中考数学模拟试卷(二)

中考数学模拟试卷(二)
中考数学模拟试卷(二)

江苏省南通市中考数学模拟试卷(二)

(满分150分,考试时间120分钟)

一、选择题(本大题共8小题,每小题3分,共计24分.在每小题所给出的四个选项中,恰有一项....

是符合题目要求的.) 1.-6的相反数是 ( ▲ )

A .-6

B .6

C .6

1

D .6

1

2.下列各等式中,正确的是( ▲ )

A .16 =±4;

B .±16 =4

C .(-5 )2=-5

D .-(-5)2 =-5 3.如左图是由几个相同的小正方体搭成的一个几何体,它的俯视图是( )

4.下列各组线段中,能成比例的是( ▲ )

A . 1 cm ,3 cm ,4 cm ,6 cm

B . 30cm ,12 cm ,0.8 cm ,0.2 cm

C . 0.1 cm ,0.2 cm ,0.3 cm ,0.4 cm

D . 15 cm ,16 cm ,40 cm ,6 cm

5.打开某洗衣机开关,在洗涤衣服时(洗衣机内无水),洗衣机经历了进水、清洗、排水、脱水四个连续过程,其中进水、清洗、排水时洗衣机中的水量y (升)与时间x (分钟)之间满足某种函数关系,其函数图象大致为 ( ▲ )

6.已知圆锥的底面半径为1cm ,母线长为3cm ,则其全面积为 ( ▲ )

A .π

B .3π

C .4π

D .7π

7.下列三视图所对应的直观图是 ( ▲ )

A .

B .

C .

D .

8.用一把带有刻度的直尺,①可以画出两条平行的直线a 与b ,如图①;①可以画出①AOB

的平分线OP ,如图①所示;①可以检验工件的凹面是否为半圆,如图①所示;①可以量出一个圆的半径,如图①所示.这四种说法正确的个数有 ( ▲ )

A .

B .

C .

D .

A .

B .

C .

D .

A .1个

B .2个

C .3个

D .4个

二、填空题:(本大题共10小题,每小题3分,共计30分.不需写出解答过程.) 9.分解因式:()22

12x x -+

= ▲ .

10.不等式125-x ≤()342-x 的负整数解是 ▲ . 11.计算:

(

)

()15132

----

-= ▲ .

12.已知方程032=+-k x x 有两个相等的实数根,则k = ▲ .

13.在一个不透明的口袋中装有若干个只有颜色不同的球,如果口袋中装有4个红球,且摸

出红球的概率为

3

1

,那么袋中共有 ▲ 个球. 14.梯形的中位线长为3,高为2,则该梯形的面积为 ▲ .

15.如图15,AB =AC ,要使ACD ABE ??≌,应添加的条件是____▲______ (添加一个条

件即可).

16.如图,量角器外缘上有A 、B 两点,它们所表示的读数分别是80°、50°,则∠ACB 应为

▲ .

17.如图,正方形卡片A 类、B 类和长方形卡片C 类各若干张,如果要拼一个长为(a +2b )、宽为(a +b )的大长方形,则需要C 类卡片 ▲ 张. 18.观察下列一组数的排列:1,1,2,3,5,8,13,21,34,…,前个数中,有 ▲ 个

偶数. 三、解答题:(本大题共12小题,共计96分,解答时应写出文字说明、证明过程或演算步骤.) 19.(1)(本题4分)解方程:32121---=-x

x

x .

E A B C

D 第15题 第16题 a a a b C

b b B A 第17题图

(2)(本题4分)先化简,再求值:222211y xy x x y x y x ++÷???

? ??++-,其中1=x ,2-=y .

20.(本题8分)

如图,在一个10×10的正方形DEFG 网格中有一个①ABC 。 ①在网格中画出①ABC 向下平移3个单位得到的①A 1B 1C 1。

①在网格中画出①ABC 绕C 点逆时针方向旋转90°得到的①A 2B 2C 。

①若以EF 所在的直线为x 轴,ED 所在的直线为y 轴建立直角坐标系,写出A 1、A 2两点的坐标。

乒乓球

足球 篮球 其他

A C

B D G

21.(本题8分) 某中学准备举行一次球类运动

会,在举行运动会之前,同学们就该校学生最喜欢那种球类运动问题进行了一次调查,并将调查结果制成了表格、条形图和扇形统计图,请你根据图表信息完成下列各题: (1)此次共调查了多少位学生?

(2)请将表格和条形统计图补充完整.

22.(本题8分)

在一个不透明的盒子中放有四张分别写有数字1,2,3,4的红色卡片和三张分别写有数字1,2,3的蓝色卡片,卡片除颜色和数字外完全相同.

(1)从中任意抽取一张卡片,求该卡片上写有数字1的概率; (2)将3张蓝色卡片取出后放入另外一个不透明的盒子内,然后在两个盒子内各任意抽取一张卡片,以红色卡片上的数字作为十位数,蓝色卡片上的数字作为个位数组成一个两位数,求这个两位数大于22的概率. 23.(本题10分)

某工厂大楼后面紧邻着一个土坡,坡上面是一块平地,如图所示,BC ①AD ,斜坡AB 长22m ,坡角①BAD =600,为了防止山体滑坡,保障安全,工厂决定对该土坡进行改造.经地质

60

_ 140 _ 120

_ 100 _ 80 _ 60 _ 40

_ 20 _0 _ 其他 _ 篮球 _ 足球 _ 乒乓球 篮球足球乒乓球20% 其他3% 44%

人员勘测,当坡角不超过450时,可确保山体不滑坡. (1)求改造前坡顶与地面的距离BE 的长;

(2)为确保安全,工厂计划改造时保持坡脚A 不动,坡顶B 沿BC 削进到F 点处,问BF 至少是多少米? 24.(本题满分10分)

点D 是①O 的直径CA 延长线上一点,点B 在①O 上,BD 是①O 的切线,且AB =AD . (1)求证:点A 是DO 的中点.

(2)若点E 是劣弧BC 上一点,AE 与BC 相交于点F ,且①BEF 的面积为8,cos ①BF A

=3

2

,求①ACF 的面积.

25.(本题满分10分)

姚明将带队来我市体育馆进行表演比赛,市体育局在策划本次活动,在与单位协商团购票时推出两种方案.设购买门票数为x (张),总费用为y (元).方案一:若单位赞助广告费8000元,则该单位所购门票的价格为每张50元;(总费用=广告赞助费+门票费)

方案二:直接购买门票方式如图所示. 解答下列问题:

(1)方案一中,y 与x 的函数关系式为 ;

第23题 _ O

_ F

_ E _ B

_ C

_ A

_ D

方案二中,当0≤x ≤100时,y 与x 的函数关系式为 ,

当x >100时,y 与x 的函数关系式为 ;

(2)如果购买本场篮球赛门票超过100张,你将选择哪一种方案,使总费用最省?请说明

理由;

(3)甲、乙两单位分别采用方案一、方案二购买本场篮球赛门票共700张,花去总费用计

56000元,求甲、乙两单位各购买门票多少张.

26.(本题满分10分)

一、阅读理解:

在①ABC 中,BC =a ,CA =b ,AB =c ;

(1)若①C 为直角,则222c b a =+;

(2)若①C 为为锐角,则22b a +与2c 的关系为:222c b a >+

第25题图

8000

10000

100 120 O x (张) y(元)

证明:如图过A 作AD ①BC 于D ,则BD =BC -CD =a -CD

在①ABD 中:AD 2=AB 2-BD 2 在①ACD 中:AD 2=AC 2-CD 2 AB 2-BD 2= AC 2-CD 2 c 2-(a -CD )2= b 2-CD 2

①CD a c b a ?=-+2222 ①a >0,CD >0

①0222>-+c b a ,所以:222c b a >+ (3)若①C 为钝角,试推导222c b a 与+的关系.

二、探究问题:在①ABC 中,BC =a =3,CA =b =4,AB =c ;若①ABC 是钝角三角形,求第三边c 的取值范围.

27.(本题满分12分)

如图,在平面直角坐标系中,矩形OABC 的顶点A (0,3),C (1-,0).将矩形OABC 绕原点顺时针旋转90°,得到矩形C B A O '''.设直线B B '与x 轴交于点M 、与y 轴交于点N ,抛物线c x ax y ++=22的图象经过点C 、M 、N .解答下列问题: (1)分别求出直线B B '和抛物线所表示的函数解析式;

(2)将①MON 沿直线MN 翻折,点O落在点P处,请你判断点P是否在抛物线上,说明理由.

(3)将抛物线进行平移,使它经过点C ,求此时抛物线的解析式.

28.(本题满分12分)

已知点P是矩形ABCD边AB上的任意一点(与点A、B不重合)

(1)如图①,现将①PBC沿PC翻折得到①PEC;再在AD上取一点F,将①P AF沿PF翻折得到①PGF,并使得射线PE、PG重合,试问FG与CE的位置关系如何,请说明理由;

(2)在(1)中,如图①,连接FC,取FC的中点H,连接GH、EH,请你探索线段GH和线段EH的大小关系,并说明你的理由;

O x

y

A

B

C

N

M

C

D D C

(3)如图①,分别在AD 、BC 上取点F 、C’,使得①APF =①BPC ’,与(1)中的操作相类似,

即将①P AF 沿PF 翻折得到①PFG ,并将①C PB '沿C P '翻折得到①C PE ',连接C F ',取C F '的中点H ,连接GH 、EH ,试问(2)中的结论还成立吗?请说明理由.

参考答案

一、选择题

1.B 2.D 3.D 4.D 5.D 6.C 7.C 8.D 二、填空题

9.()()113++x x 10.2-和1- 11.5- 12.

4

9

13.12 14. 6 15.AE AD =(或C B ∠=∠或AEB ADC ∠=∠等) 16.15° 17.3 18.669

三、解答题 19.(1)解:方程两边同乘(2)x -,得1(1)3(2)x x =----.解这个方程,得2x =.

检验:当2x =时,20x -=,所以2x =是增根,原方程无解

(2)解:原式=()()()x y x y x y x x

222

+?

-+ =y

x y x -+, ①1=x ,2-=y ,①原式=

()21)2(1---+=3

1

-

20.解:(1)(2)见图中(3)A 1(8,2),A 2(4,9) 21.

解:(1)调查的学生人数为:60÷20%=300; (2)如下表,如右图

22.解:(1)

在7张卡片中共有两张卡片写有数字1;①从中任意抽取一张卡片,卡片上

写有数字1的概率是

2

7

. (2)组成的所有两位数列表为:

1 2 3 4 1 11 21 31 41 2 12 22 32 42 3

13

23

33

43

或列树状图为:

乒乓球 足球 篮球 其他 60

99

132

9

十位数

个位数

1 1

2 3 (11) (12) (13) 2 1 2 3 (21) (22) (23) 3 1 2 3 (31) (32) (33) 4

1 2 3 (41) (42) (43)

十位数 个位数 C 1A 1

B 1

B 2

A 2

A

B

C

_ 其他

_ 篮球

①这个两位数大于22的概率为

712

23.解:(1)作BE ①AD ,E 为垂足,则BE =AB ·sin 60°=22sin 60°=311(m ).

(2)作FG ①AD ,G 为垂足,连F A ,

则FG =BE .①AG =

45

tan FG

=311, AE =AB ·cos 60°=22cos 60°=11, ①BF =AG -AE =11311-(m ),

即BF 至少是11311-米.

24.解:(1)连接OB ,① BD 是①O 的切线,①①OBD =90°,①AB =AD ,①①D =①ABD ,

①①AOB =①ABO ,①AB =AO ,①AB =AD .(1)①AC 是直径,①①ABF =90°, cos ①BF A =

3

2

=FA FB ,①①E =①C , ①F AC =①FBE ,①①F AC ①①FBE ,①①F AC 的面积为18. 25.(1)方案一;x y 508000+=;(2分)方案二:当0≤x ≤100时,x y 80=(2分);当x

>100时,2000100-=x y 。(3分)

(2)当200100<

200>x 时,选择方案一,总费用最省。

(6分) (3)甲单位购买门票400张,乙单位购买门票300张。(分当0≤x ≤100时与当x >100时两种情况分类讨论,第一种情况应舍去,)(10分) 26.(3)如图过A 作AD ①BC 于D ,则BD =BC +CD =a +CD

在①ABD 中:AD 2=AB 2-BD 2 在①ACD 中:AD 2=AC 2-CD 2 AB 2-BD 2= AC 2-CD 2 c 2-(a +CD )2= b 2-CD 2 ①CD a c b a ?-=-+2222 ①a >0,CD >0

①0222<-+c b a ,所以:222c b a <+ (5分) 二、当①C 为钝角时,75<

(2)GH =EH 。延长GH 交CE 于点M ,由(1)得,FG ①CE ,①①GFH =①MCH ,①H 为CF 的中点,①FH =CH ,又①①GHF =①MHC ,①①GFH ①①MHC ,①GH =HM =GM 2

1,①①GEC =90°,①EH =

GM 2

1

,①GH =EH 。 (3)(2)中的结论还成立。取PF 的中点M ,C P '的中点N ,①①FGP =90°,M 为PF 的中点,①PF GM 21=

,PF PM 2

1

=,HM ①C P ',①GM =PM ,①①GPF =①MGP ,①①GMF =①GPF +①MGP =2①GPF ,①H 为C F '的中点,M 为PF 的中点,①C P HM '=2

1

,同理PF HN 21=

,C P EN '=2

1

,HN ①PF ,①C EP C EN '∠='2,①GM =HN ,HM =EN 。

①①GPF =①FP A ,C BP C EP '∠='∠,又FPA C BP ∠='∠,①①GPF =C EP '∠,①①GMF =①C EN ',①HM ①C P ',HN ①PF ,①四边形HMPN 为平行四边形,①①HMF =①C HN ',①①GMH =①HNE ,①GM =HN ,HM =EN ,①①GMH ①①HNE ,①GH =HE 。 28.(1)由题意得,B (1-,3),B '(3,1),①直线B B '的解析式为2

5

21+-=x y ;直线B B '与x 轴的交点为M (5,0),与y 轴的交点N (0,

2

5

),设抛物线的解析式为()()15+-=x x a y ,①抛物线过点N ,①()152

5?-?=a ,①21

-=a ,①抛物线的解析式为

()()1521+--=x x y =2

52212++-x x ;

(2)将①MON 沿直线MN 翻折,点O 落在点P 处,则P 为(2,4),点P 不在抛物线上;

(3)若抛物线上下平移经过点C ',此时解析式为122

12

++-

=x x y ;当1=y 时,2522112++-=x x ,①72±=x ,252212++-=x x y =()2

92212

+--x ,若抛物线向左

平移经过点C ',平移距离为72+,此时解析式为()

2

9

722212+++--=x y =

172

1

2+--x x ;若抛物线向右平移经过点C ',此时解析式为()

172

1

292722122++-=++---=x x x y 。

2018年江西省中考数学模拟试卷(二)有答案

2018年江西中考模拟卷(二) 一、选择题() 1.下列四个数中,最小的数是( ) A .-1 B .0 C.12 D .- 2 2.不等式4-2x >0的解集在数轴上表示为( ) 3.下列运算正确的是( ) A .a 3·a 2=a 6 B .2a (3a -1)=6a 3-1 C .(3a 2)2=6a 4 D .2a +3a =5a 4.如图所示的物体由两个紧靠在一起的圆柱体组成,它的左视图是( ) 5.如图,直线a ∥b ,直角三角形BCD 按如图放置,∠DCB =90°.若∠1+∠B =70°,则∠2的度数为( ) A .20° B .40° C .30° D .25° 第5题图 第9题图 第10题图 第11题图 6.已知二次函数y =ax 2+bx +c (a ≠0)与x 轴交于点(x 1,0)与(x 2,0),其中x 1<x 2,方程ax 2+bx +c -a =0的两根为m ,n (m <n ),则下列判断正确的是( ) A .m <n <x 1<x 2 B .m <x 1<x 2<n C .x 1+x 2>m +n D .b 2-4ac ≥0 二、填空题(本大题共6小题,每小题3分,共18分) 7.函数y =3-x 的自变量x 的取值范围是________. 8.分解因式:x 2y -y =____________. 9.如图,已知AB 为⊙O 的直径,∠CAB =30°,则∠ADC =________°. 10.如图,过反比例函数y =k x 图象上三点A ,B ,C 分别作直角三角形和矩形,图中S 1+S 2=5,则S 3=________. 11.如图,有一个正三角形图片高为1米,A 是三角形的一个顶点,现在A 与数轴的原点O 重合,工人将图片沿数轴正方向滚动一周,点A 恰好与数轴上点A ′重合,则点A ′对应的实数是________. 12.以线段AC 为对角线的四边形ABCD (它的四个顶点A ,B ,C ,D 按顺时针方向排列),已知AB =BC =CD ,∠ABC =100°,∠CAD =40°,则∠BCD 的度数为________. 三、(本大题共5小题,每小题6分,共30分) 13.(1)解方程组:? ????x +2y =4,3x -4y =2.

2020年湖南省中考数学模拟试题(含答案)

2020年湖南省中考数学模拟试题含答案 温馨提示: 1.本试卷包括试题卷和答题卡.考生作答时,选择题和非选择题均须作答在答题卡上,在本试题卷上作答无效.考生在答题卡上按答题卡中注意事项的要求答题. 2.考试结束后,将本试题卷和答题卡一并交回. 3.本试卷满分150分,考试时间120分钟.本试卷共三道大题,26个小题.如有缺页,考生须声明. 一、选择题(本大题共10个小题,每小题只有一个正确选项,请将正确选项填涂到答题卡 上.每小题4分,共40分) 1.如果a 与2017互为倒数,那么a 是( ) A . -2017 B . 2017 C . 20171- D . 2017 1 2.下列图形中,是中心对称图形的是( ) A. B. C. D. 3.下列计算正确的是( ) A . 6 33a a a =+ B . 33=-a a C . 5 23)(a a = D . 3 2a a a =?

4.人类的遗传物质是DNA,DNA是一个很长的链,最短的22号染色体与长达30000000个核苷酸,30000000用科学记数法表示为( ) A.3×107 B.30×104 C.0.3×107 D .0.3×10 8 5.如图,过反比例函数)0(>= x x k y 的图像上一点A 作 AB ⊥x 轴于点B ,连接AO ,若S △AOB =2,则k 的值为( ) A .2 B .3 C .4 D .5 6.下列命题:①若a<1,则(a﹣1) a a --=-111 ;②平行四边形既是中心对称图形又是轴对称图形;③9的算术平方根是3;④如果方程ax 2+2x+1=0有两个不相等的实数根,则实数a<1.其中正确的命题个数是( ) A.1个 B.2个 C.3个 D.4个 7.如图,AB ∥ CD,DE⊥ CE,∠ 1=34°,则 ∠ DCE的度数为( ) A.34° B.54° C.66° D.56° (第7题图) (第9题图) 8.一种饮料有两种包装,5大盒、4小盒共装148瓶,2大盒、5小盒共装100瓶,大盒与小盒每盒各装多少瓶?设大盒装x瓶,小盒装y瓶,则可列方程组( ) A. B. C. D . 9.如图,PA 、PB 是⊙O 的切线,切点分别为A 、B .若OA =2,∠P =60°,则?AB 的长为( )

上海市中考数学模拟试卷

2017年上海市中考数学模拟试卷(5月份) 一、选择题(本大题共6小题,每小题4分,共24分) 1.(4分)如果a与3互为相反数,那么a等于() A.3 B.﹣3 C.D. 2.(4分)下列根式中,最简二次根式是() A.B.C.D. 3.(4分)下列事件中,属于随机事件的是() A.()2=a B.若a>b(ab≠0),则< C.|a|?|b|=|ab| D.若m为整数,则(m+)2+是整数 4.(4分)抛物线y=(x+5)2﹣1先向右平移4个单位,再向上平移4个单位,得到抛物线的解析式为() A.y=x2+18x+84 B.y=x2+2x+4 C.y=x2+18x+76 D.y=x2+2x﹣2 5.(4分)若一个正n变形(n为大于2的整数)的半径为r,则这个正n

变形的边心距为() A.r?sin B.r?cos C.r?sin D.r?cos 6.(4分)下列命题中真命题的个数是() ①斜边中线和一个锐角分别对应相等的两个直角三角形全等; ②一组对边平行,另一组对边相等的四边形是平行四边形; ③在圆中,平分弦的直径垂直于弦; ④平行于同一条直线的两直线互相平行. A.1个B.2个C.3个D.4个 二、填空题(本大题共12小题,每小题4分,共48分) 7.(4分)计算:a6(﹣a2)= . 8.(4分)一次函数y=﹣kx+2k(k<0)的图象不经过第象限.9.(4分)实数范围内因式分解:2x2+4xy﹣3y2= . 10.(4分)若关于x的一元二次方程x2+2x=m有两个实数根,则实数m的取值范围是.

11.(4分)正方形有条对称轴. 12.(4分)如图,直线AB分别交直线a和直线b于点A,B,且a∥b,点C在直线b上,且它到直线a和到直线AB的距离相等,若∠ACB=77°,则∠ABC= . 13.(4分)某次对中学生身高的抽样调查中测得5个同学的身高如下(单位:cm):172,171,175,174,178,则这组数据的方差为.14.(4分)一次测验中有2道题是选择题,每题均有4个选项且只有1个选项是正确的,若对这两题均每题随机选择其中任意一个选项作为答案,则2道选择题答案全对的概率为. 15.(4分)点A,B分别是双曲线y=(k>0)上的点,AC⊥y轴正半轴于点C,BD⊥y轴于点D,联结AD,BC,若四边形ACBD是面积为12的平行四边形,则k= . 16.(4分)△ABC中,点D在边AB上,点E在边AC上,联结DE,DE是△ABC的一条中位线,点G是△ABC的重心,设=,=,则= (用含,的式子表示) 17.(4分)我们把有一条边是另一条边的2倍的梯形叫做“倍边梯形”,

2014年上海中考数学一模各区18、24、25整理试题及答案

18.已知梯形ABCD 中,AD ∥BC ,AB =15,CD=13,AD =8,∠B 是锐角,∠B 的正弦值为45 ,那么BC 的长为___________ 24.如图,抛物线22y ax ax b =-+经过点C (0,32 - ), 且与x 轴交于点A 、点B ,若tan ∠ACO =23 . (1)求此抛物线的解析式; (2)若抛物线的顶点为M ,点P 是线段OB 上一动点 (不与点B 重合),∠MPQ=45°,射线PQ 与线段BM 交于点Q ,当△MPQ 为等腰三角形时,求点P 的坐标. 25.(本题满分14分,其中第(1)小题5分,第(2)小题7分,第(3)小题2分) 如图,在正方形ABCD 中,AB =2,点P 是边BC 上的任 意一点,E 是BC 延长线上一点,联结AP 作PF ⊥AP 交 ∠DCE 的平分线CF 上一点F ,联结AF 交直线CD 于点G . (1) 求证:AP=PF ; (2) 设点P 到点B 的距离为x ,线段DG 的长为y , 试求y 与x 的函数关系式,并写出自变量x 的取值范围; (3) 当点P 是线段BC 延长线上一动点,那么(2)式中y 与x 的 函数关系式保持不变吗?如改变,试直接写出函数关系式. (第24题) A B C D F G P (第25题) E

18.在Rt△ABC中,∠C=90°, 3 cos 5 B=,把这个直角三角形绕顶点C旋转后得到 Rt△A'B'C,其中点B' 正好落在AB上,A'B'与AC相交于点D,那么B D CD ' =. 24.(本题满分12分,每小题各4分) 已知,二次函数2 y=ax+bx的图像经过点(5,0) A-和点B,其中点B在第一象限,且OA=OB,cot∠BAO=2. (1)求点B的坐标; (2)求二次函数的解析式; (3)过点B作直线BC平行于x轴,直 线BC与二次函数图像的另一个交点 为C,联结AC,如果点P在x轴上, 且△ABC和△P AB相似,求点P的坐标. 第18题图

中考数学模拟试卷二

中考数学模拟试卷二 Revised as of 23 November 2020

中考数学模拟试卷 班级___________ 姓名____________ 座号 ______________ 一、选择题(每小题4 分,共40 分) 1.北京2008 年奥运会火炬接力活动的传递总路程约为0 米,这个数据用科学记数法表示为() A. ×108 米B. ×109 米C.×108 米D. 137×106 米 2.如图所示的图案中是轴对称图形的是() A.2008 年北京B.2004 年雅典C.1988 年汉城D.1980 年莫斯科 3.用两块边长为a的等边三角形纸片拼成的四边形是() A.等腰梯形B.菱形C.矩形D.正方形 4.下列命题是假命题的是() A.对顶角相等B.圆有无数条对称轴C.两点之间,线段最短D.平行四边形是 轴对称图形 5. 在下列命题中,真命题的是() A.一组对边平行的四边形是梯形B.对角线相等的四边形是矩形 C.有一组邻边相等的平行四边形是菱形D.对角线互相垂直平分的四边形是正方形. 6、某商品原价200 元,连续两次降价a%后售价为148 元,下列所列方程正确的是() A:200(1+a%)2=148 B:200(1-a%)2=148 C:200(1-2a%)=148 D:200(1 -a2%)=148 7.已知⊙O1 和⊙O2 的半径分别为2cm 和5cm,两圆的圆心距是,则两圆的位置关系是() A.内含B.外离C.内切D.相交 8. 二次函数y=ax2 +bx+c(a≠0,a,b,c是常数) 中,自变量x与函数y的对应值如 下表: 第 1 页共 8 页

2014中考数学模拟试题(新考点必考题型) (58)

中考数学全真模拟试卷 (考试用时:120分钟 满分: 120分) 注意事项: 1.试卷分为试题卷和答题卡两部分,在本试题卷上作答无效.......... 。 2.答题前,请认真阅读答题卡... 上的注意事项。 3.考试结束后,将本试卷和答题卡....... 一并交回。 一、选择题(共12小题,每小题3分,共36分.). 1.2011的倒数是( ). A .12011 B .2011 C .2011- D .12011 - 2.在实数2、0、1-、2-中,最小的实数是( ). A .2 B .0 C .1- D .2- 3.下面四个图形中,∠1=∠2一定成立的是( ). 4.下列图形分别是桂林、湖南、甘肃、佛山电视台的台徽,其中为中心对称图形的是( ). 5.下列运算正确的是( ). A. 22232x x x -= B .22(2)2a a -=- C .222()a b a b +=+ D .()2121a a --=-- 6.如图,已知Rt △ABC 中,∠C =90°,BC=3, AC=4, 则sinA 的值为( ).

A.3 4 B. 4 3 C. 3 5 D. 4 5 7.如图,图1是一个底面为正方形的直棱柱;现将图1切割成图2的几何体,则图2的俯视图是(). 8.直线1 y kx =-一定经过点(). A.(1,0) B.(1,k) C.(0,k) D.(0,-1) 9.下面调查中,适合采用全面调查的事件是(). A.对全国中学生心理健康现状的调查. B.对我市食品合格情况的调查. C.对桂林电视台《桂林板路》收视率的调查. D.对你所在的班级同学的身高情况的调查. 10.若点 P(a,a-2)在第四象限,则a的取值范围是(). A.-2<a<0 B.0<a<2 C.a>2 D.a<0 11.在平面直角坐标系中,将抛物线223 y x x =++绕着它与y轴的交点旋转180°,所得抛物线的解析式是(). A.2 (1)2 y x =-++ B.2 (1)4 y x =--+ C.2 (1)2 y x =--+ D.2 (1)4 y x =-++ 12.如图,将边长为a的正六边形A1 A2 A3 A4 A5 A6在直线l上由图1的位置按顺时针方 向向右作无滑动滚动,当A 1第一次滚动到图2位置时,顶点A 1 所经过的路径的 长为(). A.423 3 a π + B. 843 3 a π + C. 43 3 a π + D. 423 6 a π +

上海中考数学模拟试卷A

上海中考数学模拟试卷 A Modified by JACK on the afternoon of December 26, 2020

2015学年第二学期初三数学质量调研试卷() (满分150分,考试时间120分钟) 考生注意: 1.本试卷含三个大题,共25题,考试过程中可以使用不带存储记忆功能的计算工具; 2.答题时,考生务必按答题要求在答题纸规定的位置上作答,在草稿纸、本试卷 上答题一律无效; 3.除第一、二大题外,其余各题如无特别说明,都必须在答题纸的相应位置上写出证明或计算的主要步骤. 一、选择题(本大题共6题,每题4分,满分24分) 【下列各题的四个选项中,有且只有一个选项是正确的,选择正确项的代号并填涂在答题纸的相应位置上.】 1. 5的负倒数为 (A) 25; (B) 5-; (C) 51; (D) 5 1-. 2. 下面四个命题中,为真命题的是 (A) 若b a >,则22b a >; (B) 若b a >,则b a 11<;

(C) 若b a >,则22bc ac >; (D) 若b a >、d c >,则d b c a ->-. 3. “双十一”购物节后,小明同学对班上同学中的12位进行抽样调查并用数字1—12对每位被调查者进行编号,统计每位同学在购物节中消费金额,结果如下表所示: 根据上表统计结果,被调查的同学在“双十一”购物节中消费金额的平均数和众数分别为 (A) 400、300; (B) 300、400; (C) 400、400; (D) 300、300. 4. 二次函数3522+-=x x y 的对称轴和顶点分别为 (A) 对称轴:直线2 5 =x 、最高点:?? ? ??- 219,25; (B) 对称轴:直线2 5=x 、最低点:?? ? ??- 219,25;

2020年华师大中考数学模拟试题(二)有答案

2018年中考模拟卷(二) 时间:120分钟满分:120分 题号一二三总分 得分[来源学。科。网] 一、选择题(每小题3分,共30分) 1.在下列各数中,比-1小的数是() A.1 B.-1 C.-2 D.0 2.某种生物细菌的直径为0.0000382cm,把0.0000382用科学记数法表示为() A.3.82×10-4 B.3.82×10-5 C.3.82×10-6 D.38.2×10-6 3.如图所示是由四个大小相同的正方体组成的几何体,那么它的主视图是() 4.下列运算正确的是() A.a6+a3=a9 B.a2·a3=a6 C.(2a)3=8a3 D.(a-b)2=a2-b2 5.剪纸是中国特有的民间艺术,在如图所示的四个剪纸图案中,既是轴对称图形又是中心对称图形的是() 6.已知:如图,O为⊙O的圆心,点D在⊙O上,若∠AOC=110°,则∠ADC的度数为() A.55° B.110° C.125° D.72.5° 第6题图第7题图第8题图 7.“今有井径五尺,不知其深,立五尺木于井上,从木末望水岸,入径四寸,问井深几何?”这是我国古代数学《九章算术》中的“井深几何”问题,它的题意可以由图获得(单位:尺),则井深为() A.1.25尺 B.57.5尺 C.6.25尺 D.56.5尺 8.如图,小王在长江边某瞭望台D处,测得江面上的渔船A的俯角为40°,若DE=3米,CE=2米,CE平行于江面AB,迎水坡BC的坡度i=1∶0.75,坡长BC=10米,则此时AB的长约为(参考数据:sin40°≈0.64,cos40°≈0.77,tan40°≈0.84)()

A.5.1米 B.6.3米 C.7.1米 D.9.2米 9.如图,在一张矩形纸片ABCD 中,AD =4cm ,点E ,F 分别是CD 和AB 的中点,现将这张纸片折叠,使点B 落在EF 上的点G 处,折痕为AH ,若HG 的延长线恰好经过点D ,则CD 的长为( ) A.2cm B.23cm C.4cm D.43cm 第 9题图 第10题图 10.如图,直线y =12x 与双曲线y =k x (k >0,x >0)交于点A ,将直线y =1 2x 向上平移4 个单位长度后,与y 轴交于点C ,与双曲线y =k x (k >0,x >0)交于点B ,若OA =3BC ,则k 的值为( ) A.3 B.6 C.94 D.9 2 二、填空题(每小题3分,共24分) 11.分解因式:x 3-4x = .[ 12.如图,在菱形ABCD 中,若AC =6,BD =8,则菱形ABCD 的面积是 . 第12题图 第14题图 第15题图 13.经过两次连续降价,某药品销售单价由原来的50元降到32元,设该药品平均每次降价的百分率为x ,根据题意可列方程是 . 14.某同学在体育训练中统计了自己五次“1分钟跳绳”的成绩,并绘制了如图所示的折线统计图,这五次“1分钟跳绳”成绩的中位数是 个. 15.如图,△ABC 的两条中线AD 和BE 相交于点G ,过点E 作EF ∥BC 交AD 于点F ,那么FG AG = . 16.设一列数中相邻的三个数依次为m 、n 、p ,且满足p =m 2-n ,若这列数为-1,3,-2,a ,-7,b ,…,则b = . 17.在平面直角坐标系xOy 中,对于不在坐标轴上的任意一点P (x ,y ),我们把点P ′???? 1x ,1y 称为点P 的“倒影点”,直线y =-x +1上有两点A ,B ,它们的倒影点A ′,B ′均在反比例函数y =k x 的图象上.若AB =22,则k = . 18.如图,矩形ABCD 中,E 是BC 上一点,连接AE ,将矩形沿AE 翻折,使点B 落在

2014年中考数学模拟试题

2014年中考数学模拟试题 (满分120分 时间120分钟) 一.选择题(每小题3分,共30分) 1.-8的相反数是 A .8 B . -8 C . 81 D .8 1 2.中国航母辽宁舰是中国人民海军第一艘可以搭载固定翼飞机的航空母舰,满载排水量为67500吨.这个数据用科学记数法表示为 A .6.75×104 B .67.5×103 C . 0.675×105 D .6.75×10-4 3.下列运算正确的是( ) A .2a +3b = 5ab B .a 2·a 3=a 5 C .(2a) 3 = 6a 3 D .a 6+a 3= a 9 4.如图,AB ∥CD ,CE 平分∠BCD ,∠DCE=18°,则∠B 等于 A .18° B .36° C .45° D .54° 5.上图是一个几何体的三视图,这个几何体的名称是 A .圆柱体 B .三棱锥 C .球体 D .圆锥体 6.在“大家跳起来”的乡村学校舞蹈比赛中,某校10名学生参赛成绩统计如图所示. 对于这10名学生的参赛成绩,下列说法中错误的是 A .众数是90 B .中位数是90 C .平均数是90 D .极差是15 7.已知两圆的圆心距为4,两圆的半径分别是3和5,则这两圆的位置关系是 A. 内含 B. 内切 C. 外切 D. 相交 8.如图,在平面直角坐标系中,以O 为圆心,适当长为半径画弧,交x 轴 于点M ,交y 轴于点N ,再分别以点M 、N 为圆心,大于2 1MN 的长为半径 画弧,两弧在第二象限交于点P .若点P 的坐标为(2a ,b+1),则a 与 b 的数量关系为 A. a=b B. 2a+b=﹣1 C .2a ﹣b=1 D .2a+b=1 9.如图,一次函数与反比例函数的图象相交于A 、B 两点,则图中使反比 例函数的值小于一次函数的值的x 的取值范围是 A .x <-1 B .-1<x <0或x >2 C .x >2 D .x <-1或0<x <2 第4题图 第5题图 第6题图

2018年上海中考数学模拟试卷

2018年上海中考数学模拟试卷(一) 一. 选择题 1.下列实数中,无理数是() A .0 B . C .﹣2 D . 2数据5,7,5,8,6,13,5 的中位数是( ) .5; .6; .7 ; .8. 3. 如果将抛物线2 2y x 向下平移1个单位,那么所得新抛物线的表达式是() A. 2 (1) 2 y x B. 2 (1) 2y x C. 2 1y x D. 2 3 y x 4. 某校调查了20名男生某一周参加篮球运动的次数,调查结果如表所示,那么 这20名男 生该周参加篮球运动次数的平均数是( ) 次数 2 3 4 5 人数 2 2 10 6 A. 3次 B. 3.5次 C. 4次 D.4.5次 5、下列各统计量中,表示一组数据波动程度的量是……………………………………()A 、平均数;B 、众数;C 、方差;D 、频率. 6、如图,已知在⊙O 中,AB 是弦,半径OC ⊥AB ,垂足为点D ,要使四边形OACB 为菱形,还需要添加一个条件,这个条件可以是………………………………………………()A 、AD =BD ;B 、OD =CD ;C 、∠CAD =∠CBD ;D 、∠OCA =∠OCB . A. 1 4r B. 24 r C. 18 r D.2 8 r A B C D D C B A O

7、计算:_______. 8、方程 22 3x 的解是_______________ .9、如果分式 3 2x x 有意义,那么x 的取值范围是____________. 10. 如果12 a ,3 b ,那么代数式2a b 的值为 11. 不等式组 25 10 x x 的解集是 12. 如果关于x 的方程2 30x x k 有两个相等的实数根,那么实数k 的值是 13. 已知反比例函数k y x (0k ),如果在这个函数图像所在的每一个象限内, y 的值 随着x 的值增大而减小,那么k 的取值范围是 14. 有一枚材质均匀的正方体骰子,它的六个面上分别有 1点、2点、、6点 的标记,掷 一次骰子,向上的一面出现的点数是 3的倍数的概率是 15. 在ABC 中,点D 、E 分别是AB 、AC 的中点,那么ADE 的面积与 ABC 的面积的比是 16. 今年5月份有关部门对计划去上海迪士尼乐园的部分市民的前往方式进行调查,图1和图2是收集数据后绘制的两幅不完整统计图,根据图中提供的信息,那么本次调查的对象中选择公交前往的人数是

2013-2019年上海市中考数学试题汇编(含参考答案与解析)

【中考数学试题汇编】 2013—2019年上海市中考数学试题汇编 (含参考答案与解析) 1、2013年上海市中考数学试题及参考答案与解析 (2) 2、2014年上海市中考数学试题及参考答案与解析 (22) 3、2015年上海市中考数学试题及参考答案与解析 (40) 4、2016年上海市中考数学试题及参考答案与解析 (58) 5、2017年上海市中考数学试题及参考答案与解析 (75) 6、2018年上海市中考数学试题及参考答案与解析 (92) 7、2019年上海市中考数学试题及参考答案与解析 (113)

2013年上海市中考数学试题及参考答案与解析 一、选择题(本大题共6小题,每小题4分,共24分) 1.下列式子中,属于最简二次根式的是( ) A B C D 2.下列关于x 的一元二次方程有实数根的是( ) A .x 2+1=0 B .x 2+x+1=0 C .x 2﹣x+1=0 D .x 2﹣x ﹣1=0 3.如果将抛物线y=x 2+2向下平移1个单位,那么所得新抛物线的表达式是( ) A .y=(x ﹣1)2+2 B .y=(x+1)2+2 C .y=x 2+1 D .y=x 2+3 4.数据 0,1,1,3,3,4 的中位数和平均数分别是( ) A .2和2.4 B .2和2 C .1和2 D .3和2 5.如图,已知在△ABC 中,点D 、E 、F 分别是边AB 、AC 、BC 上的点,DE ∥BC ,EF ∥AB ,且AD :DB=3:5,那么CF :CB 等于( ) A .5:8 B .3:8 C .3:5 D .2:5 6.在梯形ABCD 中,AD ∥BC ,对角线AC 和BD 交于点O ,下列条件中,能判断梯形ABCD 是等腰梯形的是( ) A .∠BDC=∠BCD B .∠ABC=∠DAB C .∠ADB=∠DAC D .∠AOB=∠BOC 二、填空题(本大题共12小题,每小题4分,共48分) 7.分解因式:a 2﹣1= . 8.不等式组1023x x x -??+?>>的解集是 . 9.计算:23b a a b ?= . 10.计算:()23a b b -+= . 11.已知函数()231f x x =+,那么f = . 12.将“定理”的英文单词theorem 中的7个字母分别写在7张相同的卡片上,字面朝下随意放在桌子上,任取一张,那么取到字母e 的概率为 . 13.某校报名参加甲、乙、丙、丁四个兴趣小组的学生人数如图所示,那么报名参加甲组和丙组的人数之和占所有报名人数的百分比为 .

2020年中考数学模拟试卷(二)

2020年中考数学模拟试卷(二) 一、选择题:本大题共10小题,毎小题3分,共30分 1.计算2–(–3)×4的结果是 A .20; B .–10; C .14; D .–20 2.据测定,杨絮纤维的直径约为0.0000105m ,该数值用科学记数法表示为 A .1.05×105; B .0.105×10–4; C .1.05×10–5; D .105×10–7 3.一元二次方程222350x x -+=的根的情况是 A .方程没有实数根 B .方程有两个相等的实数根 C .方程有两个不相等的实数根 D .无法判断方程实数根情况 4.下列运算正确的是 A .2a –a =2 B .2a +b =2ab C .–a 2b +2a 2b =a 2b D .3a 2+2a 2=5a 4 5.如图,⊙O 中,弦 A B 、CD 相交于点 P ,若∠A=30°,∠APD=70°,则∠B 等于 A .30°; B .35°; C .40°; D .50° 6.已知一次函数 y=kx+b 的大致图象如图所示,则关于 x 的一元二次方程 x 2 ﹣2x+kb+1=0 的根的情况是( ) A .有两个不相等的实数根 B .没有实数根 C .有两个相等的实数根 D .有一个根是 0 第5题(第6题) 7.将抛物线 y =x 2 ﹣6x+21 向左平移 2 个单位后,得到新抛物线的解析式为 A .y=(x ﹣8)2 +5 B .y=(x ﹣4)2 +5 C .y=(x ﹣8)2 +3 D .y=(x ﹣4)2 +3 8.如图,四边形 O ABC 是矩形,四边形 A DEF 是正方形,点 A 、D 在 x 轴的负半轴上,点 C 在

上海市中考数学模拟试题及答案8套

上海市中考数学模拟试题(一) 一、选择题:(本大题共6题,每题4分,满分24分) 1.据统计,2015年上海市全年接待国际旅游入境者共80016000人次,80016000用科学记数法表示是()A.8.0016×106B.8.0016×107C.8.0016×108D.8.0016×109 2.下列计算结果正确的是() A.a4?a2=a8B.(a4)2=a6C.(ab)2=a2b2D.(a﹣b)2=a2﹣b2 3.下列统计图中,可以直观地反映出数据变化的趋势的统计图是() A.折线图B.扇形图 C.统形图D.频数分布直方图 4.下列问题中,两个变量成正比例关系的是() A.等腰三角形的面积一定,它的底边和底边上的高 B.等边三角形的面积与它的边长 C.长方形的长确定,它的周长与宽 D.长方形的长确定,它的面积与宽 5.如图,已知l1∥l2∥l3,DE=4,DF=6,那么下列结论正确的是() A.BC:EF=1:1 B.BC:AB=1:2 C.AD:CF=2:3 D.BE:CF=2:3 6.如果圆形纸片的直径是8cm,用它完全覆盖正六边形,那么正六边形的边长最大不能超过() A.2cm B.2cm C.4cm D.4Cm 二、填空题:(本大题共12题,每题4分,满分48分) 7.分解因式:ma2﹣mb2=. 8.方程的根是. 9.不等式组的解集是. 10.如果关于x的方程x2+x+a﹣=0有两个相等的实数根,那么a的值等于. 11.函数y=的定义域是.12.某飞机如果在1200米的上空测得地面控制点的俯角为30°,那么此时飞机离控制点之间的距离是 米. 13.一个口袋中装有3个完全相同的小球,它们分别标有数字0,1,3,从口袋中随机摸出一个小球记下数字后不放回,摇匀后再随机摸出一个小球,那么两次摸出小球的数字的和为素数的概率是. 14.如图,在四边形ABCD中,点M、N、P分别是AD、BC、BD的中点,如果,那么=.(用表示) 15.如果某市6月份日平均气温统计如图所示,那么在日平均气温这组数据中,中位数是. 16.已知点A(x1,y1)和点B(x2,y2)在反比例函数y=的图象上,如果当0<x1<x2,可得y1<y2,那么k 0(填“>”、“=”、“”<) 17.如图,点E、F分别在正方形ABCD的边AB、BC上,EF与对角线BD交于点G,如果BE=5,BF=3,那么FG:EF的比值是. 18.如图(1),在矩形ABCD中,将矩形折叠,使点B落在边AD上,这时折痕与边AD和BC分别交于点E、点F.然后再展开铺平,以B、E、F为顶点的△BEF称为矩形ABCD的“折痕三角形”.如图(2),在矩形ABCD 中,AB=2,BC=4,当“折痕△BEF”面积最大时,点E的坐标为. 二、解答题:(本大题共7题,满分78) 19.计算:.

2014年上海市中考数学试卷及答案(Word版)

2014年上海市初中毕业统一学业测试 数学试卷 考生注意: 1.本试卷含三个大题,共25题; 2.答题时,考生务必按答题要求在答题纸规定的位置上作答,在草稿纸、本试卷上答题一律无效; 3.除第一、二大题外,其余各题如无特别说明,都必须在答题纸的相应位置上写出证明或计算的主要步骤.一、选择题:(本大题共6题,每题4分,满分24分) 【下列各题的四个选项中,有且只有一个选项是正确的,选择正确项的代号并填涂在答题纸的相应位置上】1.计算23 的结果是(). (A) 5; (B) 6; (C) 23; (D) 32. 2.据统计,2013年上海市全社会用于环境保护的资金约为60 800 000 000元,这个数用科学记数法表示为(). (A)608×108;(B) 60.8×109;(C) 6.08×1010;(D) 6.08×1011. 3.如果将抛物线y=x2向右平移1个单位,那么所得的抛物线的表达式是(). (A) y=x2-1; (B) y=x2+1; (C) y=(x-1)2; (D) y=(x+1)2. 4.如图,已知直线a、b被直线c所截,那么∠1的同位角是().(此题图可能有问题) (A) ∠2;(B) ∠3;(C) ∠4;(D) ∠5. 5.某事测得一周PM2.5的日均值(单位:)如下: 50, 40, 75, 50, 37, 50, 40 ,这组数据的中位数和众数分别是().

(A)50和50; (B)50和40; (C)40和50; (D)40和40. 6.如图,已知AC 、BD 是菱形ABCD 的对角线,那么下列结论一定正确的是( ). (A)△ABD 和△ABC 的周长相等; (B)△ABD 和△ABC 的面积相等; (C)菱形的周长等于两条对角线之和的两倍;(D)菱形的面积等于两条对角线之积的两倍. 二、填空题:(每小题4分,共48分) 【请将结果直接填入答题纸的相应位置】 7.计算:a (a +1)=____________. 8.函数11y x =-的定义域是_______________. 9.不等式组12,28 x x ->??

2014中考数学模拟试题(新考点必考题型) (80)

A B C E D F A B C C 1 B 1 A O B C D E 中考数学全真模拟试卷 考生注意:1、考试时间 120分钟 2、全卷共三大题,总分 120 分 一、选择题(每小题3分,共30分) 1.下列运算中,正确的个数是( ) () 32352 6023215x x x x x +==?-=①,②,③,④538--+=,⑤11212 ÷=·. A .1个 B .2个 C .3个 D .4个 2.现有四条线段,长度依次是2,3,4,5,从中任选三条,能组成三角形的概率是( ) A .34 B .13 C .12 D .2 3 3.某年,某地区春季共植树0.024亿棵,0.024亿用科学记数法表示为( ) A .24×105 B .2.4×105 C .2.4×106 D .0.24×109 4.在Rt △ABC 中,∠C =90o,BC =4cm ,AC =3cm .把△ABC 绕点A 顺时针旋转90o后,得到△AB 1C 1,如图所示,则点B 所走过的路径长为( ) A .52cm B . 5 4πcm C . 5 2πcm D .5πcm 5.若关于x 的一元二次方程mx 2―2x ―1=0无实数根,则一次函数y =(m +1)x -m 的图象不经过( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限 6.如图,是一个几何体的三视图,根据图中标注的数据可求得这个几何体的体积为( ) A .24π B .32π C .36π D .48π 7.在44?的正方形网格中,已将图中的四个小正方形涂上阴影(如图),若再从其余小 正方形中任选一个也涂上阴影,使得整个阴影部分组成的图形成轴对称图形.那么符合条件的小正方形共有( ) A .1个 B .2个 C .3个 D .4个 8.如图,AC 是矩形ABCD 的对角线,E 是边BC 延长线上一点, AE 与CD 交于点F ,则图中相似三角形共有( ) A .2对 B .3对 C .4对 D .5对 9.某班体育委员调查了本班46名同学一周的平均 每天体育活动时间,并制作了如图所示的频数分布直方图,从直方图中可以看出,该班同学这一周平均每天体育活动时间的中位数和众数 依次是( ) A .40分,40分 B .50分,40分 C .50分,50分 D .40分,50分 10.如图,已知AB 是⊙O 的直径,⊙O 交BC 的中点于D ,DE ⊥AC 于E ,连接AD ,则下列结论正确的个数是( ) ①AD ⊥BC ,②∠EDA =∠B ,③OA = 1 2AC ,④DE 是⊙O 的切线. A .1个 B .2个 C .3个 D .4个 二、填空题(每小题3分,共24分) 11.计算0 3 11 (1)3tan 30(2)()4π---+-?= . 12. 如图,点A 、B 是双曲线3 y x =上的点,分别经过A 、 B 两点向x 轴、y 轴作垂线段,若1S =阴影, 则12S S += . 6 4 主视图 左视图 俯视图 6 4 4 (6题图) (7题图) 频数(人) 时间(分) 20 10 30 40 50 60 70 2 0 6 9 14 某班46名同学一周平均每天体育 活动时间频数分布直方图 (第9题) x y A B O 12题图

2020届上海市各区初三中考数学一模试卷全集

2020届 上海市各区初三中考数学一模 试卷全集 上海运光教学研究中心 2020年1月

目录 宝山区2019学年第一学期期末考试九年级数学试卷 (1) 崇明区2019学年第一学期教学质量调研测试卷 (11) 奉贤区2019学年第一学期中考数学一模 (23) 虹口区2019学年第一学期中考数学一模 (28) 黄浦区2019学年度第一学期九年级期终调研测试 (35) 浦东新区2019学年第一学期初中学业质量监测 (45) 闵行区2019学年第一学期中考数学一模 (51) 嘉定区2019学年第一学期九年级期终学业质量调研测试 (57) 静安区2019学年第一学期期末教学质量调研 (63) 徐汇区2019学年度第一学期期末质量调研 (69) 普陀区2019学年度第一学期初三质量调研数学试卷 (75) 松江区2019学年度第一学期期末质量监控试卷 (81) 青浦区2019学年第一学期九年级期终学业质量调研测试 (87) 杨浦区2019学年度第一学期期末质量调研 (97) 长宁区、金山区2019学年第一学期初三数学教学质量检测试卷 (103)

宝山区2019学年第一学期期末考试九年级数学试卷 (满分150 分,考试时间100 分钟) 考生注意: 1.本试卷含四个大题,共25 题; 2.答题时,考生务必按答题要求在答题纸规定的位置上作答,在草稿纸、本试卷上答题一律无效;3.除第一、二大题外,其余各题如无特别说明,都必须在答题纸的相应位置上写出证明或计算的主要步骤. 一. 选择题:(本大题共6 题,每题4 分,满分24 分) 【下列各题的四个选项中,有且只有一个选项是正确的,选择正确项的代号并填涂在答题纸的相应位置上.】 1.符号sin A表示…………………………………………………………………() A.∠A的正弦;B.∠A的余弦;C.∠A的正切;D.∠A的余切. a 2.如果2a=?3b,那么 =………………………………………………………() b 2 3 A. ?;B.?;C.5;D.?1. 3 2 3.二次函数y=1?2x2 的图像的开口方向……………………………………() A.向左;B.向右;C.向上;D.向下. 4.直角梯形ABCD如图放置,AB、CD为水平线,BC⊥AB,如果∠BCA=67°,从低处A处看高处C处, 那么点C在点A的………………() A.俯角67°方向;B.俯角23°方向; C.仰角67°方向;D.仰角23°方向. 5.已知a、b为非零向量,如果b=?5a,那么向量a与b的 第4 题图 方向关系是………………………………………() A.a∥b,并且a和b方向一致;B.a∥b,并且a和b方向相反; C.a和b方向互相垂直;D.a和b之间夹角的正切值为5. 6.如图,分别以等边三角形ABC的三个顶点为圆心,以其 边长为半径画弧,得到的封闭图形是莱洛三角形,如果 AB=2,那么此莱洛三角形(即阴影部分)的面积………() A.π+ 3 B.π? 3 C.2π?2 3 D.2π? 3 第6 题图

2014-2020年上海市中考数学试题汇编(含参考答案与解析)

【中考数学真题精析汇编】 2014—2020年上海市中考数学试题汇编 (含参考答案与解析) 1、2014年上海市中考数学试题及参考答案与解析 (2) 2、2015年上海市中考数学试题及参考答案与解析 (20) 3、2016年上海市中考数学试题及参考答案与解析 (38) 4、2017年上海市中考数学试题及参考答案与解析 (55) 5、2018年上海市中考数学试题及参考答案与解析 (72) 6、2019年上海市中考数学试题及参考答案与解析 (93) 7、2020年上海市中考数学试题及参考答案与解析 (114)

2014年上海市中考数学试题及参考答案与解析 一、选择题(本大题共6小题,每小题4分,共24分) 1) A B C.D. 2.据统计,2013年上海市全社会用于环境保护的资金约为60 800 000 000元,这个数用科学记数法表示为() A.608×108B.60.8×109C. 6.08×1010D.6.08×1011 3.如果将抛物线y=x2向右平移1个单位,那么所得的抛物线的表达式是() A.y=x2﹣1 B.y=x2+1 C.y=(x﹣1)2D.y=(x+1)2 4.如图,已知直线a、b被直线c所截,那么∠1的同位角是() A.∠2 B.∠3 C.∠4 D.∠5 5.某事测得一周PM2.5的日均值(单位:)如下:50,40,75,50,37,50,40,这组数据的中位数和众数分别是() A.50和50 B.50和40 C.40和50 D.40和40 6.如图,已知AC、BD是菱形ABCD的对角线,那么下列结论一定正确的是() A.△ABD与△ABC的周长相等B.△ABD与△ABC的面积相等 C.菱形的周长等于两条对角线之和的两倍D.菱形的面积等于两条对角线之积的两倍 二、填空题(本大题共12小题,每小题4分,共48分) 7.计算:a(a+1)=. 8.函数 1 1 y x = - 的定义域是. 9.不等式组 12 28 x x - ? ? ? > < 的解集是. 10.某文具店二月份销售各种水笔320支,三月份销售各种水笔的支数比二月份增长了10%,那么该文具店三月份销售各种水笔支.

相关文档
最新文档