PP 的变化趋势是什么? (2)如何定义曲线在点P 处的切线? (3)割线n PP 的斜率n k 与切线PT 的斜率k 有什么关系? (4)切线PT 的斜率k 为多少? 说明: (1)当0→?x 时,割线PQ 的斜率,称为曲线在点P 处的切线的斜率. 这个概念: ①提供了求曲线上某点切线的斜率的一种方法; ②切线斜率的本质—函数在0x x =处的导数. (2)曲线在某点处的切线: 1)与该点的位置有关; 2)要根据割线是否有极限位置来判断与求解.如有极限,则在此点有切线,且切线是唯一的; 如不存在,则在此点处无切线; 3)曲线切线,并不一定与曲线只有一个交点,可以有多个,甚至可以无穷多. 2.导数的几何意义 (1)函数)(x f y =在0x x =处的导数的几何意义是什么? (2)将上述意义用数学式表达出来。 (3)根据导数的几何意义如何求曲线在某点处的切线方程? 3.导函数 (1)由函数)(x f y =在0x x =处求导数的过程可以看到,当0x x =时,0()f x '是一个确定的数,那么,当x 变化时, ()f x '便是x 的一个函数,我们叫它为)(x f 的导函数. 注: 在不致发生混淆时,导函数也简称导数. (2)函数()f x 在点0x 处的导数0()f x '、导函数()f x '、导数之间的区别与联系是什么? 区别: 联系: (四)。例题精析 例1 求曲线1)(2+==x x f y 在点)2,1(P 处的切线方程. 解: 变式训练1 求函数23x y =在点(1,3)处的切线方程. 例2 如图3.1-3,它表示跳水运动中高度随时间变化的函数2() 4.9 6.510h x x x =-++, 根据图像,请描述、比较曲线()h t 在0t 、1t 、2t 附近的变化情况. 解: 我们用曲线()h t 在0t 、1t 、2t 处的切线, 刻画曲线()h t 在上述三个时刻附近的变化情况. (1) 当0t t =时,曲线()h t 在0t 处的切线0l 的斜率 , 所以,在0t t =附近曲线比较平坦,几乎没有升降.

高中数学竞赛平面几何讲座(非常详细)

第一讲 注意添加平行线证题 在同一平面内,不相交的两条直线叫平行线.平行线是初中平面几何最基本的,也是非常重要的图形.在证明某些平面几何问题时,若能依据证题的需要,添加恰当的平行线,则能使证明顺畅、简洁. 添加平行线证题,一般有如下四种情况. 1、为了改变角的位置 大家知道,两条平行直线被第三条直线所截,同位角相等,内错角相等,同旁内角互补.利用这些性质,常可通过添加平行线,将某些角的位置改变,以满足求解的需要. 例1 、设P 、Q 为线段BC 上两点,且BP =CQ,A 为BC 外一动点(如图1).当点A 运动到使 ∠BAP =∠CAQ 时,△ABC 是什么三角形?试证明你的结论. 答: 当点A 运动到使∠BAP =∠CAQ 时,△ABC 为等腰三角形. 证明:如图1,分别过点P 、B 作AC 、AQ 的平行线得交点D.连结DA. 在△DBP =∠AQC 中,显然∠DBP =∠AQC ,∠DPB =∠C. 由BP =CQ,可知△DBP ≌△AQC.有DP =AC ,∠BDP =∠QAC. 于是,DA ∥BP ,∠BAP =∠BDP.则A 、D 、B 、P 四点共圆,且四边形ADBP 为等腰梯形.故AB =DP.所以AB =AC. 这里,通过作平行线,将∠QAC “平推”到∠BDP 的位置.由于A 、D 、B 、P 四点共圆,使证明很顺畅. 例2、如图2,四边形ABCD 为平行四边形,∠BAF =∠BCE.求证:∠EBA =∠ADE. 证明:如图2,分别过点A 、B 作ED 、EC 的平行线,得交点P,连PE. 由AB CD,易知△PBA ≌△ECD.有PA =ED,PB =EC. 显然,四边形PBCE 、PADE 均为平行四边形.有 ∠BCE =∠BPE ,∠APE =∠ADE.由∠BAF =∠BCE,可知 ∠BAF =∠BPE.有P 、B 、A 、E 四点共圆.于是,∠EBA =∠APE.所以,∠EBA =∠ADE. 这里,通过添加平行线,使已知与未知中的四个角通过P 、B 、A 、E 四点共圆,紧密联系起来.∠APE 成为∠EBA 与∠ADE 相等的媒介,证法很巧妙. 2、欲“送”线段到当处 利用“平行线间距离相等”、“夹在平行线间的平行线段相等”这两条,常可通过添加平行线,将某些线段“送”到恰当位置,以证题. 例3、在△ABC 中,BD 、CE 为角平分线,P 为ED 上任意一点.过P 分别作AC 、AB 、BC 的垂 线,M 、N 、Q 为垂足.求证:PM +PN =PQ. 证明:如图3,过点P 作AB 的平行线交BD 于F,过点F 作BC 的 平行线分别交PQ 、AC 于K 、G,连PG. 由BD 平行∠ABC,可知点F 到AB 、BC 两边距离相等.有KQ =PN. 显然,PD EP =FD EF =GD CG ,可知PG ∥EC. 由CE 平分∠BCA,知GP 平分∠FGA.有PK =PM.于是,PM +PN =PK +KQ =PQ. 这里,通过添加平行线,将PQ “掐开”成两段,证得PM =PK,就有PM +PN =PQ.证法非常简捷. 3 、为了线段比的转化 由于“平行于三角形一边的直线截其它两边,所得对应线段成比例”,在一些问题中,可以通过添加平行线,实现某些线段比的良性转化.这在平面几何证题中是会经常遇到的. ∥=A D B P Q C 图1 P E D G A B F C 图2A N E B Q K G C D M F P 图3

3.1.2复数的几何意义 教案.doc教学设计

第三章数系的扩充与复数的引入 【课题】:3.1.2 复数的几何意义 【学情分析】: 教学对象是高二的学生,学生已经学过代数、解析几何的相关知识,所以本节课要求学生通过类比实数的几何意义自己探索复数的几何意义,由于学生已经学过平面向量及其几何表示、坐标表示,得到用平面向量来表示复数就比较容易了. 【教学目标】: (1)知识与技能: 了解复数的几何意义,会用复平面的点和向量来表示复数; (2)过程与方法: 在解决问题中,通过数形结合的思想方法,加深对复数几何意义的理解; (3)情感态度与价值观: 培养学生用联系的观点分析、解决问题的能力。 【教学重点】: 复数的代数形式和复数的向量表示. 【教学难点】: 复数的向量表示. 【课前准备】: powerpoint课件

六、 作业 1、在复平面内,复数 2)31(1i i i +++对应的点位于 ( B ) A .第一象限 B .第二象限 C .第三象限 D .第四象限 2、复数,111-++-= i i z 在复平面内,z 所对应的点在 ( B ) A .第一象限 B .第二象限 C .第三象限 D .第四象限 3、 在复平面内指出与复数i z i z i z i z +-=-=+= +=2,23,32,214321 对应的点 4321,,,Z Z Z Z .试判断这四个点是否在同一个圆上?并证明你的结论. 解:因为 ︱1z ︱=52122= +,︱2z ︱=5,︱3z ︱=5,︱4z ︱=5, 所以,4321,,,Z Z Z Z 这四个点都在以圆点为圆心,半径为5的圆上. 4、如果P 是复平面内表示表示复数a +bi (a ,b ∈R )的点,分别指出在下列条件下点P 的位置: (!)a >0,b>0; (2) a <0,b>o; (3)a =0,b ≤0; (4)b<0. 解:(1)第一象限 (2)第二象限 (3)位于原点或虚轴的下半轴上 (4)位于实轴下方 5、如果复数z 的实部为正数,虚部为3,那么在复平面内,复数z 对应的点应位于怎样的图形上? 解:平面直角坐标系中以(0,3)为端点的一条射线,但不包括端点(0,3) 6、已知复数z 的虚部为3,在复平面内复数z 对应的向量的模为2,求该复数z . 解:由已知,设)(3R a i a z ∈+ = 则.432 2=+ a 解得 ±=a 1. 所以 .31i z +±=

3.3复数的几何意义 学案(含答案)

3.3复数的几何意义学案(含答案) 3.3复数的几何意义学习目标 1.了解可以用复平面内的点或以原点为起点的向量来表示复数及它们之间的一一对应关系. 2.掌握实轴.虚轴.模等概念. 3.理解向量加法.减法的几何意义,能用几何意义解决一些简单问题知识点一复平面思考实数可用数轴上的点来表示,平面向量可以用坐标表示,类比一下,复数怎样来表示呢答案任何一个复数zabi,都和一个有序实数对a,b一一对应,因此,复数集与平面直角坐标系中的点集之间可以建立一一对应关系梳理建立了直角坐标系来表示复数的平面叫做复平面,x轴叫做实轴,y轴叫做虚轴实轴上的点都表示实数;除原点外,虚轴上的点都表示纯虚数知识点二复数的几何意义1复数与点.向量间的对应关系2复数的模复数zabia,bR,对应的向量为,则向量的模叫做复数zabi的模或绝对值,记作|z|或|abi|.由模的定义可知|z||abi|.知识点三复数加.减法的几何意义思考1复数与复平面内的向量一一对应,你能从向量加法的几何意义出发讨论复数加法的几何意义吗答案如图,设,分别与复数abi,cdi对应,且,不共线,则a,b,c,d,由平面向量的坐标运算,得ac,bd,所以与复数acbdi 对应,复数的加法可以按照向量的加法来进行思考2怎样作出与复数z1z2对应的向量答案z1z2可以看作z1z2因为复数的加法可以按照向量的加法来进行所以可以按照平行四边形法则或三角形

法则作出与z1z2对应的向量如图图中对应复数z1,对应复数 z2,则对应复数z1z 2.梳理1复数加减法的几何意义复数加法的几何意义复数 z1z2是以,为邻边的平行四边形的对角线所对应的复数复数减法的几何意义复数z1z2是从向量的终点指向向量的终点的向量所对应的复数2设z1abi,z2cdia,b,c,dR,则|z1z2|,即两个复数的差的模就是复平面内与这两个复数对应的两点间的距离1原点是实轴和虚轴的交点2在复平面内,对应于实数的点都在实轴上3在复平面内,虚轴上的点构对应的复数都是纯虚数4复数的模一定是正实数类型一复数的几何意义例1实数x分别取什么值时,复数zx2x6x22x15i对应的点Z在1 第三象限;2直线xy30上解因为x是实数,所以x2x6, x22x15也是实数1当实数x满足即当3x2时,点Z在第三象限 2zx2x6x22x15i对应点的坐标为Zx2x6,x22x15,当实数x满足 x2x6x22x1530,即当x2时,点Z在直线xy30上引申探究若本例中的条件不变,其对应的点在1虚轴上;2 第四象限解1当实数x满足x2x60,即当x3或2时,点Z在虚轴上2当实数x满足即当2x5时,点Z在第四象限反思与感悟按照复数和复平面内所有点构成的集合之间的一一对应关系,每一个复数都对应着一个有序实数对,只要在复平面内找出这个有序实数对所表示的点,就可根据点的位置判断复数实部.虚部的取

高三数学一轮复习 导数定义及几何意义学案及作业

导数定义及其几何意义、函数求导学案 一. 基础知识 1.的导数为函数)(x f y = =')(x f 0 lim →?x __________________ 2.导数 )(0x f '的几何意义:_________________________________________ 3.初等函数的导数公式 __________)(,ln )()8(__________)(),1,0(log )()7(__________ )(,)()6(_____ )(,)()5(_ __________)(,cos )()4(______)(,sin )()3(__________)(),()()2(,__________)(),()()1(='=='≠>=='=='=='=='=='∈=='=x f x x f x f a a x x f x f e x f x f a x f x f x x f x f x x f x f Q x x f x f c c x f a x x 则则且则则则则则则为常数αα 4.导数的运算法则:_______________])()([='±x g x f _______________________])()([='?x g x f _______________]) () ([='x g x f 5. 函数单调性与导数:设函数)(x f y =在区间(a,b )内有导数,如果____,则)(x f y =是这个区 间内_____;如果在这个区间内___,则)(x f y =是这个区间内_____. 6.求单调区间的方法: 二.例题1.若,2)(0='x f 则___________) ()(lim 000 =--→h x f h x f k 练习:(1)若,2)(0='x f 则___________2) ()(lim 000 =-+→h x f h x f k (2)若,2)(0='x f 则___________2) 3()(lim 000=--→h h x f x f k (3)若,2)(0='x f 则000 ()(3) lim h f x h f x h h →+--=_______________ 2.求下列函数的导数(1)x x y x x y e y x 23log )3(sin 4cos 3)2(2+=-== x x y e x y x n sin cos )5()4(= = 3.已知函数3 () 2f x x x (1)在0p 处的切线平行于直线41y x ,求0p 点的坐标 (2)求函数)(x f 在点(1,0)处的切线方程。 (3)若在P 处的切线垂直于直线x=3,求此切线方程。 4.下列各图为导函数)(x f y '=的图象,试画出原函数)(x f y =的图象。 导数定义及其几何意义、函数求导作业 E A x D x C x B

相关文档
最新文档