高二数学知识点必修五:排列组合公式

合集下载

(完整word版)排列组合公式(全)(word文档良心出品)

(完整word版)排列组合公式(全)(word文档良心出品)

排列组合公式排列定义从n个不同的元素中,取r个不重复的元素,按次序排列,称为从n个中取r个的无重排列。

排列的全体组成的集合用 P(n,r)表示。

排列的个数用P(n,r)表示。

当r=n时称为全排列。

一般不说可重即无重。

可重排列的相应记号为 P(n,r),P(n,r)。

组合定义从n个不同元素中取r个不重复的元素组成一个子集,而不考虑其元素的顺序,称为从n个中取r个的无重组合。

组合的全体组成的集合用C(n,r)表示,组合的个数用C(n,r)表示,对应于可重组合有记号C(n,r),C(n,r)。

一、排列组合部分是中学数学中的难点之一,原因在于(1)从千差万别的实际问题中抽象出几种特定的数学模型,需要较强的抽象思维能力;(2)限制条件有时比较隐晦,需要我们对问题中的关键性词(特别是逻辑关联词和量词)准确理解;(3)计算手段简单,与旧知识联系少,但选择正确合理的计算方案时需要的思维量较大;(4)计算方案是否正确,往往不可用直观方法来检验,要求我们搞清概念、原理,并具有较强的分析能力。

二、两个基本计数原理及应用(1)加法原理和分类计数法1.加法原理2.加法原理的集合形式3.分类的要求每一类中的每一种方法都可以独立地完成此任务;两类不同办法中的具体方法,互不相同(即分类不重);完成此任务的任何一种方法,都属于某一类(即分类不漏)(2)乘法原理和分步计数法1.乘法原理2.合理分步的要求任何一步的一种方法都不能完成此任务,必须且只须连续完成这n步才能完成此任务;各步计数相互独立;只要有一步中所采取的方法不同,则对应的完成此事的方法也不同例1:用1、2、3、4、5、6、7、8、9组成数字不重复的六位数集合A为数字不重复的九位数的集合,S(A)=9!集合B为数字不重复的六位数的集合。

把集合A分为子集的集合,规则为前6位数相同的元素构成一个子集。

显然各子集没有共同元素。

每个子集元素的个数,等于剩余的3个数的全排列,即3!这时集合B的元素与A的子集存在一一对应关系,则S(A)=S(B)*3!S(B)=9!/3!这就是我们用以前的方法求出的P(9,6)例2:从编号为1-9的队员中选6人组成一个队,问有多少种选法?设不同选法构成的集合为C,集合B为数字不重复的六位数的集合。

排列组合公式公式解释

排列组合公式公式解释

排列组合是数学中的一个重要概念,用于计算不同元素的组合方式。

它在组合数学、概率论、统计学等领域中经常被应用。

本文将详细介绍排列组合的概念以及相关公式,并给出一些实际应用的例子。

1. 排列的概念及公式排列是指从n个元素中选取r个元素进行排序的方式。

这个过程中,每个元素只能使用一次,并且顺序不同即为不同的排列。

排列通常用P(n, r)表示,计算公式如下:P(n, r) = n! / (n-r)!其中,n!表示n的阶乘,即n! = n * (n-1) * … * 2 * 1。

n的阶乘表示从n个元素中选取所有元素进行排列的总数,而(n-r)!表示剩余元素的阶乘,即可以从n个元素中选取r个元素进行排列的总数。

排列的计算公式可以帮助我们高效地计算大量元素的排列情况。

例如,从10个数中选取3个数进行排列,即P(10, 3),可以通过计算10! / 7!得到结果。

2. 组合的概念及公式组合是指从n个元素中选取r个元素进行组合的方式。

与排列不同,组合不考虑选取元素的顺序,因此不同顺序的元素组合被视为同一种组合方式。

组合通常用C(n, r)表示,计算公式如下:C(n, r) = n! / (r! * (n-r)!)其中,n!仍表示n的阶乘,r!表示r的阶乘,(n-r)!表示剩余元素的阶乘。

组合的计算公式可以帮助我们统计不同元素组合的数量。

例如,从10个数中选取3个数进行组合,即C(10, 3),可以通过计算10! / (3! * 7!)得到结果。

3. 排列组合的应用排列组合在实际问题中有广泛的应用。

以下是一些例子:3.1. 抽奖问题假设有10个人参加抽奖,每个人的抽奖号码是从1到10之间的整数。

如果我们想要知道抽取出来的3个人的号码的所有可能情况,可以使用组合的方法计算。

结果为C(10, 3) = 120。

3.2. 选课问题假设有10门课程可以选择,每个人可以选择其中的5门进行学习。

如果我们关心的是不同学生选择不同课程的情况,可以使用排列的方法计算。

高中数学排列组合公式

高中数学排列组合公式

高中数学排列组合公式
排列组合(Permutation and Combination)是组合学最基本的概念。

所谓排列,就是指从给定个数的元素中取出指定个数的元素进行排序。

组合则是指从给定个数的元素中仅仅取出指定个数的元素,不考虑排序。

排列组合的中心问题是研究给定要求的排列和组合可能出现的情况总数。

扩展资料
排列的定义:从n个不同元素中,任取m(m≤n,m与n均为自然数,下同)个不同的元素按照一定的.顺序排成一列,叫做从n个不同元素中取出m个元素的一个排列;从n个不同元素中取出m(m≤n)个元素的所有排列的个数,叫做从n个不同元素中取出m个元素的排列数,用符号 A(n,m)表示。

计算公式:
此外规定0! = 1
组合的定义:从n个不同元素中,任取m(m≤n)个元素并成一组,叫做从n个不同元素中取出m个元素的一个组合;从n个不同元素中取出m(m≤n)个元素的所有组合的个数,叫做从n个不同元素中取出m个元素的组合数。

用符号 C(n,m) 表示。

计算公式:;C(n,m)=C(n,n-m)。

(n≥m)
其他排列与组合公式从n个元素中取出m个元素的循环排列数=A(n,m)/m=n!/m(n-m)!. n个元素被分成k类,每类的个数分别是n1,n2,...nk这n个元素的全排列数为 n!/(n1!×n2!×...×nk!). k类元素,每类的个数无限,从中取出m个元素的组合数为C(m+k-1,m)。

高二排列组合基本知识点

高二排列组合基本知识点

高二排列组合基本知识点在高中数学中,排列组合是一个重要的知识点,它是数学中的一种计数方法。

在解决真实生活问题或者数学题目时,我们经常会遇到需要使用排列组合知识点的情况。

下面,我们将详细介绍高二阶段学习的排列组合的基本知识点。

一、排列的基本概念排列是从给定的元素中取出若干个,按一定顺序排列成一列的方式。

在排列过程中,每个元素只能使用一次。

我们用P表示排列的个数,P后面的数字表示从中选取元素的个数。

1. 从n个不同元素中取出m个元素进行排列,形成的排列数用P(n, m)表示。

其中n和m均为非负整数,且m必须小于等于n。

排列数的计算公式为:P(n, m) = n! / (n - m)!2. 当m = n 时,即从n个不同元素中取出所有元素进行排列,此时的排列数用P(n)表示,即全排列。

全排列的计算公式为:P(n) = n!二、组合的基本概念组合是从给定的元素中取出若干个,不考虑顺序地合成一组的方式。

在组合过程中,每个元素只能使用一次。

我们用C表示组合的个数,C后面的数字表示从中选取元素的个数。

1. 从n个不同元素中取出m个元素进行组合,形成的组合数用C(n, m)表示。

组合数的计算公式为:C(n, m) = n! / (m! * (n - m)!)2. 当m = n 时,即从n个不同元素中取出所有元素进行组合,此时的组合数用C(n)表示,即全组合。

全组合的计算公式为:C(n) = C(n, 1) + C(n, 2) + ... + C(n, n-1) + C(n, n)三、排列组合的应用排列组合在实际生活和数学问题中的应用非常广泛。

下面以几个典型的应用例子来说明:1. 生日问题假设有n个人,问至少有两人生日相同的概率是多少?这个问题可以通过排列组合的方式求解。

我们首先求出总的可能性,即将n个人的生日安排在365天中的任意一天,所以总的可能性为365^n。

然后,我们计算没有两人生日相同的情况数。

假设第一个人的生日可以任意选择,那么第二个人的生日不能与第一个人同一天,所以有365-1=364种选择,同理可推第三个人有365-2=363种选择,以此类推,得到没有两人生日相同的情况总数为365*364*363*...*(365-n+1)。

高中数学【排列组合】

高中数学【排列组合】

高中数学【排列组合】在高中数学的学习中,排列组合可以说是一个颇具挑战性但又十分有趣的部分。

它不仅考验着我们的逻辑思维能力,还在解决实际问题中有着广泛的应用。

排列组合的基本概念其实不难理解。

排列,就是从给定的元素中取出一些,按照一定的顺序排成一列;组合呢,则是从给定的元素中取出一些,不考虑顺序。

比如说,从5 个不同的球中取出2 个排成一列,这就是排列;而从 5 个不同的球中取出 2 个,不考虑顺序,这就是组合。

我们先来看看排列。

排列数的计算公式是 A(n, m) = n! /(n m)!。

这里的“!”表示阶乘,比如 5! = 5 × 4 × 3 × 2 × 1 。

举个例子,从 7 个人中选 3 个人排成一排,那么排列的方式就有 A(7, 3) = 7! /(7 3)!= 7 × 6 × 5 = 210 种。

再来说说组合。

组合数的计算公式是 C(n, m) = n! / m! ×(n m)!。

比如从 8 个不同的水果中选 3 个,组合的方式有 C(8, 3) = 8!/(3! × 5!)= 56 种。

在解决排列组合问题时,有几个常见的方法和策略。

一是分类加法原理。

如果完成一件事有 n 类办法,在第 1 类办法中有 m1 种不同的方法,在第 2 类办法中有 m2 种不同的方法……在第 n类办法中有 mn 种不同的方法,那么完成这件事共有 N = m1 + m2+… + mn 种不同的方法。

比如说,要从甲地到乙地,有 3 条路可走,从乙地到丙地有 2 条路可走,那么从甲地经乙地到丙地一共有 3 × 2 =6 种走法。

二是分步乘法原理。

完成一件事需要分成 n 个步骤,做第 1 步有m1 种不同的方法,做第 2 步有 m2 种不同的方法……做第 n 步有 mn种不同的方法,那么完成这件事共有 N =m1 × m2 × … × mn 种不同的方法。

高二数学知识点详解:排列组合公式

高二数学知识点详解:排列组合公式

高二数学知识点详解:排列组合公式这篇高二数学知识点详解:排列组合公式是特地为大家整理的,希望对大家有所帮助!排列组合公式/排列组合计算公式排列P------和顺序有关组合C-------不牵涉到顺序的问题排列分顺序,组合不分例如把5本不同的书分给3个人,有几种分法.排列把5本书分给3个人,有几种分法组合1.排列及计算公式从n个不同元素中,任取m(mn)个元素按照一定的顺序排成一列,叫做从n个不同元素中取出m个元素的一个排列;从n 个不同元素中取出m(mn)个元素的所有排列的个数,叫做从n个不同元素中取出m个元素的排列数,用符号p(n,m)表示.p(n,m)=n(n-1)(n-2)(n-m+1)=n!/(n-m)!(规定0!=1). 2.组合及计算公式从n个不同元素中,任取m(mn)个元素并成一组,叫做从n 个不同元素中取出m个元素的一个组合;从n个不同元素中取出m(mn)个元素的所有组合的个数,叫做从n个不同元素中取出m个元素的组合数.用符号c(n,m)表示.c(n,m)=p(n,m)/m!=n!/((n-m)!*m!);c(n,m)=c(n,n-m);3.其他排列与组合公式从n个元素中取出r个元素的循环排列数=p(n,r)/r=n!/r(n-r)!.n个元素被分成k类,每类的个数分别是n1,n2,...nk这n个元素的全排列数为n!/(n1!*n2!*...*nk!).k类元素,每类的个数无限,从中取出m个元素的组合数为c(m+k-1,m).排列(Pnm(n为下标,m为上标))Pnm=n(n-1)....(n-m+1);Pnm=n!/(n-m)!(注:!是阶乘符号);Pnn(两个n分别为上标和下标)=n!;0!=1;Pn1(n为下标1为上标)=n组合(Cnm(n为下标,m为上标))Cnm=Pnm/Pmm;Cnm=n!/m!(n-m)!;Cnn(两个n分别为上标和下标)=1;Cn1(n为下标1为上标)=n;Cnm=Cnn-m-07-0813:30公式P是指排列,从N个元素取R个进行排列。

高二数学知识点之排列组合

高二数学知识点之排列组合

高二数学知识点之排列组合查字典数学网高中频道为各位同学整理了高二数学知识点之排列组合,供大家参考学习。

更多内容请关注查字典数学网高中频道。

排列组合公式/排列组合计算公式排列P------和顺序有关组合C-------不牵涉到顺序的问题排列分顺序,组合不分例如把5本不同的书分给3个人,有几种分法.排列把5本书分给3个人,有几种分法组合1.排列及计算公式从n个不同元素中,任取m(mn)个元素按照一定的顺序排成一列,叫做从n个不同元素中取出m个元素的一个排列;从n 个不同元素中取出m(mn)个元素的所有排列的个数,叫做从n个不同元素中取出m个元素的排列数,用符号p(n,m)表示.p(n,m)=n(n-1)(n-2)(n-m+1)=n!/(n-m)!(规定0!=1). 2.组合及计算公式从n个不同元素中,任取m(mn)个元素并成一组,叫做从n 个不同元素中取出m个元素的一个组合;从n个不同元素中取出m(mn)个元素的所有组合的个数,叫做从n个不同元素中取出m个元素的组合数.用符号c(n,m)表示.c(n,m)=p(n,m)/m!=n!/((n-m)!*m!);c(n,m)=c(n,n-m);3.其他排列与组合公式从n个元素中取出r个元素的循环排列数=p(n,r)/r=n!/r(n-r)!.n个元素被分成k类,每类的个数分别是n1,n2,...nk这n个元素的全排列数为n!/(n1!*n2!*...*nk!).k类元素,每类的个数无限,从中取出m个元素的组合数为c(m+k-1,m).排列(Pnm(n为下标,m为上标))Pnm=n(n-1)....(n-m+1);Pnm=n!/(n-m)!(注:!是阶乘符号);Pnn(两个n分别为上标和下标)=n!;0!=1;Pn1(n为下标1为上标)=n组合(Cnm(n为下标,m为上标))Cnm=Pnm/Pmm;Cnm=n!/m!(n-m)!;Cnn(两个n分别为上标和下标)=1;Cn1(n为下标1为上标)=n;Cnm=Cnn-m公式P是指排列,从N个元素取R个进行排列。

【高二学习指导】高二数学知识点结:排列组合

【高二学习指导】高二数学知识点结:排列组合

【高二学习指导】高二数学知识点结:排列、组合数学学习要理解重要知识点,才能为以后复习垫定基础。

为高二同学总结归纳了高二数学学习中排列组合、的重要知识点,希望对广大学生复习高二数学有帮助。

排列组合公式/排列组合计算公式排列P------和顺序有关组合C-------不牵涉到顺序的问题排列分顺序,组合不分例如把5本不同的书分给3个人,有几种分法."排列"把5本书分给3个人,有几种分法"组合"1.排列及计算公式从n个不同元素中,任取m(m≤n)个元素按照一定的顺序排成一列,叫做从n个不同元素中取出m个元素的一个排列;从n个不同元素中取出m(m≤n)个元素的所有排列的个数,叫做从n个不同元素中取出m个元素的排列数,用符号p(n,m)表示.p(n,m)=n(n-1)(n-2)……(n-m+1)=n!/(n-m)!(规定0!=1).2.组合及计算公式从n个不同元素中,任取m(m≤n)个元素并成一组,叫做从n个不同元素中取出m个元素的一个组合;从n个不同元素中取出m(m≤n)个元素的所有组合的个数,叫做从n个不同元素中取出m个元素的组合数.用符号c(n,m)表示.c(n,m)=p(n,m)/m!=n!/((n-m)!*m!);c(n,m)=c(n,n-m);3.其他排列与组合公式从n个元素中取出r个元素的循环排列数=p(n,r)/r=n!/r(n-r)!.n个元素被分成k类,每类的个数分别是n1,n2,...nk这n个元素的全排列数为n!/(n1!*n2!*...*nk!).k类元素,每类的个数无限,从中取出m个元素的组合数为c(m+k-1,m).排列(Pnm(n为下标,m为上标))Pnm=n×(n-1)....(n-m+1);Pnm=n!/(n-m)!(注:!是阶乘符号);Pnn(两个n分别为上标和下标)=n!;0!=1;Pn1(n为下标1为上标)=n组合(Cnm(n为下标,m为上标))Cnm=Pnm/Pmm;Cnm=n!/m!(n-m)!;Cnn(两个n分别为上标和下标)=1;Cn1(n为下标1为上标)=n;Cnm=Cnn-m2021-07-0813:30公式P是指排列,从N个元素取R个进行排列。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高二数学知识点必修五:排列组合公式
【导语】高二一年,能人将浮出水面,鸟人将沉入海底。

高二重点
解决三个问题:一,吃透课本;二,找寻合适自己的学习方法;三,总结
自己考试技能,形成习惯。

为了帮助你的学习更上一层楼,作者高中频
道为你准备了《高二数学知识点必修五:排列组合公式》期望可以帮到你!
排列P------温柔序有关
组合C-------不牵涉到顺序的问题
排列分顺序,组合不分
例如把5本不同的书分给3个人,有几种分法."排列"
把5本书分给3个人,有几种分法"组合"
1.排列及运算公式
从n个不同元素中,任取m(m≤n)个元素依照一定的顺序排成一列,叫做从n个不同元素中取出m个元素的一个排列;从n个不同元素中取
出m(m≤n)个元素的所有排列的个数,叫做从n个不同元素中取出m个
元素的排列数,用符号p(n,m)表示.
p(n,m)=n(n-1)(n-2)……(n-m+1)=n!/(n-m)!(规定0!=1).
2.组合及运算公式
从n个不同元素中,任取m(m≤n)个元素并成一组,叫做从n个不同元素中取出m个元素的一个组合;从n个不同元素中取出m(m≤n)个
元素的所有组合的个数,叫做从n个不同元素中取出m个元素的组合数.用符号
c(n,m)表示.
c(n,m)=p(n,m)/m!=n!/((n-m)!*m!);c(n,m)=c(n,n-m);
3.其他排列与组合公式
从n个元素中取出r个元素的循环排列数=p(n,r)/r=n!/r(n-r)!.
n个元素被分成k类,每类的个数分别是n1,n2,...nk这n个元素的全排列数为
n!/(n1!*n2!*...*nk!).
k类元素,每类的个数无穷,从中取出m个元素的组合数为
c(m+k-1,m).
排列(Pnm(n为下标,m为上标))
Pnm=n×(n-1)....(n-m+1);Pnm=n!/(n-m)!(注:!是
阶乘符号);Pnn(两个n分别为上标和下标)=n!;0!=1;Pn1(n为
下标1为上标)=n
组合(Cnm(n为下标,m为上标))
Cnm=Pnm/Pmm;Cnm=n!/m!(n-m)!;Cnn(两个n分别为上标
和下标)=1;Cn1(n为下标1为上标)=n;Cnm=Cnn-m
2008-07-0813:30
公式P是指排列,从N个元素取R个进行排列。

公式C是指组合,从N个元素取R个,不进行排列。

N-元素的总个数R参与挑选的元素个数!-阶乘,如9!=9*8*7*6*5*4*3*2*1
从N倒数r个,表达式应当为n*(n-1)*(n-2)..(n-r+1);
由于从n到(n-r+1)个数为n-(n-r+1)=r
举例:
Q1:有从1到9共计9个号码球,请问,可以组成多少个三位数?
A1:123和213是两个不同的排列数。

即对排列顺序有要求的,既属于“排列P”运算范畴。

上问题中,任何一个号码只能用一次,明显不会显现988,997之类的组合,我们可以这么看,百位数有9种可能,十位数则应当有9-1种可能,个位数则应当只有9-1-1种可能,终究共有9*8*7个三位数。

运算公式=P(3,9)=9*8*7,(从9倒数3个的乘积)
Q2:有从1到9共计9个号码球,请问,如果三个一组,代表“三国同盟”,可以组合成多少个“三国同盟”?
A2:213组合和312组合,代表同一个组合,只要有三个号码球在一起即可。

即不要求顺序的,属于“组合C”运算范畴。

上问题中,将所有的包括排列数的个数去除掉属于重复的个数即为终究组合数C(3,9)=9*8*7/3*2*1
排列、组合的概念和公式典型例题分析
例1设有3名学生和4个课外小组.(1)每名学生都只参加一个课外小组;(2)每名学生都只参加一个课外小组,而且每个小组至多有一位学生参加.各有多少种不同方法?
解(1)由于每名学生都可以参加4个课外小组中的任何一个,而不限制每个课外小组的人数,因此共有种不同方法.
(2)由于每名学生都只参加一个课外小组,而且每个小组至多有一位学生参加,因此共有种不同方法.
点评由于要让3名学生逐个挑选课外小组,故两问都用乘法原理进行运算.
例2排成一行,其中不排第一,不排第二,不排第三,不排第四的不同排法共有多少种?
解依题意,符合要求的排法可分为第一个排、、中的某一个,共3类,每一类中不同排法可采取画“树图”的方式逐一排出:
∴符合题意的不同排法共有9种.
点评依照分“类”的思路,本题运用了加法原理.为掌控不同排法的规律,“树图”是一种具有直观形象的有效做法,也是解决计数问题的一种数学模型.
例3判定下列问题是排列问题还是组合问题?并运算出结果.
(1)高三年级学生会有11人:①每两人互通一封信,共通了多少封信?②每两人互握了一次手,共握了多少次手?
(2)高二年级数学课外小组共10人:①从中选一位正组长和一位副组长,共有多少种不同的选法?②从中选2名参加省数学比赛,有多少种不同的选法?
(3)有2,3,5,7,11,13,17,19八个质数:①从中任取两个数求它们的商可以有多少种不同的商?②从中任取两个求它的积,可以得到多少个不同的积?
(4)有8盆花:①从中选出2盆分别给甲乙两人每人一盆,有多少种不同的选法?②从中选出2盆放在教室有多少种不同的选法?
分析(1)①由于每人互通一封信,甲给乙的信与乙给甲的信是不同的两封信,所以与顺序有关是排列;②由于每两人互握一次手,甲与乙握手,乙与甲握手是同一次握手,与顺序无关,所以是组合问题.其他类似分析.
(1)①是排列问题,共用了封信;②是组合问题,共需握手(次).
(2)①是排列问题,共有(种)不同的选法;②是组合问题,共有种不同的选法.
(3)①是排列问题,共有种不同的商;②是组合问题,共有种不同的积.
(4)①是排列问题,共有种不同的选法;②是组合问题,共有种不同的选法.
例4证明.
证明左式
右式.
∴等式成立.
点评这是一个排列数等式的证明问题,选用阶乘之商的情势,并利用阶乘的性质,可使变形进程得以简化.
例5化简.
解法一原式
解法二原式
点评解法一选用了组合数公式的阶乘情势,并利用阶乘的性质;解法二选用了组合数的两个性质,都使变形进程得以简化.
例6解方程:(1);(2).
解(1)原方程
解得.
(2)原方程可变为
∵,,
∴原方程可化为.
即,解得。

相关文档
最新文档