催化剂浸渍法原理

催化剂浸渍法原理
催化剂浸渍法原理

zhangwengui330(金币+2,VIP+0):谢谢分享!8-25 15:10

概述

以浸渍为关键和特殊步骤制造催化剂的方法称浸渍法,也是目前催化剂工业生产中广泛应用的一种方法。浸渍法是基于活性组分(含助催化剂)以盐溶液形态浸渍到多孔载体上并渗透到内表面,而形成高效催化剂的原理。通常将含有活性物质的液体去浸各类载体,当浸渍平衡后,去掉剩余液体,再进行与沉淀法相同的干燥、焙烧、活化等工序后处理。经干燥,将水分蒸发逸出,可使活性组分的盐类遗留在载体的内表面上,这些金属和金属氧化物的盐类均匀分布在载体的细孔中,经加热分解及活化后,即得高度分散的载体催化剂。

活性溶液必须浸在载体上,常用的多孔性载体有氧化铝、氧化硅、活性炭、硅酸铝、硅藻土、浮石、石棉、陶土、氧化镁、活性白土等,可以用粉状的,也可以用成型后的颗粒状的。氧化铝和氧化硅这些氧化物载体,就像表面具有吸附性能的大多数活性炭一样,很容易被水溶液浸湿。另外,毛细管作用力可确保液体被吸人到整个多孔结构中,甚至一端封闭的毛细管也将被填满,而气体在液体中的溶解则有助于过程的进行,但也有些载体难于浸湿,例如高度石墨化或没有化学吸附氧的碳就是这样,可用有机溶剂或将载体在抽空下浸渍。

浸渍法有以下优点:第一,附载组分多数情况下仅仅分布在载体表面上,利用率高、用量少、成本低,这对铂、铑、钯、铱等贵金属型负载催化剂特别有意义,可节省大量贵金属;第二,可以用市售的、已成形的、规格化的载体材料,省去催化剂成型步骤。第三,可通过选择适当的载体,为催化剂提供所需物理结构特性,如比表面、孔半径、机械强度、热导率等。可见浸渍法是一种简单易行而且经济的方法。广泛用于制备负载型催化剂,尤其是低含量的贵金属附载型催化剂。其缺点是其焙烧热分解工序常产生废气污染。

浸渍法工艺

浸渍法可分为粉状载体浸渍法和粒状载体浸渍法两种工艺,其特点可由流程图看出。粒状载体浸渍法工艺如图6—2所示。粒状载体浸渍前通常先做成一定形状,抽空载体后用溶液接触载体,并加入适量的竞争吸附剂。也可将活性组分溶液喷射到转动的容器中翻滚到载体上,然后可用过滤、倾析及离心等方法除去过剩溶液。粉状载体浸渍法与粒状载体浸渍法类似,但需增加压片、挤条或成球等成形步骤,其流程见图6—3。浸渍的方法对催化剂的性能影响较大,粒状载体浸渍时,催化剂表面结构取决于载体颗粒的表面结构,如比表面、孔隙率、孔径大小等,催化反应速率不同,对催化剂表面结构的要求也不同。

沉积在催化剂载体的金属的最终分散度取决于许多因素的相互作用,这些因素包括浸渍方法、吸附的强度,以吸留溶质形式存在的金属化合物相比于吸附在孔壁上的物种的程度,以及加热与干燥时发生的化学变化等。

虽然浸渍过程中,大多数金属试剂都可以不同程度地吸附在载体上,但是吸附过程相当复杂,不同类型的吸附都可能发生,可以是金属离子与含有羟基的表面吸附;也可以是含有碱金属及碱土金属离子的表面进行阳离子交换。载体的表面结构还可能因浸渍步骤不同加以改变,从而更改表面的吸附特性。这些在工艺实施过程中必须加以考虑。若载体遭受浸蚀,情况会更复杂,在高pH值下硅胶要受浸蚀,而高表面积的氧化铝则无论在过高或过低pH 值下都要受浸蚀,在用酸性液体浸渍氧化铝载体的过程中,部分氧化铝会首先发生溶解,并随着pH值的增高接着要发生沉淀,最好用缓冲剂来控制这个效应。

载体原料载体原料粉状载体浸渍溶液

↓↓↓↓

水→混合水→浸渍←沉淀剂

↓↓

干燥过滤洗涤

↓↓

成型干燥

↓↓

浸渍焙烧分解

↓↓

干燥混合

↓↓

焙烧分解成型

↓↓

过筛包装过筛包装

↓↓

成品成品

图6-2 粒状载体浸渍法工艺流程图图6—3 粉状载体浸渍法工艺流程图例如,铂试剂氯铂酸H2PtCl是常吸附在氧化铝或活性炭上,但在硅胶上则不能吸附,采用初湿法(吸干浸渍),可以使氧化铝颗粒的外部沉积上很薄的铂壳层,用于防止快速反应的扩散是很有好处的。如要取得更均匀的分散可以用竞争吸附的方法,即往溶液中加入硝酸或盐酸来降低氯铂离子的吸附性,由此造成更为均匀的沉积。另一方面,铂可以Pt(NH3)4C13形式与氧化铝作用,在此情况下,铂是处于阴离子形式。它不太容易吸附在氧化铝上,但可较强地吸附在硅胶上。如想制备不含卤素的催化剂,则可选用如二氨基二硝基铂Pt(NH3)2(N02)2这样的化合物,通过往浸渍液中加入有机酸,例如柠檬酸的方法,也能在催化剂颗粒的稍靠里边的地方埋置一层催化剂的物质,可抑制有毒物沉积在催化剂载体外壳表面,增加催化剂的寿命。用于汽车发动机排气污染物氧化的负载型铂催化剂就是一例。

一般来说,若试剂有充分时间扩散,及副反应不为主的话,使用过量溶液的浸渍法可使吸附物基本上均匀沉淀。倘若最初的吸附不均匀,并且不强的话,即使载体小球离开溶液,扩散还要继续,会使分布更均匀。

浸渍法分类

(1)过量浸渍法本法系将载体泡人过量的浸渍溶液中,即浸渍溶液体积超过载体可吸收体积,待吸附平衡后,滤去过剩溶液,干燥、活化后便得催化剂成品。通常借调节浸渍溶液的浓度和体积控制附载量。附载量的计算有两种方法。

一是从载体出发,令载体对某一活性物质的比吸附量为W(每克载体的吸附量),由于孔径大小不一,活性物质只能进人大于某一孔径的孔隙中,以y代表这部分孔隙的体积,设m 为活性物质在溶液中的浓度,则吸附平衡后载体对该活性物质的附载量Wi为:Wi=Vm +W

如果吸附量很小,则Wi=Vm

二是从浸渍溶液考虑,附载量等于浸渍前溶液的体积与浓度之乘积,减去浸渍后溶液的体积与浓度之乘积。然而,这两种计算方法不甚准确,仅供参考。

(2)等体积浸渍法将载体浸入到过量溶液中,整釜溶液的成分将随着载体的浸渍而被改变,释放到溶液中的碎物可形成淤泥,使浸渍难于完全使用操作溶液。因而工业上使用等体积浸渍法(吸干浸渍法),即将载体浸到初湿程度,计算好溶液的体积,做到更准确地控制浸渍工艺。工业上,可以用喷雾使载体与适当浓度的溶液接触,溶液的量相当于已知的总孔体积,这样做可以准确控制即将掺入催化剂中的活性组织的量。各个颗粒都可达到良好的重复性,但在一次浸渍中所能达到最大负载量,要受溶剂溶解度的限制。在任何情况下,制成的催化剂通常都要经过干燥与焙烧。在少数情况下,为使得有效组分更均匀地分散,可将浸渍过

的催化剂浸入到一种试剂中,以使发生沉淀,从而可使活性组分固定在催化剂内部。

本法将载体与它可吸收体积的浸渍溶液相混合,由于浸渍溶液的体积与载体的微孔体积相当,只要充分混合,浸渍溶液恰好浸透载体颗粒而无过剩,可省略废液的过滤与回收。但是必须注意,浸渍溶液体积是浸渍化合物性质和浸渍溶液黏度的函数。确定浸渍溶液体积,应预先进行试验测定。等体积浸渍可以连续或间断进行,设备投资少,生产能力大,能精确调节附载量,所以工业上广泛采用。

(3)多次浸渍法本法即浸渍、干燥、焙烧反复进行数次。采用这种方法的原因有两点。第一,浸渍化合物的溶解度小,一次浸渍不能得到足够大的附载量,需要重复浸渍多次;第二,为避免多组分浸渍化合物各组分间的竞争吸附,应将各别组分按秩序先后浸渍。每次浸渍后,必须进行干燥和焙烧,使之转化为不溶性的物质,这样可以防止上次浸载在载体的化合物在下一次浸渍时又溶解到溶液中,也可以提高下一次浸渍时载体的吸收量。例如,加氢脱硫CO2O3-MoO3/A12()3催化剂的制备,可将氧化铝先用钴盐溶液浸渍,干燥、焙烧后再用钼盐溶液按上述步骤处理。必须注意每次浸渍时附载量的提高情况。随着浸渍次数的增加,每次附载增量将减少。

多次浸渍法工艺过程复杂,劳动效率低,生产成本高,除非上述特殊情况,应尽量少采用。

(4)浸渍沉淀法本法是在浸渍法的基础上辅以均匀沉淀法发展起来的一种新方法,即在浸渍液中预先配人沉淀剂母体,待浸渍单元操作完成之后,加热升温使待沉淀组分沉积在载体表面上。此法可以用来制备比浸渍法分布更加均匀的金属或金属氧化物负载型催化剂。(5)硫化床喷洒浸渍法浸渍溶液直接喷洒到流化床中处于流化状态的载体中,完成浸渍以后,升温干燥和焙烧。在流化床内可一次完成浸渍、干燥、分解和活化过程。流化床内放置一定量的多孔载体颗粒,通人气体使载体硫化,再通过喷嘴将浸渍液向下或用烟道气对浸渍后的载体进行硫化干燥,然后升高床温使负载的盐类分解,逸出不起催化作用的挥发组分,最后用高温烟道气活化催化剂,活化后鼓人冷空气进行冷却,然后卸出催化剂。

鼓风机送来的空气分两路,一路经加热器进人流化床,使载体颗粒硫化,废气在床顶接管3放空;另一路进入喷嘴的套管内,用以雾化浸渍液。载体由床顶加料口加人,催化剂由分布板上卸料口6卸出。该法适用于多孔载体的浸渍,制得的催化剂与浸渍法没有区别,但具有流程简单、操作方便、周期短、劳动条件好等优点。不足的是成品率低(在80%~90%以下)、催化剂易结块、性质不均匀等。

(6)蒸气相浸渍法除了溶液浸渍之外,亦可借助浸渍化合物的挥发性,以蒸气相的形式将它附载到载体上。这种方法首先应用正丁烷异构化过程中的催化剂,催化剂为A1C13/铁钒土。在反应器内先装入铁钒土载体,然后以热的正丁烷气流将活性组分A1C13气温升,而有足够的AICl3沉淀在载体铁矾土上后气化,并使A1C13微粒与丁烷一起通过铁矾土载体的反应器,当附载量足够时,便转入异构化反应。用此法制备的催化剂,在使用过程中活性组分也容易流失。为了维持催化性稳定,必须连续补加浸渍组分。适用于蒸气相浸渍法的活性组分沸点通常比较低。

浸渍时间的计算,浸渍后载体的干燥怎么处理,如果浸渍2小时后是否直接进行烘干处理呢,还是自然干,那么这个时间怎么处理呢?

浸渍时间的计算:这个没有一定的要求,因为浸渍液一般正好被吸附,个人感觉要有一

点点过量,就是浸渍后摇匀,底下残留一点点液体,半小时后再摇一次,就完了。

干燥:干燥过程比较重要,浸渍后的催化剂放在透气的铁网上比较好,否则干燥过程中容易引起浸渍液迁移,浸渍不均匀,建议旋转蒸发。

作者:moon_ml

烘干是焙烧的预处理,如果烘干没处理好,对活性组分的分布影响相当大,还有好像浸渍2小时好像不大够哦,因为是利用毛细现象对活性组分的固载化,所以吸附速度不会很快,如果过早的烘干会使大部分活性组分没充分进入孔道,很容易造成组分分布不均以及后期的活性。要是搂主时间够的话建议浸渍24小时。

焙烧是一个组分再分布的过程,可达到组分重新迁移分布的效果,但是迁移不可能太明显,迁移最大的就是已经进入孔道内的组分,换句话说,进入内部孔道越多,就可获得更多不易流失的活性组分。

作者:daiqiguang

我觉得等体积浸渍浸渍2小时可能不够,一般浸渍都在一夜左右,如果催化剂载体水(热)稳定性好,也就是说水不会破坏载体,浸渍时间应该稍微长些,7-8小时不为过,如果像MCM-41由于其结构在水中容易塌陷,一般是浸渍时间很短,然后快速干燥!!

很赞楼上的观点!!

作者:jnsdqyl

还没有做试验, 但是看到各位的高见, 颇有收获啊!呵呵!

作者:lqllongopq

:P

做的实验不多

不过浸渍之后一般都是先烘干,最后再焙烧

可以先晾干,目的应该是让活性组分更好的分散,烘干是为了除去表面物理吸附的溶剂,最好是在不太高的温度下真空干燥。

同上,浸渍最好时间长一点,7~8小时,24小时看浸渍液跟载体的具体性质而定。

焙烧除了使活性组分再分布外还起到活化的作用,常常在H2等还原气氛下焙烧。

作者:hasee

我前段时间刚好也在用等体积浸渍法制备Pt/Al2O3(自制介孔Al2O3)催化剂,一直觉得要像理论上那么标准等体积浸渍很难,而且负载的很不均匀。所以我一般让溶液稍微过量一点,然后把那糊装的东西搅拌均匀,再放在烘箱上面让其自然干燥(不管具体几小时)后,放入烘箱50度烘几小时100度烘几小时,然后需要的话再进行二次浸渍。。。然后在焙烧,还原。其实最后也不知均不均匀,但反应活性是很高的,准备再测一下分散度看看就基本清楚了!个人认为如果不是要用贵金属的话最好还是用过量浸渍,再有就是等体积浸渍后的干燥很重要,不能浸渍后立马100度干燥,否则可能更不均匀了!以前好像有过关于等体积浸渍的帖子,那里提到的在一定的真空度环境下进行是个可取的方法!

作者:hasee

呵呵,谢谢rabbit7708版主的奖励与补充,昨天因为较晚没写很清楚,稍过量的浸渍方式在低温干燥时是需要隔一段时间搅拌一下,我是这样做的,感觉还行!

[ Last edited by hasee on 2007-1-6 at 13:35]

作者:Catalysts

等体积浸渍法:首先测定(比如1g)载体的吸附水溶液的饱和量(直到载体表面刚好完全润湿为止,且不同载体有所区别),实验过程中根据载体质量要求换算出所需水溶液的体积或质量,这样含有活性组分的盐前驱体的浸渍液正好被吸附完全,在此过程中要搅拌一定时间,这样可以使浸渍液均匀的分散于载体上;然后室温放置12h左右后,80-120度(一般情况是100或110度下)干燥4-8小时后,再于300-600度下焙烧,自己根据需要定。焙烧后粉碎研磨,选取所需的目数或颗粒度,最后是催化剂前驱体活化即所谓的还原步骤:液相还原(用醇溶液或水合阱或甲醛等)或气相还原(用流动的氢气或氮氢混合气体等)。

顺便提一下焙烧过程建议采用程序升温或在氮气气氛中进行。

[ Last edited by Catalysts on 2007-1-6 at 14:11]

作者:jlem

大家讨论不错,学到了。

作者:majiang

浸渍时间长短要根据实验来判断,因为载体和金属组分不同浸渍时间的长短是不相同的。比如氧化铝上担载镍钨浸渍时间以3小时为宜。一般来说加氢催化剂的浸渍时间在10小时之内,如果楼主做的是此中催化剂可选用3-4小时,如果不是只有自己做了。

运动目标检测光流法

摘要 运动目标检测方法是研究如何完成对视频图像序列中感兴趣的运动目标区域的“准确定位”问题。光流场指图像灰度模式的表面运动,它可以反映视频相邻帧之间的运动信息,因而可以用于运动目标的检测。MATLAB这种语言可移植性好、可扩展性强,再加上其中有丰富的图像处理函数,所以利用MATLAB 软件来用光流法对运动目标的检测中具有很大的优势。本设计主要可以借助matlab软件编写程序,运用Horn-Schunck算法对图像前后两帧进行处理,画出图像的光流场。而图像的光流场每个像素都有一个运动矢量,因此可以反映相邻帧之间的运动,分析图像的光流场就可以得出图像中的运动目标的运动情况。 关键字:光流法;Horn-Schunck算法;matlab

目录 1光流法的设计目的 (1) 2光流法的原理 (1) 2.1光流法的介绍 (1) 2.1.1光流与光流场的概念 (1) 2.1光流法检测运动目标的原理 (2) 2.1.1光流场计算的基本原理 (2) 2.2.2基于梯度的光流场算法 (2) 2.2.3Horn-Schunck算法 (3) 2.2.4光流法检测运动目标物体的基本原理概述 (5) 3光流法的程序具体实现 (6) 3.1源代码 (6) 3.1.1求解光流场函数 (6) 3.1.2求导函数 (9) 3.1.3高斯滤波函数 (9) 3.1.4平滑性约束条件函数 (10) 3.1.5画图函数 (10) 4仿真图及分析 (12) 结论 (13) 参考文献 (14)

1 光流法的设计目的 数字图像处理,就是用数字计算机及其他有关数字技术,对图像进行处理,以达到预期的目的。随着计算机的发展,图像处理技术在许多领域得到了广泛应用,数字图像处理已成为电子信息、通信、计算机、自动化、信号处理等专业的重要课程。 数字图像处理课程设计是在学习完数字图像处理的相关理论后,进行的综合性训练课程,其目的是:使学生进一步巩固数字图像处理的基本概念、理论、分析方法和实现方法;增强学生应用Matlab编写数字图像处理的应用程序及分析、解决实际问题的能力;尝试所学的内容解决实际工程问题,培养学生的工程实践能力。 运动目标检测是数字图像处理技术的一个主要部分,近些年来,随着多媒体技术的迅猛发展和计算机性能的不断提高,动态图像处理技术日益受到人们的青睞,并且取得了丰硕的成果,广泛应用于交通管理、军事目标跟踪、生物医学等领域。 因此,基于光流法,实现运动目标的检测是本文的研究对象。结合图书馆书籍、网上资料以及现有期刊杂志,初步建立起运动目标检测的整体思路和方法。 2 光流法的原理 2.1 光流法的介绍 2.1.1 光流与光流场的概念 光流是指空间运动物体在观测成像面上的像素运动的瞬时速度,它利用图像序列像素强度数据的时域变化和相关性来确定各自像素位置的“运动”,即反映图像灰度在时间上的变化与景物中物体结构及其运动的关系。将二维图像平面特定坐标点上的灰度瞬时变化率定义为光流矢量。视觉心理学认为人与被观察物体

催化燃烧原理及催化剂

催化燃烧的基本原理 催化燃烧是典型的气-固相催化反应,其实质是活性氧参与的深度氧化作用。在催化燃烧过程中,催化剂的作用是降低活化能,同时催化剂表面具有吸附作用,使反应物分子富集于表面提高了反应速率,加快了反应的进行。借助催化剂可使有机废气在较低的起燃温度条件下,发生无焰燃烧,并氧化分解为CO2和H20, 同时放出大量热能,其反应过程为: 2 催化燃烧的特点及经济性 2.1催化燃烧的特点 2.1.1起燃温度低,节省能源 有机废气催化燃烧与直接燃烧相比,具有起燃温度低,能耗也小的显著特点。在某些情况下,达到起燃温度后便无需外界供热。 二、催化剂及燃烧动力学 2.1催化剂的主要性能指标 在空速较高,温度较低的条件下,有机废气的燃烧反应转化率接近100%,表明该催化剂的活性较高[9]。催化剂的活性分诱导活化、稳定、衰老失活3 个阶段,有一定的使用限期,工业上实用催化剂的寿命一般在2年以上。使用期的长短与最佳活性结构的稳定性有关,而稳定性取决于耐热、抗毒的能力。对催化燃烧所用催化剂则要求具有较高的耐热和抗毒的性能。有机废气的催化燃烧一般不会在很严格的操作条件下进行,这是由于废气的浓度、流量、成分等往往不稳定,因此要求催化剂具有较宽的操作条件适应性。催化燃烧工艺的操作空速较大,气流对催化剂的冲击力较强,同时由于床层温度会升降,造成热胀冷缩,易使催化剂载体破裂,因而催化剂要具有较大的机械强度和良好的抗热胀冷缩性能。 2.2催化剂种类 目前催化剂的种类已相当多,按活性成分大体可分3 类。2.2.1贵金属催化剂 铂、钯、钌等贵金属对烃类及其衍生物的氧化都具有很高的催化活性,且使用寿命长,适用范围广,易于回收,因而是最常用的废气燃烧催化剂。如我国最早采用的Pt-Al203 催化剂就属于此类催化剂。但由于其资源稀少,价格昂贵,耐中毒性差,人们一直努力寻找替代品或尽量减少其用量。2.2.2过渡金属氢化物催化剂 作为取代贵金属催化剂,采用氧化性较强的过渡金属氧化物,对甲烷等烃类和一氧化碳亦具有较高的活性,同时降低了催化剂的成本,常见的有Mn0x、CoOx和CuOx等催化剂。大连理工大学研制的含Mn02催化剂,在130C及空速13000h-1 的条件下能消除甲醇蒸气,对乙醛、丙酮、苯蒸气的清除也很有效果。

综合化学实验报告浸渍法

综合化学实验报告实验名称浸渍法制备Pd/γ-Al2O3催化剂 学院化学化工学院 学生姓名张宇周超朱军洁 专业化学 学号70 71 72 年级2013 指导教师王永钊

浸渍法制备Pd/γ-Al2O3催化剂 张宇周超朱军洁 (山西大学化学化工学院,山西太原030006) 摘要:浸渍法是将载体浸泡在含有活性组分(主,助催化剂组分)的可溶性化合物溶液中,接触一定的时间后除去过剩的溶液,再经干燥,焙烧和活化,即可制得催化剂。本实验采用等体积浸渍法制备负载型Pd/γ-Al2O3催化剂。实验中首先测出γ-Al2O3的饱和吸附量,进而计算出采用等体积浸渍法时所需的含有活性组分Pb2+的PbCl2溶液和水的量,然后将载体γ-Al2O3浸泡在适量的含有活性组分Pb2+的PbCl2溶液与适量的水的混合液中,接触一定的时间后,再经干燥,焙烧和活化,即可制得催化剂。 关键字:等体积浸渍法催化剂Pd/γ-Al2O3 0 引言: 固体催化剂的制备方法很多,工业上使用的固体催化剂的制备方法有:沉淀法,浸渍法,机械混合法,离子交换法,熔融等[1]。由于制备方法的不同,尽管原料和用量完全一样,但所制得的催化剂的性能仍可能有很大的差异。

浸渍法是将载体浸泡在含有在活性组分(主,助催化剂组分)的可溶性化合物溶液中,接触一定的时间后除去过剩的溶液,再经干燥,焙烧和活化,即可制得催化剂[2]。由于浸渍法比较经济,且催化剂形状、表面积、孔隙率等主要取决于载体,容易选取。等体积浸渍法是预先测定载体吸入溶液的能力,然后加入正好使载体完全浸渍所需的溶液量,这种方法称为等体积浸渍法。应用这种方法可以省去过滤多余的浸渍溶液的步骤,而且便于控制催化剂中活性组分的含量。因此,本实验采用等体积浸渍法[3][4]制备负载型Pd/γ- Al2O3催化剂。实验中首先测出γ- Al2O3的饱和吸附量,进而计算出采用等体积浸渍法时所需的含有活性组分Pb2+的PbCl2溶液和水的量,然后将载体γ- Al2O3浸泡在适量的含有活性组分Pb2+的PbCl2溶液与适量的水的混合液中,接触一定的时间后,再经干燥,焙烧和活化,即可制得催化剂。 1.载体的选择和浸渍液的配制[5] (1)载体的选择浸渍催化剂的物理性能很大程度上取决于载体的物理性质,载体甚至还影响到催化剂的化学活性。因此正确的选择载体和对载体进行必要的预处理,是采用浸渍法制备催化剂时首先要考虑的问题。载体种类繁多,作用各异,有关载体的选择要从物理因素和化学因素两方面考虑。物理因素指的是颗粒大小,表面积和孔结构。通常采用已成型好的具有一定尺寸和外形的载体进行浸渍,省去催化剂的成型。化学因素指的是载体可分为三种情况:(ⅰ)惰性载体,载体的作用是使活性组份得到适当的分布;(ⅱ)载体与活性组分有相互作用,它使活性组分有良好的分散并趋于稳定,从而改变催化剂的性能(ⅲ)载体具有催化作用,载体除有负载活性组分的功能外,还与所负载的活性组分一起发挥自身的催化作用。 (2)浸渍液的配制进行浸渍时,通常并不是用活性组分本身制成溶液,而是用活性组分金属的易容盐配成溶液,本实验采用PbCl2溶液。所用的活性组分化合物应该是易溶于水的,而且在焙烧时能分解成所需活性组分,或在还原后变成金属活性组分;同时还必须使无用组分,特别是对催化剂有毒的物质在热分解或还原过程中挥发出去。因此常用的是硝酸盐,铵盐,有机盐。一般以去离子水为溶剂,但当载体易溶于水或活性组分不溶于水时,则可用醇或烃作为溶剂。 2.活性组分在载体上的分布与控制[6] 浸渍时溶解在溶剂中含活性组分的盐类(溶质)在载体表面的分布,与载体对溶质和溶剂的吸附性能有很大的关系。

高等教育法律法规

《高等教育法规概论》 第一章教育法基本原理 1、简述教育法的基本原则。 ①保证教育的社会主义性质的原则;②教育的公共性原则;③公民受教育机会平等的原则;④教育与宗教相分离的原则 2、试述教育法体系的基本结构。 纵向和横向结构 3、试述我国的基本教育制度。 国家实行学前教育、初等教育、中等教育、高等教育的学校教育制度 4、我国有哪些现行有效的教育法律? 七部 1980:《中华人民共和国学位条例》 1986:《中华人民共和国义务教育法》,2006最新修改 1993:《中华人民共和国教师法》 1995:《中华人民共和国教育法》 1996:《中华人民共和国职业教育法》 1998:《中华人民共和国高等教育法》 2002:《中华人民共和国民办教育促进法》 第二章教育法制与教育管理 1、如何理解教育法制。 三种含义: 1)、指国家制定的有关教育的法律和制度,是国家有关教育的法律制度的总合。 2)、指有关教育的立法、执法、司法、守法和法律监督的活动过程。 3)、将其理解为依法治教,按照依法治理的原则和方式来管理和规范各种教育活动。 2、试述教育法制的特征。(P36) 1)能保障国家教育权的有效行使;2)能保障公民受教育权的实现;3)能保障学校自主办学;4)有完善的立法制度和法规体系;5)有明确的法律责任规定;6)有完善的法律监督制度;7)有与法治社会相适应的法律文化。 3、结合实际谈谈如何依法执教。 依法执教指依照法律管理教育事业。具体而言,是指国家机关以及有关机构依照有关教育的法律规定,在其职权范围内从事有关教育的治理活动,以及各级各类学校及其他教育机构、社会组织和公民依照有关教育的法律规定,从事办学活动、教育教学活动以及其他有关教育的活动。 依法执教包括依法行政、依法治校、依法执教 依法治校的基本要求: 1)加强制度建设。2)保护教师、学生的合法权益。3)完善民主监督机制 第三章教育法的制定、实施和监督 1、简述教育立法的程序。 1)教育法律议案的提出;2)教育法律草案的审议;3)教育法律的通过;4)教育法律的公布。

沉淀法

沉淀法、浸渍法制备催化剂 沉淀法(Deposition-precipitation,简称DP法)是将金属氧化物载体加入 到HAuCl4的水溶液中形成悬浮液,在充分搅拌的条件下,控制一定的温度和pH值,使之沉积在载体表面上,随后进行过滤、洗涤、干燥、焙烧等处理,得到负载金催化剂。对于制备高活性的纳米金催化剂,该方法是广泛使用并且比较有效的方法之一。该方法的关键是控制合适的pH值,从而可以得到活性组分均匀分散、粒度较小、活性较高的纳米金催化剂。通常认为,控制反应液浓度10mol/L,最佳pH值范围7~8,反应温度323~363K,氯金酸的水溶液就会选择性的以氢氧化金的形式沉积在载体表面,而尽可能少的在液相中沉淀。通常,采用DP法制备纳米金催化剂最合适的载体是等电点在6~9之间的氧化物,如TiO2 (IEP=6),CeO2 (IEP=6.75),ZrO2 (IEP=6.7),Fe2O3 (IEP=6.5~6.9)和Al2O3 (IEP=8~9)等。该法的优点在于活性组分全部保留在载体表面,提高了活性组分的利用率;得到的催化剂金颗粒尺寸分布比较均匀。该法对于制备低负载量金催化剂非常有效,但是要求载体有较高的比表面积(至少50m/g),而且不适用于等电点小于5的金属氧化物和活性炭载体。步骤制成催化剂。这也是常用于制备高含量非贵金属、金属氧化物、金属盐催化剂的一种方法。具体可以分为共沉淀、均匀沉淀和分步沉淀等方法。借助于沉淀反应。用沉淀剂将可溶性的催化剂组分转变为难溶化合物。经过分离、洗涤、干燥和焙烧成型或还原等。 2.1、共沉淀方法 将催化剂所需的两个或两个以上的组分同时沉淀的一个方法,可以一次同时获得几个活性组分且分布较为均匀。为了避免各个组分的分步沉淀,各金属盐的浓度、沉淀剂的浓度、介质的pH值以及其他条件必须同时满足各个组分一起沉淀的要求。 2.2、均匀沉淀法 它不是把沉淀剂直接加到待沉淀的溶液中,也不是加沉淀剂后立即产生沉淀反应,而是首先使沉淀的溶液与沉淀剂母体充分混合,造成一个均匀的体系,然后调节温度、逐渐提高PH值或在体系中逐渐生成沉淀剂等方式,创造形成沉淀的条件,使沉淀作用缓慢地进行。 例如,在铝盐溶液中加入尿素,混合均匀后加热升温至90℃~100℃,溶液中由于尿素的分解而放出OH—离子,于是氢氧化铝就均匀地沉淀出来。 沉淀条件对催化剂性能的影响 1.沉淀剂的影响 2.溶液浓度的影响 3.沉淀温度的影响 4.沉淀PH值的影响 5.加料方式的影响 6.搅拌温度的影响 7.沉淀的陈化影响 8.沉淀洗涤的影响 9.干燥、焙烧、活化的影响

教育法学习反思

第一篇教育法学习反思 《2015学习教育法心得体会》 第1学习教育法心得体会 为了发展教育事业,提高全民族的素质,促进社会主义物质文明和精神文明建设,根据宪法,制定《中华人民共和国教育法》,并于1995年9月1日起施行。 通过学习教育法,我更加深入地了解到教育者和受教育者享有的权利和应尽的义务,更是让我找到了自己存在的不足和应该改善的地方,以及要努力的方向。 在工作中,严格要求自己,规范自己的思想和行为。用心去教好每一位学生,不能够把自己的情绪带进课堂里,应该克制和控制好自己的情绪,当学生很吵,课堂纪律不好的时候更应控制好自己的情绪,不能向学生宣泄自己的不满,而应该保持头脑清醒,用平和的方法缓和学生的情绪,抓住控制课堂的主动权。 言传身教,对老师来说非常的重要,有很多东西我一时间不能够把它教给学生,但是我们可以接住自己日常的行为教导学生、引导学生,真正做到以身作则,

用自己的行为感染学生,带动起学生,以求达到目濡耳染作用。 在管理班级的时候应该制定好严厉的奖惩制度,让学生有章可循,有矩可守。对学生不能一致用软的方法,应该软硬兼施。培养好班干部,让他们成为自己的左右手。 在教导学生的时候,方法要多样,唯一不变的就是要耐心。不同的学生要用不同的方法教导,对于比较内向文静的学生就应该语气平和地教导他们,先让他们找到自己不好的地方,再鼓励他们把缺点改正过来;而对于调皮捣蛋的学生,对他们就应该要严厉。一把钥匙就只能开一把锁。 教育和学习都是无止境的,我应该不断地学习、总结和反思,在实践中不断取得进步。 第2学习教育法心得体会 振兴民族的希望在教育,振兴教育的希望在教师。教师承担着为国家培养下一代的历史重任,教师的发展和提高直接影响着国民素质的高低和各级各类人才培养。终生学习的思想和观念逐步被广大教师所接受,并日益成为教师工作和生活的重要组成部分。而法律是一种调整人们行为的规范,它与我们每一个人的学习、生活、工作都有着千丝万缕的联系,渗透在我们生活的方方面面,是我们的保护神。作为教师,通过学习,有着深刻的感悟。尤其,书中第三章教师执教中

催化剂制备方法大全

催化剂制备方法简介 1、催化剂制备常规方法 (1)浸渍法 a过量浸渍法 b等量浸渍法(多次浸渍以防止竞争吸附) (2)沉淀法(制氧化物或复合氧化物)(注意加料顺序:正加法或倒加法,沉淀剂加到盐溶液为正,反之为倒加) a单组分沉淀法 b多组分共沉淀法 c均匀沉淀法(沉淀剂:尿素) d超均匀沉淀法 (NH4HCO3和NH4OH组成的缓冲溶液pH=9) e浸渍沉淀法 浸渍沉淀法是在浸渍法的基础上辅以均匀沉淀法发展起来的,即在浸渍液中预先配入沉淀剂母体,待浸渍单元操作完成后,加热升温使待沉淀组分沉积在载体表面上。此法,可以用来制备比浸渍法分布更加均匀的金属或金属氧化物负载型催化剂。 f导晶沉淀法 本法是借晶化导向剂(晶种)引导非晶型沉淀转化为晶型沉淀的快速有效方法。举例:以廉价易得的水玻璃为原料的高硅酸钠型分子筛,包括丝

光沸石、Y型、X型分子筛。 (3)共混合法 混合法是将一定比例的各组分配成浆料后成型干燥,再经活化处理即可。如合成气制甲醇用的催化剂就是将氧化锌和氧化铬放在一起混合均匀(适当加入铬酐的水溶液和少许石墨)然后送入压片机制成圆柱形,在100 o C烘2h即可。 (4)热分解法 硝酸盐、碳酸盐、甲酸盐、草酸盐或乙酸盐。 (5)沥滤法 制备骨架金属催化剂的方法,Raney 镍、铜、钴、铁等。 (6)热熔融法 合成氨催化剂Fe-K2O-Al2O3;用磁铁矿Fe3O4、KNO3和Al2O3高温熔融而得。 (7)电解法 用于甲醇氧化脱氢制甲醛的银催化剂,通常用电解法制备。该法以纯银为阳极和阴极,硝酸银为电解液,在一定电流密度下电解,银粒在阴极析出,经洗涤、干燥和活化后即可使用。

高等教育法规概论(详细)

高等教育法规概论 第一章 教育法基本原理 第一节 教育法的概念 一、教育法的概念和性质 法律:是体现统治阶级的意志,由国家制定或认可的,并由国家的强制力保证实施的具有普遍约束力的行为规则的总和。 法的基本特征:法是调整人的行为和社会关系的规范;法是由国家制定或认可的社会规范;法是规定权利和义务的社会规范;法是由国家保证实施的社会规范。 教育法:国家对教育进行管理方面的法律规范的总合,体现了国家对教育的干预和协调。 定义: (一) 教育法是国家干预、管理和协调教育的法(教育行政机关是一个管理者,而且也是一个协调者、服务者); (二) 教育法是规定教育管理过程中和实施教育教学活动过程中不同主体的地位及其权利与义务的法律; (三) 教育法是国内法,它是由各种教育法律法规规章构成的整体 二、教育法的地位和作用: 地位:教育法是行政法的一个分支;教育法是宪法的重要实施法。 作用:保障教育的社会主义性质和战略地位;保障和促进依法治教;确认并保障公民的受教育权利和义务;保障和促进教育事业的发展。 三、教育法与党的教育政策的关系:

党的教育政策是党为完成一定时期的教育工作的基本任务而规定的活动准则,它是党实现对国家教育工作领导的基本方式。 教育法和党的教育政策在本质上是一致的,它们都以四项基本原则为指导。教育法和党的教育政策又有区别。 区别:1、制定主体不同,教育法具有国家意志的属性;而党的教育政策不具有国家意志的属性。 2、表现形式不同,教育法通过法律、行政法规、地方性法规、地方规章形式表现,内容比较明确、具体;而党的教育政策通常是以决议、决定、纲领、宣言、口号等形式表现出来,内容一般比较原则。 3、实施方式不同,教育法更主要的是依靠国家强制力,而党的教育政策为人民群众自觉的行动。 4、调整范围不同,党的教育政策调整教育关系的范围比教育法要广泛。 第二节 教育法的基本原则 (一)保证教育的社会主义性质或方向原则。1、由工人阶级掌握教育的领导权;2、公民平等地享有受教育的权利和义务;3、宗教与教育分离。 (二)遵循教育发展的客观规律原则。1、教育与受教育者身心发展相互制约的规律;2、教育与社会发展相互制约的规律;3、教育具有相对独立性。 (三)体现人的全面发展原则。即德育、智育、体育、美育和劳动技术教育。 第三节 教育法的渊源和体系

光流法运动目标跟踪论文

研究生课程论文 《光流法运动目标跟踪》 课程名称s 姓名 学号 专业 任课教师 教师评阅意见: 论文成绩评阅日期 课程论文提交时间:年月日

摘要本文实现了对运动目标的跟踪检测,重点研究金字塔Lucas-Kanade算法,在研究基于特征点的目标跟踪的一般方法,即采用改进的Harris角点提取点的方法。实验结果表明先采用Shi-Tomasi算法比Harris算法提取角点效果更好,之后用金字塔光流进行跟踪。 关键词运动目标跟踪Lucas-Kanade Shi-Tomasi 改进Harris 1.引言 近些年,模式识别领域的图像处理已经成为一个支柱,其中,动态目标的识别跟踪已经被研究者应用到工程上,而运动目标跟踪算法的优劣直接影响着运动目标跟踪的稳定性和精确性。本文主要是运动光流法等算法对运动目标进行跟踪。目标特征点的跟踪是计算机视觉中的一个基本而极具挑战性的研究课题,该课题在人机互动(HCI),目标识别,目标运动等领域有着非常重要的应用。虽然对运动目标跟踪算法能够完成对运动目标的可靠跟踪,大多数都存在处理数据量大,运算复杂等问题。因此,研究具有高精度且运算简单的目标检测与跟踪算法是图形跟踪迫切需要解决的问题,目前基于特征和光流的图像跟踪方法受到了极大的关注。 2.运动目标检测算法 运动目标检测技术是目标自动检测、识别与跟踪的基础,也是实现进一步处理视频编码、目标跟踪、目标分类及行为理解等的关键技术。基于视频或序列图像的分析一般可分为四个步骤:(1)运动目标的检测与提取,(2)运动目标的分类,(3)运动目标的跟踪,(4)运动目标的行为理解与分析,如图1所示。 图像序列运动检测目标分类目标跟踪行为理解 图1 分析过程 在计算机视觉处理中,运动目标检测技术处于中层处理级别,它是指在一个视频或者图像中,对需要研究的并且是处于运动状态的目标和背景进行分离,对于行为理解,行为分析等其他技术的研究,运动目标检测也是一种有效的方法。 目标检测要依据运动目标的主要特性,例如时间特性、边缘形状特性、颜色灰度特性、矢量特性等等。时间特性、区域作为视频序列时间差分和图像分割的基础,是运动目标最基本的特性。目标运动时在形状、大小、刚度等方面的差异称为形态特征,利用形态特征对运动目标检测,难点是对小目标的检测。 3.光流法 1950年,Gibuson首先提出了光流的概念,所谓光流就是指图像表现运动的速度。物体在运动的时候之所以能被人眼发现,就是因为当物理运动时,会在人的视网膜上形成一系列的连续变化的图像,这些变化信息在不同时间,不断的流过眼睛视网膜,就好像一种光流过一

浸渍法制备PdAl2O3催化剂

山西大学 综合化学实验报告实验名称浸渍法制备Pd/γ-Al2O3催化剂 学院化学化工学院 学生姓名 ddd 专业化学 学号 4444 年级 2009 指导教师王永钊 二Ο一二年 5月11日

浸渍法制备Pd/γ-Al2O3催化剂 姓名:tttt 学号:jikij 专业:化学 (山西大学化学化工学院,山西太原030006) 摘要:用等体积浸渍法,预先测定载体吸入溶液的能力,然后加入正好使载体完全浸渍所需的Pd溶液与蒸馏水的量,经干燥,焙烧,还原制备Pd/γ-Al2O3催化剂,此催化剂为银灰色蛋壳型。 关键词:浸渍法 Pd/γ-Al2O3 催化剂 引言: 固体催化剂的制备方法很多。由于制备方法的不同,尽管原料和用量完全一样,但所制得的催化剂的性能仍可能有很大的差异。本次实验使用等体积浸渍法制备Pd/γ-Al2O3催化剂,使学生了解并掌握催化剂制备的基本原理与简单操作。 浸渍法是将载体浸泡在含有活性组分(主,助催化剂组分)的可溶性化合物溶液中,接触一定的时间后除去过剩的溶液,再经干燥,焙烧和活化,即可制得催化剂。而等体积浸渍法,能较便捷的得出所需净渍液的大概体积,由此可以省去过滤多余的浸渍溶液的步骤,而且便于控制催化剂中活性组分的含量。此方法预先测定载体吸入溶液的能力,然后加入正好使载体完全浸渍所需的溶液量。 用浸渍法制备催化剂时,毛细管中浸渍液所含的溶质在干燥过程中会发生迁移,造成活性组分的不均匀分布。这时由于在缓慢干燥过程中,热量从颗粒外部传递到其内部,颗粒外部总是先达到液体的蒸发温度,因而孔口部分先蒸发使一部分溶质析出,由于毛细管上升现象,含有活性组分的溶液不断地从毛细管内部上升到孔口,并随溶剂的蒸发溶质不断地析出,活性组分就会向表层集中,留在孔内的活性组分减少。因此,为了减少干燥过程中溶质的迁移,常采用快速干燥法,使溶质迅速析出。有时也可采用稀溶液多次浸渍法来改善。 浸渍完全后再经干燥,焙烧处理得到催化剂产物。 实验部分 1、实验步骤 1.1实验试剂与仪器 1.1.1 试剂:γ-Al2O3小球,蒸馏水,Pd[9.6 mg/mL]溶液 1.1.2 仪器:坩埚,玻璃棒,移液管(1ml),洗耳球,小量筒(10ml),烘箱,马弗炉 1.2具体操作方法 1.2.1 载体吸入溶液能力试验称取三份1.0 g的40-60 目γ-Al2O3小球,逐步滴加蒸馏水,

络合催化剂及其催化作用机理

络合催化剂及其催化作用机理 1 基本知识 络合催化剂,是指催化剂在反应过程中对反应物起络合作用,并且使之在配位空间进行催化的过程。 催化剂可以是溶解状态,也可以是固态;可以是普通化合物,也可以是络合物,包括均相络合催化和非均相络合催化。 络合催化的一个重要特征,是在反应过程中催化剂活性中心与反应体系,始终保持着化学结合(配位络合)。能够通过在配位空间内的空间效应和电子因素以及其他因素对其过程、速率和产物分布等,起选择性调变作用。故络合催化又称为配位催化。 络合催化已广泛地用于工业生产。有名的实例有: ①Wacker工艺过程: C2H4 + O2 CH3?CHO C2H4 + O2 + CH3?COOH CH3?COO C2H4 + H2O R?CH? (CHO) ?CH3R?CH2?CH2?CH② 0X0 工艺过程: R?CH=CH2 + CO/H2 催化剂:HCo(CO)4 , 150 °C, 250X 105Pa;RhCI(CO)(PPh3)2 , 100 C, 15X 105Pa ③Monsanto甲醇羰化工艺过程: CH3OH + CO CH3?COOH 催化剂:RhCI(CO)(PPh3)2/CH3I 从以上的几例可以清楚地看到,络合催化反应条件较温和,反应温度一般在100~200 C左右,反应压 力为常压到20X105Pa上下。反应分子体系都涉及一些小分子的活化,如CO、H2、O2、C2H4、C3H6等,便于研究反应机理。主要的缺点是均相催化剂回收不易,因此均相催化剂的固相化,是催化科学领域较重要的课题之一。 2 过渡金属离子的化学键合 (1 )络合催化中重要的过渡金属离子与络合物 过渡金属元素(T.M.)的价电子层有5个(n - 1)d,1个ns和3个np,共有9个能量相近的原子轨道,容易组成d、s、p 杂化轨道。这些杂化轨道可以与配体以配键的方式结合而形成络合物。凡是含有两个或两个以上的孤对电子或n键的分子或离子都可以作配体。过渡金属有很强的络合能力,能生成多种类型的络合物,其催化活性都与过渡金属原子或离子的化学特性有关,也就是和过渡金属原子(或离子)的电子结构、成键结构有关。同一类催化剂,有时既可在溶液中起均相催化作用,也可以使之成为固体催化剂在多相催化中起作用。 空的(n - 1)d轨道,可以与配体L(CO、C2H4…等)形成配键(M?:L),可以与H、R-①-基形成M-H、M-C型b键,具有这种键的中间物的生成与分解对络合催化十分重要。由于(n - 1)d轨道或nd外轨道参与 成键,故T.M.可以有不同的配位数和价态,且容易改变,这对络合催化的循环十分重要。 大体趋势是:①可溶性的Rh、lr、Ru、Co的络合物对单烯烃的加氢特别重要;②可溶性的Rh、Co 的络合物对低分子烯烃的羰基合成最重要;③Ni络合物对于共轭烯烃的齐聚较重要;④ Ti、V、Cr络合物 催化剂适合于a烯烃的齐聚和聚合;⑤第VHI族T.M.元素的络合催化剂适合于烯烃的齐聚。这些可作为研 究开发工作的参考。 (2)配位键合与络合活化各种不同的配体与T.M.相互作用时,根据各自的电子结构特征形成不同的配位键合,配位体本身得到活化, 具有孤对电子的中性分子与金属相互作用时,利用自身的孤对电子与金属形成给予型配位键,记之为L- M,如:NH3、H2就是。给予电子对的L:称为L碱,接受电子对的M称为L酸。M要求具有空的d或p空轨道。 H?, R?等自由基配体,与T.M.相互作用,形成电子配对型b键,记以L-M。金属利用半填充的d、p轨道电 子,转移到L 并与L 键合,自身得到氧化。 带负电荷的离子配位体,如C-、Br- OH -等,具有一对以上的非键电子对,可以分别与T.M.的2个 空d或p轨道作用,形成一个b键和一个n键。这类配位体称为n-给予配位体,形成o- n键合。具有重键的配位

蒙特梭利教育法 第9章 原理论(三)──生命自然发展

第9章原理论(三)──生命自然发展 生命是一件多么神奇的事!看看那土里冒出的新芽,瞧瞧那“唉!衣服又太小了”的宝宝,你都可以确实地发现,生命它不曾滞止。 爷爷不是一生下来,就白了胡子,你也不是一生下来就长得这么高,都必须经过由幼小到成年的连续过程,才有现在的自己。但是只要问:是什么力量让我们长大的?恐怕没有人能够说个所以然。其实,生命它自然而然地发展,看上去很像极为随意,实际上,却充满着秩序和规律(一定由小到大,由简而繁),在一定的自然法则下,万物生生不息! 生命的自然发展 蒙特梭利在观察中,就注意到了生命“自然发展”的事实,她发现人的“完成”,实际上是经由自己的不断活动来达成的。比如“母鸡孵蛋”,母鸡生下鸡蛋之后,它能做的,也只是供给蛋的温暖,至于蛋壳里的“胚胎”如何变成小鸡,就得靠蛋壳内的“生命”自己去一步步地完成,老母鸡无论如何着急,也控制不了蛋壳里的小生命。 蒙特梭利更追根究底地往上找寻生命体自我活动的根据,她发现,儿童在出生以前,就具有了发展的预定计划,由于这个计划从生命的一开始就已存在,正如鸡蛋会变成鸡,人的受精卵会开展成胎,变成人,所以她称未出生之前,便具有这种“开展功能”的儿童,为“精神和肉体胚体”。“胚体”在卵受精的那一时刻,就含有了“未来成为人”的这一大自然的“预定计划”,于是“预定计划”也按着大自然订下的步骤,产生了自我实现的活动;不断地自我活动,完成了伟大的生命。 预定计划在过程中显现 比如说,一枝黑黑小小的苹果树苗,你当然知道它有一天会长成树,开花结果。但是第一步,你必须把它种在土里,经过了抽芽,发枝,长叶,到最后一个个美味的苹果才会真正出现。我们拿这个例子与前面所说的对比一下: ▲种苗(含有未来成▲受精卵(含有未来成为果树的“预定计划”人的“预定计划” ↓↓ 抽芽、发枝、成树……成胎、婴儿、儿童…… ↓↓ 结果(达到计划)成人(达到计划)请注意中间“→”的那几段,是表示必经的过程(自我活动的过程)。也就是说“预定计划”,必须借着自然力量所推展的过程,来显现计划是什么?来达到计划的目的;缺少了必经的过程,就显现不出这个自然的预定计划来了(例如婴儿一生下来,假使不经由发展过程,如何能变成大人?他不可能今天是婴儿,明天就变成大人了)。这个过程绝非跳跃式的前进,它是按部就班,脚尖脚踵地一一发展下来。 这种自然发展的过程,也是万物长成的自然规律,哪怕是蚊虫,白天生出来,经过两个晚上就死亡,“三天”对这虫子来说就是一辈子,在这短短的三天中,它仍得经历从生到死,由幼至长的成长历程呀! 儿童的内在需要 “计划”靠着“过程”来达成,那过程又靠着什么来推动?答案是“内在需要”。 幼儿在心理与生理上的发展速度因人而异,所以儿童成长阶段的进程也会各自不同;然而相同的是:为了使身心成长,从胚胎个体开始,会有很多的内在而非外显的需要出现,“内在需要”会导致“个体”主动地去寻寻觅觅,找它要的“东西”,以满足迅速成长的目标(例如刚出生的婴儿肚子饿了,他会闭着眼睛找,用嗅觉找奶香,用嘴唇去找奶头,解决饿的问

催化剂制备方法大全

催 化 剂 的 制 备 方 法 与 成 型 技 术 总 结 应用化学系1202班 王宏颖 2012080201

催化剂的制备方法与成型技术 一、固体催化剂的组成: 固体催化剂主要有活性组分、助剂和载体三部分组成: 1.活性组分:主催化剂,是催化剂中产生活性的部分,没有它催化剂就不能产生催化作用。 2.助剂:本身没有活性或活性很低,少量助剂加到催化剂中,与活性组分产生作用,从而显著改善催化剂的活性和选择性等。 3.载体:载体主要对催化活性组分起机械承载作用,并增加有效催化反应表面、提供适宜的孔结构;提高催化剂的热稳定性和抗毒能力;减少催化剂用量,降低成本。 目前,国内外研究较多的催化剂载体有:SiO2,Al2O3、玻璃纤维网(布)、空心陶瓷球、有机玻璃、光导纤维、天然粘土、泡沫塑料、树脂、活性炭,Y、β、ZSM-5分子筛,SBA-15、MCM-41、LaP04等系列载体。 二、催化剂传统制备方法 1、浸渍法 (1)过量浸渍法 (2)等量浸渍法(多次浸渍以防止竞争吸附) 2、沉淀法(制氧化物或复合氧化物)(注意加料顺序:正加法或倒加法,沉淀剂 加到盐溶液为正,反之为倒加) (1)单组分沉淀法 (2)多组分共沉淀法 (3)均匀沉淀法(沉淀剂:尿素) (4)超均匀沉淀法 (NH4HCO3和NH4OH组成的缓冲溶液pH=9) (5)浸渍沉淀法 浸渍沉淀法是在浸渍法的基础上辅以均匀沉淀法发展起来的,即在浸渍液中预先配入沉淀剂母体,待浸渍单元操作完成后,加热升温使待沉淀组分沉积在载体表面上。此法,可以用来制备比浸渍法分布更加均匀的金属或金属氧化物负载型催化剂。 (6)导晶沉淀法 本法是借晶化导向剂(晶种)引导非晶型沉淀转化为晶型沉淀的快速有效方法。举例:以廉价易得的水玻璃为原料的高硅酸钠型分子筛,包括丝光沸石、Y型、X型分子筛。 3、共混合法 混合法是将一定比例的各组分配成浆料后成型干燥,再经活化处理即可。如合成气制甲醇用的催化剂就是将氧化锌和氧化铬放在一起混合均匀(适当加入铬

催化作用原理课论文

各类催化剂的特点及应用 姓名 xxx 学号 201400xx 院系化学工程学院 专业化学工程与技术 年级研究生1班 科目催化作用原理

1.前言 催化剂的主要作用是降低化学反应的活化能,加快反应速度,因此被广泛应用于炼油、化工、制药、环保等行业。催化剂的技术进展是推动这些行业发展的最有效的动力之一。一种新型催化材料或新型催化工艺的问世,往往会引发革命性的工业变革,并伴随产生巨大的社会和经济效益。1913年,铁基催化剂的问世实现了氨的合成,从此化肥工业在世界范围迅速发展;20世纪50年代末,Ziegler-Natta催化剂开创了合成材料工业;20世纪50年代初,分子筛凭借其特殊的结构和性能引发了催化领域的一场变革;20世纪70年代,汽车尾气净化催化剂在美国实现工业化,并在世界范围内引起了普遍重视;20世纪80年代,金属茂催化剂使得聚烯烃工业出现新的发展机遇。 目前,人类正面临着诸多重大挑战,如:资源的日益减少,需要人们合理开发、综合利用资源,建立和发展资源节约型农业、工业、交通运输以及生活体系;经济发展使环境污染蔓延、自然生态恶化,要求建立和发展物质全循环利用的生态产业,实现生产到应用的清洁化。这些重大问题的解决无不与催化剂和催化技术息息相关。因此,许多国家尤其是发达国家,非常重视新催化剂的研制和催化技术的发展,均将催化剂技术作为新世纪优先发展的重点。 催化剂和催化作用:催化剂能加速化学反应而本身不被消耗的物质。催化作用是一种化学作用,是靠少量催化剂来加速化学反应的现象。 催化剂的基本特性:加快反应速度,但只能加速热力学上可能进行的化学反应;不能改变化学平衡的位置,故对正反应有效的催化剂对逆反应也有效;对反应有选择性。 催化剂的分类:目前工业上用的催化剂有2000多种,有不同的分类方法,按工艺与工程特点分为多相固体催化剂、均相配合物催化剂和酶催化剂三类。2. 均相催化 催化剂和反应物同处于一相,没有相界存在而进行的反应,称为均相催化作用,能起均相催化作用的催化剂为均相催化剂。均相催化剂包括液体酸、碱催化剂和色可赛思固体酸和碱性催化剂。溶性过渡金属化合物(盐类和络合物)等。均相催化剂以分子或离子独立起作用,活性中心均一,具有高活性和高选择性。

催化剂的制备方法及成型

催化剂的制备方法及成型 一催化剂的制备方法 1.1浸渍法 将含有活性组分(或连同助催化剂组分)的液态(或气态)物质浸载在固态载体表面上。此法的优点为:可使用外形与尺寸合乎要求的载体,省去催化剂成型工序;可选择合适的载体,为催化剂提供所需的宏观结构特性,包括比表面、孔半径、机械强度、导热系数等;负载组分仅仅分布在载体表面上,利用率高,用量少,成本低。广泛用于负载型催化剂的制备,尤其适用于低含量贵金属催化剂。 影响浸渍效果的因素有浸渍溶液本身的性质、载体的结构、浸渍过程的操作条件等。浸渍方法有:①超孔容浸渍法,浸渍溶液体积超过载体微孔能容纳的体积,常在弱吸附的情况下使用;②等孔容浸渍法,浸渍溶液与载体有效微孔容积相等,无多余废液,可省略过滤,便于控制负载量和连续操作;③多次浸渍法,浸渍、干燥、煅烧反复进行多次,直至负载量足够为止,适用于浸载组分的溶解度不大的情况,也可用来依次浸载若干组分,以回避组分间的竞争吸附;④流化喷洒浸渍法,浸渍溶液直接喷洒到反应器中处在流化状态的载体颗粒上,制备完毕可直接转入使用,无需专用的催化剂制备设备;⑤蒸气相浸渍法,借助浸渍化合物的挥发性,以蒸气相的形式将它负载到载体表面上,但活性组分容易流失,必须在使用过程中随时补充。 1.2沉淀法 用淀剂将可溶性的催化剂组分转化为难溶或不溶化合物,经分离、洗涤、干燥、煅烧、成型或还原等工序,制得成品催化剂。广泛用于高含量的非贵金属、金属氧化物、金属盐催化剂或催化剂载体。沉淀法有: ①共沉淀法,将催化剂所需的两个或两个以上的组分同时沉淀的一种方法。其特点是一次操作可以同时得到几个组分,而且各个组分的分布比较均匀。如果组分之间形成固体溶液,那么分散度更为理想。为了避免各个组分的分步沉淀,各金属盐的浓度、沉淀剂的浓度、介质的pH值及其他条件都须满足各个组分一起沉淀的要求。 ②均匀沉淀法,首先使待沉淀溶液与沉淀剂母体充分混合,造成一个十分均匀的体系,然后调节温度,逐渐提高pH值,或在体系中逐渐生成沉淀剂等,创造形成沉淀的条件,使沉淀缓慢地进行,以制取颗粒十分均匀而比较纯净的固体。例如,在铝盐溶液中加入尿素,混合均匀后加热升温至90~100℃,此时体系中各处的尿素同时水解,放出OH-离子: 于是氢氧化铝沉淀可在整个体系中均匀地形成。 ③超均匀沉淀法,以缓冲剂将两种反应物暂时隔开,然后迅速混合,在瞬间内使整个体系在各处同时形成一个均匀的过饱和溶液,可使沉淀颗粒大小一致,组分分布均匀。苯选择加氢的镍/氧化硅催化剂的制法是:在沉淀槽中,底部装入硅酸钠溶液,中层隔以硝酸钠缓冲剂,上层放置酸化硝酸镍,然后骤然搅拌,静置一段时间,便析出超均匀的沉淀物。 ④浸渍沉淀法,在浸渍法的基础上辅以均匀沉淀法,即在浸渍液中预先配入沉淀剂母体,待浸渍操作完成后加热升温,使待沉淀组分沉积在载体表面上。 混合法多组分催化剂在压片、挤条等成型之前,一般都要经历这一步骤。此法设备简单,操作方便,产品化学组成稳定,可用于制备高含量的多组分催化剂,尤其是混合氧化物催化剂,但此法分散度较低。 混合可在任何两相间进行,可以是液-固混合(湿式混合),也可以是固-固混合(干式混合)。混合的目的:一是促进物料间的均匀分布,提高分散度;二是产生新的物理性质(塑性),便于成型,并提高机械强度。

催化剂的制备性能评价及使用技术多相催化剂常用哪些

第二章催化剂的制备、性能评价及使用技术 1.多相催化剂常用哪些方法来制备?为什么制备固体催化剂都需要经过热处理,其目的是什么? 多相催化剂常用的制备方法有:(1)天然资源的加工,结构不同,含量不同的硅铝酸盐采用不同的方法和条件加工后能适用于某一特定的催化反应;(2)浸渍法,将载体置于含活性组分的溶液中浸泡,达到平衡后将剩余液体除去,再经干燥、煅烧、活化等步骤即得催化剂。此法要求浸渍溶液中所含活性组分溶解度大、结构稳定、受热后分解为稳定的化合物;(3)滚涂法和喷涂法,滚涂法是将活性组分先放在一个可摇动的容器中,再将载体布于其上,经过一段时间的滚动,活性组分逐渐粘附其上,为了提高滚涂效果,有时也添加一定的粘合剂。喷涂法与滚涂法类似,但活性组分不同载体混在一起,而是用喷枪附于载体上;(4)沉淀法,在含金属盐类的水溶液中,加进沉淀剂,以便生成水合氧化物、碳酸盐的结晶或凝胶。将生成的沉淀物分离、洗涤、干燥后,即得催化剂;(5)共混合法:将活性组分与载体机械混合后,碾压至一定程度,再经挤条成型,最后缎烧活化;(6)沥滤法(骨架催化剂的制备方法),将活性组分金属和非活性金属在高温下做成合金,经过粉碎,再用苛性钠来溶解非活性金属即得;(7)离子交换法: 是在载体上金属离子交换而负载的方法, 合成沸石分子筛一般也是先做成Na型,需经离子交换后方显活性;(8) 均相络合催化别的固载化: 将均相催化剂的活性组分移植于载体上, 活性组分多为过渡金属配合物,载体包括无机载体和有机高分子载体。优点是活性组分的分散性好,而且可根据需要改变金属离子的配体。制备各固体催化剂,无论是浸渍法,沉淀法还是共混合法,有的钝态催化剂经过缎烧就可以转变为活泼态,有的还需要进一步活化。 所以,催化剂在制备好以后,往往还要活化;除了干燥外,还都需要较高温度的热处理-煅烧的目的:1)通过热分解除掉易挥发的组分而保留一定的化学组成,使催化剂具有稳定的催化性能。2)借助固态反应使催化剂得到一定的晶型、晶粒大小、孔隙结构和比表面。3)提高催化剂的机械强度。 2.沉淀法制备催化剂的原理是什么?金属盐和沉淀剂的选择原则是什么? 沉淀法制备催化剂的原理是沉淀反应,金属盐一般首选硝酸盐来提供无机催化剂材料所需的阳离子;金、铂、钯等贵金属不溶于硝酸,但可溶于王水。 沉淀剂的选择原则是:(1)尽可能使用易分解并含易挥发成分的沉淀剂;(2)沉淀便于过滤和洗涤;(3)沉淀剂自身的溶解度要足够大;(4)沉淀物的溶解度应很小;(5)沉淀剂必须无毒,不造成环境污染。

高等教育法规概论详细

高等教育法规概论 第一章教育法基本原理 第一节教育法的概念 一、教育法的概念和性质 法律:是体现统治阶级的意志,由国家制定或认可的,并由国家的强制力保证实施的具有普遍约束力的行为规则的总和。 法的基本特征:法是调整人的行为和社会关系的规范;法是由国家制定或认可的社会规范;法是规定权利和义务的社会规范;法是由国家保证实施的社会规范。 教育法:国家对教育进行管理方面的法律规范的总合,体现了国家对教育的干预和协调。 定义: (一)教育法是国家干预、管理和协调教育的法(教育行政机关是一个管理者,而且也是一个协调者、服务者); (二)教育法是规定教育管理过程中和实施教育教学活动过程中不同主体的地位及其权利与义务的法律; (三)教育法是国内法,它是由各种教育法律法规规章构成的整体 二、教育法的地位和作用: 地位:教育法是行政法的一个分支;教育法是宪法的重要实施法。 作用:保障教育的社会主义性质和战略地位;保障和促进依法治教;确认并保障公民的受教育权利和义务;保障和促进教育事业的发展。 三、教育法与党的教育政策的关系: 党的教育政策是党为完成一定时期的教育工作的基本任务而规定的活动准则,它是党实现对国家教育工作领导的基本方式。 教育法和党的教育政策在本质上是一致的,它们都以四项基本原则为指导。教育法和党的教育政策又有区别。

区别:1、制定主体不同,教育法具有国家意志的属性;而党的教育政策不具有国家意志的属性。 2、表现形式不同,教育法通过法律、行政法规、地方性法规、地方规章形式表现,内容比较明确、具体;而党的教育政策通常是以决议、决定、纲领、宣言、口号等形式表现出来,内容一般比较原则。 3、实施方式不同,教育法更主要的是依靠国家强制力,而党的教育政策为人民群众自觉的行动。 4、调整范围不同,党的教育政策调整教育关系的范围比教育法要广泛。 第二节教育法的基本原则 (一)保证教育的社会主义性质或方向原则。1、由工人阶级掌握教育的领导权;2、公民平等地享有受教育的权利和义务;3、宗教与教育分离。 (二)遵循教育发展的客观规律原则。1、教育与受教育者身心发展相互制约的规律;2、教育与社会发展相互制约的规律;3、教育具有相对独立性。 (三)体现人的全面发展原则。即德育、智育、体育、美育和劳动技术教育。 第三节教育法的渊源和体系 我国教育法的主要渊源有:宪法、教育法律、教育行政法规、地方性教育法规、教育规章、自治条例和单行条例等。 (一)宪法 宪法是国家的根本大法,是其他法律、法规制定的依据,是制定教育法的重要依据。我国宪法规定成了教育法中最高层次的渊源。 1、宪法规定了教育的目的、任务和基本制度; 2、宪法规定了教育活动中的德育原则; 3、宪法规定了公民的受教育权和从事科研、文艺创作等文化活动的自由; 4、宪法规定了教育管理的权限。 (二)教育法律

相关文档
最新文档