2020年高考理科数学全国卷二导数压轴题解析

合集下载

专题05 应用导数研究不等式恒成立问题(解析版)

专题05 应用导数研究不等式恒成立问题(解析版)

专题05 应用导数研究不等式恒成立问题【压轴综述】纵观近几年的高考命题,应用导数研究函数的单调性、极(最)值问题,证明不等式、研究函数的零点等,是高考考查的“高频点”问题,常常出现在“压轴题”的位置.其中,应用导数研究不等式恒成立问题的主要命题角度有:证明不等式恒成立、由不等式恒(能)成立求参数的范围、不等式存在性问题.本专题就应用导数研究不等式恒成立问题,进行专题探讨,通过例题说明此类问题解答规律与方法---参变分离、数形结合、最值分析等.一、利用导数证明不等式f(x)>g(x)的基本方法(1)若f(x)与g(x)的最值易求出,可直接转化为证明f(x)min>g(x)max;(2)若f(x)与g(x)的最值不易求出,可构造函数h(x)=f(x)-g(x),然后根据函数h(x)的单调性或最值,证明h(x)>0.二、不等式恒成立问题的求解策略(1)已知不等式f(x,λ)≥0(λ为实参数)对任意的x∈D恒成立,求参数λ的取值范围.利用导数解决此类问题可以运用分离参数法,其一般步骤如下:(2)如果无法分离参数,可以考虑对参数或自变量进行分类讨论求解,如果是二次不等式恒成立的问题,可以考虑二次项系数与判别式的方法(a>0,Δ<0或a<0,Δ<0)求解.三、不等式存在性问题的求解策略“恒成立”与“存在性”问题的求解是“互补”关系,即f(x)≥g(a)对于x∈D恒成立,应求f(x)的最小值;若存在x∈D,使得f(x)≥g(a)成立,应求f(x)的最大值.在具体问题中究竟是求最大值还是最小值,可以先联想“恒成立”是求最大值还是最小值,这样也就可以解决相应的“存在性”问题是求最大值还是最小值.特别需要关注等号是否成立,以免细节出错.【压轴典例】例1.(2021·全国高三其他模拟)已知数列{}n a 满足11a =,()1ln 1n n a a +=+.若11n n a a λ++≥恒成立,则实数λ的最大值是( )(选项中e 为自然对数的底数,大约为2.71828)A .21e -B .2e 1- CD .e【答案】D【详解】由()1ln 1n n a a +=+得()111ln 1n n n n a a a a +++-=-+,设()ln(1),1f x x x x =-+>-, ()1x f x x '=+,()f x 在(1,0)-单调递减,在(0,+∞)单调递增,故min ()(0)0f x f ==,则10n n a a +->,所以1n n a a +≤, 1n a ≥,由11n n a a λ++≥得111ln(1)n n a a λ++++≥易得11ln(11)n n a a λ++≤++,记110n t a ++=>,所以111ln(1ln )n n a t a t ++=++,记()ln t f t t=,()2ln 1()ln t f t t -'=,当ln 10t ->即()0f t '>得t e >时()f t 单调递增,当ln 10t -<即()0f t '<得0t e <<时()f t 单调递减,所以min ()()f t f e e ==,得e λ≤,例2.(2021·浙江嘉兴市·高三)已知函数()()()1x f x e a tax =-+,其中0t ≠.若对于某个t ∈R ,有且仅有3个不同取值的a ,使得关于x 的不等式()0f x ≥在R 上恒成立,则t 的取值范围为( )A .()1,eB .(),2e eC .(),e +∞D .()2,e +∞ 【答案】C【详解】显然0a ≥,否则0x e a ->,于是()()()10x f x e a tax =-+≥,即10tax +≥,这与不等式的解集为R 矛盾.又易知0a =时,不等式()0f x >恒成立.于是仅需再分析0a >的情形.易知0t >,由()()()10x f x e a tax =-+=知ln x a =或1x ta=-,所以11ln ln a a a ta t =-⇔-=.所以原问题等价于关于a 的方程1ln a a t-=有两解,设()ln h a a a =,则()ln 1h a a '=+,10a e <<时,()0h a '<,()h a 递减,1a e>时,()0'>h a ,()h a 递增,所以min 11()h a h e e ⎛⎫==- ⎪⎝⎭,0x →时,()0h a →,a →+∞时,()h a →+∞,所以由关于a 的方程1ln a a t -=有两解,得110e t-<-<,所以t e >. 例3.(2020·新高考全国Ⅰ卷)已知函数f(x)=ae x-1-ln x+ln a.(1)当a=e 时,求曲线y=f(x)在点(1,f(1))处的切线与两坐标轴围成的三角形的面积;(2)若f(x)≥1,求a 的取值范围.【解析】f(x)的定义域为(0,+∞),f'(x)=ae x-1-.(1)当a=e 时,f(x)=e x -ln x+1,f'(1)=e-1,曲线y=f(x)在点(1,f(1))处的切线方程为y-(e+1)=(e-1)(x-1),即y=(e-1)x+2.直线y=(e-1)x+2在x 轴,y 轴上的截距分别为,2,因此所求三角形的面积为.(2)当0<a<1时,f(1)=a+ln a<1不满足条件;当a=1时,f(x)=e x-1-ln x,f'(x)=e x-1-.当x ∈(0,1)时,f'(x)<0;当x ∈(1,+∞)时,f'(x)>0.所以f(x)在(0,1)上是减函数,在(1,+∞)上是增函数,所以当x=1时,f(x)取得最小值,最小值为f(1)=1,从而f(x)≥1.所以a=1满足条件;当a>1时,f(x)=ae x-1-ln x+ln a ≥e x-1-ln x ≥1.综上,a 的取值范围是[1,+∞).例4.(2020·全国卷Ⅰ高考理科·T21)已知函数f(x)=e x +ax 2-x.(1)当a =1时,讨论f (x )的单调性;(2)当x ≥0时,f (x )≥x 3+1,求a 的取值范围. 【解析】(1)当a =1时,f=e x +x 2-x ,f'=e x +2x -1,由于f″=e x +2>0, 故f'单调递增,注意到f'=0, 故当x ∈时,f'<0,f 单调递减,当x ∈时,f'>0,f 单调递增.(2)由f ≥x 3+1得,e x +ax 2-x ≥x 3+1,其中x ≥0, ①当x =0时,不等式为:1≥1,显然成立,符合题意;②当x>0时,分离参数a得,a≥-,记g =-,g'=-,令h=e x -x2-x -1,则h'=e x-x-1,h″=e x-1≥0,故h'单调递增,h'≥h'=0,故函数h单调递增,h≥h=0,由h≥0可得:e x -x2-x-1≥0恒成立,故当x ∈时,g'>0,g单调递增;当x ∈时,g'<0,g单调递减,因此,=g =,综上可得,实数a 的取值范围是.例5.(2020·天津高考·T20)已知函数f(x)=x3+k ln x(k∈R),f'(x)为f(x)的导函数.(1)当k=6时,①求曲线y=f(x)在点(1,f(1))处的切线方程;②求函数g(x)=f(x)-f'(x )+的单调区间和极值;(2)当k≥-3时,求证:对任意的x1,x2∈[1,+∞),且x1>x2,有>.【解析】(1)①当k=6时,f(x)=x3+6ln x,f'(x)=3x2+.可得f(1)=1,f'(1)=9,所以曲线y=f(x)在点(1,f(1))处的切线方程为y-1=9(x-1),即y=9x-8.②依题意,g(x)=x3-3x2+6ln x +,x∈(0,+∞).从而可得g'(x)=3x2-6x +-,整理可得:g'(x )=,令g'(x)=0,解得x=1.当x变化时,g'(x),g(x)的变化情况如表:x(0,1) 1 (1,+∞)g'(x) - 0 +g(x) 单调递减极小值单调递增所以,g(x)的减区间为(0,1),单调递增区间为(1,+∞);g(x)的极小值为g(1)=1,无极大值.(2)由f (x )=x 3+k ln x ,得f'(x )=3x 2+.对任意的x 1,x 2∈[1,+∞),且x 1>x 2,令=t (t >1), 则(x 1-x 2)[f'(x 1)+f'(x 2)]-2(f (x 1)-f (x 2))=(x 1-x 2)-2 =--3x 2+3x 1+k -2k ln =(t 3-3t 2+3t -1)+k .(ⅰ)令h (x )=x --2ln x ,x ∈(1,+∞).当x >1时,h'(x )=1+-=>0,由此可得h (x )在(1,+∞)上单调递增,所以当t >1时,h (t )>h (1),即t --2ln t >0. 因为x 2≥1,t 3-3t 2+3t -1=(t -1)3>0,k ≥-3, 所以(t 3-3t 2+3t -1)+k ≥(t 3-3t 2+3t -1)-3=t 3-3t 2+6ln t +-1.(ⅱ) 由(1)②可知,当t >1时,g (t )>g (1),即t 3-3t 2+6ln t +>1,故t 3-3t 2+6ln t +-1>0.(ⅲ) 由(ⅰ)(ⅱ)(ⅲ)可得(x 1-x 2)[f'(x 1)+f'(x 2)]-2(f (x 1)-f (x 2))>0.所以,当k ≥-3时,对任意的x 1,x 2∈[1,+∞),且x 1>x 2,有>.例6.(2021·江苏苏州市·高三)已知函数()e ln ax f x x x =-,其中e 是自然对数的底数,0a >.(1)若曲线()y f x =在点(1,(1))f 处的切线斜率为21e -,求a 的值;(2)对于给定的常数a ,若()1f x bx ≥+对(0,)x ∈+∞恒成立,求证:b a ≤.【答案】(1)1a =;(2)证明见解析.【详解】(1)因为1()(1)ax f x ax e x'=+-,所以切线斜率为(1)(1)121a k f a e e '==+-=-,即(1)20a a ee +-=.设()(1)2x h x x e e =+-, 由于()(2)0x h x x e '=+>,所以()h x 在(0,)+∞上单调递增,又(1)0h =,由(1)()02a a e h a e +-==可得1a =.(2)设()1t u t e t =--,则()1t u t e '=-,当0t >时,()0u t '>,当0t <时,()0u t '<,所以()u t 在(,0)-∞上单调递减,在(0,)+∞上单调递增,所以min()(0)0u t u ==,即()0u t ≥,所以1(*)t e t ≥+.若()1f x bx ≥+对(0,)x ∈+∞恒成立,即ln 1ax xe x bx --≥对(0,)x ∈+∞恒成立,即ln 1ln 1ax ax x xe x b e x x x --≤--=对(0,)x ∈+∞恒成立.设ln 1()ax xe x g x x --=,由(*)可知ln ln 1ln 1ln 1ln 1()ax ax x xe x e x ax x x g x a x x x+----++--==≥=, 当且仅当()ln 0x ax x ϕ=+=时等号成立.由()1()00x a x xϕ'=+>>,所以()ϕx 在()0+∞,上单调递增,又()()1a a a e ae a a e ϕ---=-=-,由0a >,所以10a e --<,即()0a e ϕ-<()10a ϕ=>,则存在唯一()0,1a x e -∈使得0()=0x ϕ,即方程()ln 0x ax x ϕ=+=有唯一解()0,1a x e -∈,即()g x a ≥(对于给定的常数a ,当0x x =,()0,1a x e -∈时取等号)由ln 1ln 1ax axx xe x b e x x x --≤--=对(0,)x ∈+∞恒成立,所以b a ≤. 例7.(2020·江苏高考·T19)已知关于x 的函数y=f(x),y=g(x)与h(x)=kx+b(k,b ∈R)在区间D 上恒有f(x)≥h(x)≥g(x).(1)若f(x)=x 2+2x,g(x)=-x 2+2x,D=(-∞,+∞).求h(x)的表达式;(2)若f(x)=x 2-x+1,g(x)=kln x,h(x)=kx-k,D=(0,+∞).求k 的取值范围;(3)若f(x)=x 4-2x 2,g(x)=4x 2-8,h(x)=4(t 3-t)x-3t 4+2t 2(0<|t|≤),D=[m,n]⊆[-,],求证:n-m ≤. 【解析】(1)由f(x)=g(x)得x=0.又f'(x)=2x+2,g'(x)=-2x+2,所以f'(0)=g'(0)=2,所以,函数h(x)的图象为过原点,斜率为2的直线,所以h(x)=2x.经检验:h(x)=2x 符合题意.(2)h(x)-g(x)=k(x-1-ln x),设φ(x)=x -1-ln x,则φ'(x)=1-=,φ(x)≥φ(1)=0,所以当h(x)-g(x)≥0时,k ≥0.设m(x)=f(x)-h(x)=x 2-x+1-(kx-k)=x 2-(k+1)x+(1+k)≥0,当x=≤0时,m(x)在(0,+∞)上递增,所以m(x)>m(0)=1+k ≥0,所以k=-1.当x=>0时,Δ≤0,即(k+1)2-4(k+1)≤0,(k+1)(k-3)≤0,-1≤k≤3.综上,k∈[0,3].(3)①当1≤t≤时,由g(x)≤h(x),得4x2-8≤4(t3-t)x-3t4+2t2,整理得x2-(t3-t)x+≤0.(*)令Δ=(t3-t)2-(3t4-2t2-8),则Δ=t6-5t4+3t2+8.记φ(t)=t6-5t4+3t2+8(1≤t≤),则φ'(t)=6t5-20t3+6t=2t(3t2-1)(t2-3)<0恒成立, 所以φ(t)在[1,]上是减函数,则φ()≤φ(t)≤φ(1),即2≤φ(t)≤7所以不等式(*)有解,设解集为,因此n-m≤x2-x1=≤.②当0<t<1时,f(-1)-h(-1)=3t4+4t3-2t2-4t-1.设v(t)=3t4+4t3-2t2-4t-1,v'(t)=12t3+12t2-4t-4=4(t+1)(3t2-1),令v'(t)=0,得t=.当t∈时,v'(t)<0,v(t)是减函数;当t∈时,v'(t)>0,v(t)是增函数;v(0)=-1,v(1)=0,则当0<t<1时,v(t)<0,(或证:v(t)=(t+1)2(3t+1)(t-1)<0)则f(-1)-h(-1)<0,因此-1∉(m,n).因为[m,n]⊆[-,],所以n-m≤+1<.③当-≤t<0时,因为f(x),g(x)均为偶函数,因此n-m≤也成立.综上所述,n-m≤.例8.(2020届安徽省马鞍山市高三)已知函数.(1)若在定义域内无极值点,求实数的取值范围;(2)求证:当时,恒成立.【答案】(1);(2)见解析【解析】(1)由题意知,令,则,当时,在上单调递减, 当时,在上单调递增, 又,∵在定义域内无极值点,∴ 又当时,在和上都单调递增也满足题意,所以(2),令,由(1)可知在上单调递増,又,所以存在唯一的零点,故在上单调递减,在上单调递増,∴由知 即当时,恒成立.例9.(2021·安徽高三)已知函数()2ln ,f x x ax x =+-其中0.a ≥(1)讨论()f x 的单调性;(2)若当2x >时()31,12f x x <+恒成立,求a 的取值范围. 【答案】(1)当18a ≥时,函数()f x 在()0,∞+内单增;当108a <<,()f x 在1181180,,4,4a a a a -⎛--+⎛⎫ ⎪ ⎪⎝⎭⎝⎭∞内单增,在11811844a a a a -+-⎛ ⎝⎭内单减;当0a =时,()f x 在(0,1)内单增,在()1,+∞内单减; (2)7ln20,4-⎡⎤⎢⎥⎣⎦. 【详解】(1)()212121,0ax x f x ax x x x-+=+'-=> 若()()110,21,x a f x ax f x x x-==+-=-在(0,1)内单增,在()1,+∞内单减. 若0,a >由2210ax x -+=知, 18a ∆=-.当Δ180,a =-≤即18a ≥时,2210,ax x -+≥此时()f x 在()0,∞+内单增. 当1Δ180,08a a =-><<时,1184a x a-=,此时()f x 在1181180,,4,4a a a a -⎛-+-+⎫⎛⎫ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭∞内单增,在118118,44a a a a --+-⎛⎫ ⎪ ⎪⎝⎭内单减. 综上所述:当18a ≥时,函数()f x 在()0,∞+内单增. 当108a <<,()f x 在1181180,,4,4a a a a -⎛-+-+⎫⎛⎫ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭∞内单增,在118118,44a a a a --+-⎛⎫ ⎪ ⎪⎝⎭内单减. 当0a =时,()f x 在(0,1)内单增,在()1,+∞内单减.(2)()3112f x x <+即231ln 1,2x ax x x +-<+ 即2311ln 2ax x x x <++- 即22111ln 2x a x x x x <++-,2x >,令()22111ln ,2,2x g x x x x x x=++-> 则()23311212ln 2x g x x x x -=---'33264ln ,22x x x x x--+=> 令()()324264ln ,2,320h x x x x x h x x x=--+>=-+>'. 所以()h x 在2x >时单增,()()()24ln222ln410h x h >=-=->,因此()0g x '>, ()g x 在2x >时单增,()()7ln224g x g ->=,于是7ln2.4a -≤ 故a 的取值范围是7ln20,.4-⎡⎤⎢⎥⎣⎦例10.(2020届山西省孝义市一模)已知函数. (1)讨论函数的单调性; (2)当时,曲线总在曲线的下方,求实数的取值范围.【答案】(1)当时,函数在上单调递增;当时,在上单调递增,在上单调递减;(2).【解析】(1)由可得的定义域为,且, 若,则,函数在上单调递增; 若,则当时,,在上单调递增, 当时,,在上单调递减. 综上,当时,函数在上单调递增; 当时,在上单调递增,在上单调递减.(2)原命题等价于不等式在上恒成立, 即,不等式恒成立.∵当时,,∴, 即证当时,大于的最大值.又∵当时,,∴,综上所述,.【总结提升】不等式恒成立问题常见方法:① 分离参数恒成立(即可)或恒成立(即可);② 数形结合( 图象在 上方即可);③ 讨论最值或恒成立;④ 讨论参数.本题是利用方法 ① 求得的范围. 【压轴训练】1.(2021·长宁区·上海市延安中学高三)设函数()f x 的定义域为R ,满足()()22f x f x +=,且当(]0,2x ∈时,()194f x x x =+-.若对任意(],x m ∈-∞,都有()23f x ≥-,则m 的取值范围是( )A .215⎛⎤-∞ ⎥⎝⎦,B .163⎛⎤-∞ ⎥⎝⎦,C .184⎛⎤-∞ ⎥⎝⎦,D .194⎛⎤-∞ ⎥⎝⎦,【答案】D【详解】当(]0,2x ∈时,()194f x x x =+-的最小值是1,4-由()()22f x f x +=知,当(]2,4x ∈时,()()192224f x x x ⎡⎤=-+-⎢⎥-⎣⎦的最小值是1,2-当(]4,6x ∈时,()()194444f x x x ⎡⎤=-+-⎢⎥-⎣⎦的最小值是1,-要使()23f x ≥-,则()1924443x x -+-≥--,解得:194x ≤或16.3x ≥2.(2020·河津中学高三)若函数2()cos sin 3f x a x x x ⎛⎫=-+ ⎪⎝⎭(其中a 为参数)在R 上单调递增,则a 的取值范围是( ) A .10,3⎡⎤⎢⎥⎣⎦B .11,,33⎛⎫⎛⎫-∞-+∞ ⎪⎪⎝⎭⎝⎭C .11,33⎡⎤-⎢⎥⎣⎦D .1,03⎡⎤-⎢⎥⎣⎦【答案】C【详解】函数1()sin sin 23f x a x x x =-+在R 上单调递增,等价于2245()cos cos21cos cos 0333f x a x x x a x =-+=-++'在R 上恒成立.设cos x t =,则245()033g t t at =-++在[1,1]-上恒成立,所以45(1)0,3345(1)0,33g a g a ⎧=-++⎪⎪⎨⎪-=--+⎪⎩解得.3.(2021·全国高三专题练习)已知函数()ln f x x =,若对任意的12,(0,)x x ∈+∞,都有()()()()2221212122f x f x x x k x x x -->+⎡⎤⎣⎦恒成立,则实数k 的最大值是( )A .1-B .0C .1D .2【答案】B【详解】设12x x >,因为()()()()2221212122f x f x x x k x x x -->+⎡⎤⎣⎦,变形为()()()()121212212ln ln x x x x x x kx x x -+->+,即12212ln x kx x x x >-,等价于1221ln 1x kx x x >-,因为120x x >>,令12x t x =(1t >),则ln 1k t t >-,即(1)ln k t t <-.设()()1ln g t t t =-(1t >),则min ()k g t <.当1t >时1()ln 10g t t t'=+->恒成立,故()g t 在()1,+∞上单调递增,()(1)0g t g >=.所以0k ≤,k 的最大值为0.4.(2019·天津高考模拟)已知函数23ln ,1(),46,1x x f x x x x -≤⎧=⎨-+>⎩ 若不等式()|2|f x x a ≥-对任意(0,)x ∈+∞上恒成立,则实数a 的取值范围为( )A .13,3e ⎡⎤-⎢⎥⎣⎦ B .[3,3ln 5]+ C .[3,4ln 2]+D .13,5e ⎡⎤-⎢⎥⎣⎦【答案】C【解析】由题意得:设g(x)=|2|x a -,易得a >0,可得2,2g(x)=2,2a x a x a x a x ⎧-≥⎪⎪⎨⎪-+⎪⎩<,g(x)与x 轴的交点为(,0)2a,① 当2a x ≥,由不等式()|2|f x x a ≥-对任意(0,)x ∈+∞上恒成立,可得临界值时,()g()f x x 与相切,此时2()46,1f x x x x =-+>,()2,2ag x x a x =-≥,可得'()24f x x =-,可得切线斜率为2,242x -=,3x =,可得切点坐标(3,3), 可得切线方程:23y x =-,切线与x 轴的交点为3(,0)2,可得此时322a =,3a =, 综合函数图像可得3a ≥;② 同理,当2ax <,由()g()f x x 与相切, (1)当2()46,1f x x x x =-+>,()2,2a g x x a x =-+<,可得'()24f x x =-,可得切线斜率为-2,242x -=-,1x =,可得切点坐标(1,3),可得切线方程25y x =-+,可得5a =,综合函数图像可得5a ≤,(2)当()3ln ,1f x x x =-≤,()2,2a g x x a x =-+<,()g()f x x 与相切,可得'1()f x x, 此时可得可得切线斜率为-2,12x -=-,12x =,可得切点坐标1(,32)2In +, 可得切线方程:1(32)2()2y In x -+=--,242y x In =-++可得切线与x 轴的交点为2(2,0)2In +,可得此时2222a In =+,42a In =+, 综合函数图像可得42a In ≤+, 综上所述可得342a In ≤≤+,故选C.5.(2020·广东佛山市·高三)(多选)命题:p 已知ABC 为锐角三角形,不等式cos cos log 0sin CAB≥恒成立,命题2:2q x x ax +在[1,2]x ∈上恒成立,在[1,2]上恒成立,则真命题的为( ) A .p q ∨ B .p q ∧C .p q ⌝∨D .p q ∧⌝【答案】AD 【详解】因为为锐角三角形,所以0,0,0222A B C πππ<<<<<<,所以2A B π+>,则022A B ππ>>->,所以0cos cos()sin 12A B B π<<-=<,所以cos 01sin AB<<,又0cos 1C <<,所以不等式cos cos log 0sin CA B≥恒成立,故命题p 是真命题;命题2:2q x x ax +在[1,2]x ∈上恒成立()min2x a ⇔+,在[1,2]上恒成立,故命题q 是假命题所以p q ∨,p q ∧⌝是真命题.6.(2020·福清西山学校高三)(多选)记函数()f x 与()g x 的定义域的交集为I ,若存在0x I ∈,使得对任意x I ∈,不等式()()fx g x -⎡⎤⎣⎦()00x x -≥恒成立,则称()()(),f x g x 构成“相关函数对”.下列所给的两个函数构成“相关函数对”的有( ) A .()xf x e =,()1g x x =+B .()ln f x x =,()1g x x= C .()f x x =,()2g x x =D .()f x x =,【答案】BD【详解】根据函数的新定义,可得两个函数的图象有一个交点,且交点的两侧图象一侧满足()()f x g x >,另一侧满足()()f x g x <,对于A 中,令()()()1xx f x g x e x ϕ=-=--,可得()1xx e ϕ'=-,当0x >时,()10xx e ϕ'=->,函数单调递增;当0x <时,()10x x e ϕ'=-<,函数单调递减,所以当0x =时,函数()x ϕ 取得最小值,最小值为()00ϕ=,即()0x ϕ≥,所以()()f x g x ≥恒成立,不符合题意;对于B 中,令()()()1ln ,0x f x g x x x x ϕ=-=->,可得()2110x x xϕ'=+>,所以函数()x ϕ单调递增,又由()()11ln110,ln 0e e eϕϕ=-<=->,设0x x =满足()00x ϕ=,且01x e <<,则对任意(0,)x ∈+∞,不等式()()f x g x -⎡⎤⎣⎦()00x x -≥恒成立,符合题意;对于C 中,函数()f x x =,()2g x x =,根据一次函数和二次函数的性质,可得函数()y f x =的图象由两个交点,此时不满足题意;对于D 中,令()()()1()2x x f x g x x ϕ=-=,可得()1211()ln 2022x x x ϕ-'=+>,所以()x ϕ在定义域[0,)+∞单调递增,又由()()1010,102ϕϕ=-<=>,所以方程()0x ϕ=只有一个实数根,设为0x ,则满足对任意x I ∈,不等式()()f x g x -⎡⎤⎣⎦()00x x -≥恒成立,符合题意. 7.(2020·浙江高三月考)已知1a >,若对于任意的1[,)3x ∈+∞,不等式()4ln 3e ln x x x a a -≤-恒成立,则a 的最小值为______.【答案】3e【详解】()()4ln 3ln 3ln 3ln x x e x x a a x x ae a x -≤-⇔-≤--()()3ln 3ln x x x x ae ae ⇔-≤-令()ln f x x x =-,()111x f x x x-'=-=,∴()f x 在[)1,+∞上单调递增.∵1a >,1[,)3x ∈+∞,∴[)3,1,x e x a ∈+∞,∴33x x e ae x x a ⇔≤⇔≤恒成立,令()3x xg x e=,只需max ()a g x ≥,()33x xg x e -'=,∴1[,1),()0,()3x g x g x ∈'>单调递增,∴(1,),()0,()x g x g x ∈+∞'<单调递减,1x ∴=时,()g x 的最大值为3e ,∴3a e≥, ∴a 的最小值为3e. 8.(2020·全国高三月考)已知函数()()ln 202xaf x ae a x =+->+,若()0f x >恒成立,则实数a 的取值范围为______. 【答案】(),e +∞ 【详解】()ln202x af x ae x =+->+,则()ln ln ln 22x a e a x ++>++,两边加上x 得到()()()ln 2ln ln 2ln 2ln 2x x aex a x x ex ++++>+++=++,x y e x =+单调递增,()ln ln 2x a x ∴+>+,即()ln ln 2a x x >+-,令()()ln 2g x x x =+-,则()11121x g x x x --'=-=++,因为()f x 的定义域为()2,-+∞()2,1x ∴∈--时,()0g x '>,()g x 单调递增,()1,x ∈-+∞,()0g x '<,()g x 单调递减, ()()max ln 11a g x g ∴>=-=,a e ∴>.9.(2021·安徽高三开学考试)已知函数()()11ln f x a x x =+++. (1)讨论函数()f x 的单调性;(2)对任意0x >,求证:()()22e 11exa x f x x +++>.【答案】(1)答案见解析;(2)证明见解析.【详解】(1)由题意得,()f x 的定义域为()0,∞+,()()1111a x f x a x x++'=++=, 当1a ≥-时,()0f x '>恒成立,∴()f x 在()0,∞+上单调递增. 当1a <-时,令()0f x '>,解得11x a <-+;令()0f x '<,解得11x a >-+, ∴()f x 在10,1a ⎛⎫-⎪+⎝⎭上单调递增,在1,1a ⎛⎫-+∞⎪+⎝⎭上单调递减. (2)要证()()22e 11e x a x f x x +++>,即证22e ln 0e x x x ⋅->.令()22e ln e xg x x x =⋅-,则()()22221e e e x x x g x x--'=.令()()221e e x r x x x =--,则()22e e x r x x '=-, 易得()r x '在()0,∞+上单调递增,且()212e e 0r '=-<,()223e 0r '=>,∴存在唯一的实数()01,2x ∈,使得()00r x '=,∴()r x 在()00,x 上单调递减,在()0,x +∞上单调递增.∵()00r <,()20r =, ∴当()0r x >时,2x >;当()0r x <时,02x <<,∴()g x 在()0,2上单调递减,在()2,+∞上单调递增,∴()()21ln 20g x g ≥=->.综上,22e ln 0e x x x ⋅->,即()()22e 11exa x f x x +++>.10.(2020·山东高考模拟)已知函数2()ln 2()f x x a x x a R =+-∈.(1)求()f x 的单调递增区间;(2)若函数()f x 有两个极值点1212,()x x x x <且12()0f x mx -≥恒成立,求实数m 的取值范围.【答案】(1)12a ≥时,增区间为(0,)+∞;0a ≤时,增区间为1()2++∞;102a <<时,增区间为,)+∞;(2)3(,ln 2]2-∞--. 【解析】(1)函数()f x 的定义域为(0,)+∞,222'()22a x x af x x x x-+=+-=,令2220x x a -+=,484(12)a a ∆=-=-,1︒若12a ≥时,0∆≤,'()0f x ≥在(0,)+∞恒成立,函数()f x 在(0,)+∞上单调递增. 2︒若12a <,>0∆,方程2220x x a -+=,两根为1x =2x =,当0a ≤时,20x >,2(,)x x ∈+∞,'()0f x >,()f x 单调递增. 当102a <<时,1>0x ,20x >, 1(0,)x x ∈,'()0f x >,()f x 单调递增,2(,)x x ∈+∞,'()0f x >,()f x 单调递增.综上,12a ≥时,函数()f x 单调递增区间为(0,)+∞, 0a ≤时,函数()f x单调递增区间为1()2+∞, 102a <<时,函数()f x单调递增区间为1(0,2-,1()2++∞. (2)由(1)知,()f x 存在两个极值点1212,()x x x x <时,102a <<且121x x =+,122a x x ⋅=,则1112ax x +=,()1121a x x =-,且1102x <<,2112x <<. 此时()120f x mx ≥-恒成立,可化为()()21111112121ln 21f x x x x x x m x x +--≤=- ()()11111111121ln 11x x x x x x x -+-+--=-1111112ln 1x x x x =-++-恒成立, 设1()12ln 1g x x x x x =-++-,1(0,)2x ∈,2221(1)1'()122ln 2ln (1)(1)x g x x xx x --=-++-=+--2(2)2ln (1)x x x x -=+-, 因为102x <<,所以(2)0x x -<,2ln 0x <,所以)'(0g x <,故()g x 在1(0,)2单调递减,13()ln 222g x g ⎛⎫>=-- ⎪⎝⎭,所以实数m 的取值范围是3(,ln 2]2-∞--.11.(2021·黑龙江哈尔滨市·哈尔滨三中高三)已知()()ln 0f x x mx m =->. (1)若()y f x =在点()()1,1f 处的切线平行于x 轴,求其单调区间和极值;(2)若不等式()21112f x xmx ++≤对于任意的0x >恒成立,求整数m 的最小值. 【答案】(1)增区间为()0,1,减区间为()1,+∞,()f x 的极大值为1-,无极小值;(2)2. 【详解】(1)()1f x m x'=-,则()110f m '=-=,1m ∴=, ()ln f x x x ∴=-,定义域为(0,)+∞,()111xf x x x-'=-=令()0f x '>,得01x <<;令()0f x '<,得1x >()f x ∴的增区间为()0,1,减区间为()1,+∞,且()f x 的极大值为()11f =-,无极小值.(2)因为0m >,所以()21112f x xmx ++≤对于任意的0x >恒成立,可化为21ln 122x x m x x ++≥+,设()2ln 12x x h x x x++=+,则()()()()()()2222212(ln 1)(22)12ln 22x x x x x x x x x x h x x x x x ⎛⎫++-+++ ⎪-++⎝⎭'==++, 设()2ln g x x x =+,则()2ln g x x x =+单调增,且111112ln 2ln 2ln 4022222g ⎛⎫=+=-=-< ⎪⎝⎭,()10g >,01,12x ⎛⎫∴∃∈ ⎪⎝⎭使()00g x =,即 ()00h x '=,所以002ln 0x x +=,所以当012x x <<时,0()()0g x g x <=,()0h x '>, 当01x x <<时,0()()0g x g x >=,()0h x '<,()h x ∴在()00,x 单调递增,在()0,x +∞单调递减()()000022max000001ln 1112,12222x x x h x h x x x x x x +++⎛⎫∴====∈ ⎪++⎝⎭()()021,2m h x ∴≥∈,m ∴的最小整数值为2。

2020年高考全国卷Ⅱ数学(理)试卷含答案

2020年高考全国卷Ⅱ数学(理)试卷含答案

2020年高考全国卷Ⅱ数学(理)试卷一、选择1. 已知集合U={−2,−1,0,1,2,3},A={−1,0,1},B={1,2},则∁U(A∪B)= ( )A. {−2,3}B. {−2,2,3}C. {−2,−1,0,3}D. {−2,−1,0,2,3}2. 若α为第四象限角,则( )A.cos2α>0B.cos2α<0C.sin2α>0D. sin2α<03. 在新冠肺炎疫情防控期间,某超市开通网上销售业务,每天能完成1200份订单的配货,由于订单量大幅增加,导致订单积压,为解决困难,许多志愿者踊跃报名参加配货工作.已知该超市某日积压500份订单未配货,预计第二天新订单是1600份的概率为0.05.志愿者每人每天能完成50份订单的配货,为使第二天积压订单及当日订单配货的概率不小于0.95,则至少需要志愿者( )A.10名B.18名C.24名D.32名4. 北京天坛的圜丘坛为古代祭天的场所,分上、中、下三层.上层中心有一块圆形石板(称为天心石),环绕天心石砌9块扇面形石板构成第一环,向外每环依次增加9块.下一层的第一环比上一层的最后一环多9块,向外每环依次也增加9块.已知每层环数相同,且下层比中层多729块,则三层共有扇面形石板(不含天心石)()A.3699块B.3474块C.3402块D.3339块5. 若过点(2,1)的圆与两坐标轴都相切,则圆心到直线2x−y−3=0的距离为( )A.√55B. 2√55C.3√55D.4√556. 数列{a n}中,a1=2,a m+n=a m a n.若a k+1+a k+2+⋯+a k+10=215−25,则k=()A.2 B.3 C.4 D.57. 如图是一个多面体的三视图,这个多面体某条棱的一个端点在正视图中对应的点为M,在俯视图中对应的点为N,则该端点在侧视图中对应的点为( )A.EB.FC.GD.H8. 设O为坐标原点,直线x=a与双曲线C:x2a2−y2b2=1(a>0,b>0)的两条渐近线分别交于D,E两点.若△ODE的面积为8,则C的焦距的最小值为()A.4B.8C.16D.329. 设函数f(x)=ln|2x+1|−ln|2x−1|,则f(x)满足( )A.是偶函数,且在(12,+∞)单调递增B.是奇函数,且在(−12,12)单调递减C.是偶函数,且在(−∞,−12)单调递增D.是奇函数,且在(−∞,−12)单调递减10. 已知△ABC是面积为9√34的等边三角形,且其顶点都在球O的球面上.若球O的表面积为16π,则O到平面ABC的距离为()A.√3B.32C.1D.√3211. 若2x−2y<3−x−3−y,则( )A. ln(y−x+1)>0B.ln(y−x+1)<0C.ln|x−y|>0D.ln|x−y|<012. 0−1周期序列在通信技术中有着重要应用.若序列a 1a 2⋯a n ⋯满足a i ∈{0,1}(i =1,2,⋯),且存在正整数m ,使得a i+m =a i (i =1, 2, ⋯)成立,则称其为0−1周期序列,并称满足a i+m =a i (i =1, 2, ⋯)的最小正整数m 为这个序列的周期.对于周期为m 的0−1序列a 1a 2⋯a n ⋯,C (k )=1m∑a i m i=1a i+k (k =1, 2, ⋯, m −1)是描述其性质的重要指标.下列周期为5的0−1序列中,满足C (k )≤15(k =1,2,3,4)的序列是( ) A.11010⋯ B.11011⋯ C.10001⋯ D.11001⋯二、填空题13. 已知单位向量a →,b →的夹角为45∘,ka →−b →与a →垂直,则k =________.14. 4名同学到3个小区参加垃圾分类宣传活动,每名同学只去1个小区,每个小区至少安排1名学生,则不同的安排方法有________种.15. 设复数z 1,z 2满足|z 1|=|z 2|=2,z 1+z 2=√3+i ,则|z 1−z 2|=________.16. 设有下列四个命题:p 1:两两相交且不过同一点的三条直线必在同一平面内. p 2:过空间中任意三点有且仅有一个平面.p 3:若空间两条直线不相交,则这两条直线平行. p 4:若直线l ⊂平面α,直线m ⊥平面α,则m ⊥l . 则下列命题中所有真命题的序号是________.①p 1∧p 4 ;②p 1∧p 2 ;③¬p 2∨p 3 ; ④¬p 3∨¬p 4. 三、解答题17. △ABC 中, sin 2A −sin 2B −sin 2C =sin B sin C . (1)求A ;(2)若BC =3,求△ABC 周长的最大值.18. 某沙漠地区经过治理,生态系统得到很大改善,野生动物数量有所增加,为调查该地区某种野生动物的数量,将其分成面积相近的200个地块,从这些地块中用简单随机抽样的方法抽取20个作为样区,调查得到样本数据(x i ,y i )(i =1,2,⋯,20),其中x i 和y i 分别表示第i 个样区的植物覆盖面积(单位:公顷)和这种野生动物的数量,并计算得∑x i 20i=1=60 ,∑y i 20i=1=1200, ∑(x i −x ¯)220i=1=80, ∑(y i −y ¯)220i=1=9000,∑(x i −x ¯)20i=1(y i −y ¯)=800.(1)求该地区这种野生动物数量的估计值(这种野生动物数量的估计值等于样区这种野生动物数量的平均数乘以地块数);(2)求样本(x i ,y i )(i =1,2,⋯,20)的相关系数(精确到0.01);(3)根据现有统计资料,各地块间植物覆盖面积差异很大,为提高样本的代表性以获得该地区这种野生动物数量更准确的估计,请给出一种你认为更合理的抽样方法,并说明理由. 附:相关系数 r =∑(x −x ¯)n (y −y ¯)√∑(x i −x )2n i=1∑(y i −y )2n i=1,√2≈1.414.19. 已知椭圆C 1:x 2a 2+y 2b 2=1(a >b >0)的右焦点F 与抛物线C 2的焦点重合.C 1的中心与C 2的顶点重合,过F 且与x 轴垂直的直线交C 1于A ,B 两点,交C 2于C ,D 两点,且|CD|=43|AB|. (1)求C 1的离心率;(2)设M 是C 1与C 2的公共点.若|MF|=5,求C 1与C 2的标准方程.20. 如图已知三棱柱ABC −A 1B 1C 1的底面是正三角形,侧面BB 1C 1C 是矩形,M ,N 分别为BC ,B 1C 1的中点,P 为AM 上一点,过B 1C 1和P 的平面交AB 于E ,交AC 于F . (1)证明: AA 1//MN ,且平面A 1AMN ⊥平面EB 1C 1F .(2)设O 为△A 1B 1C 1的中心,若AO//平面EB 1C 1F ,且AO =AB ,求直线B 1E 与平面A 1AMN 所成角的正弦值.21. 已知函数f (x)=sin 2x sin 2x . (1)讨论f(x)在(0,π)上的单调性;(2)证明:|f(x)|≤3√38;(3)证明: sin 2x sin 22x sin 24x ⋯ sin 22n x ≤3n4n .22. 已知曲线C 1,C 2的参数方程分别为C 1:{x =4cos 2θ,y =4sin 2θ(θ为参数),C 2:{x =t +1t,y =t −1t (t 为参数). (1)将C 1,C 2的参数方程化为普通方程;(2)以坐标原点为极点,x 轴正半轴为极轴建立极坐标系.设C 1,C 2的交点为P ,求圆心在极轴上,且经过极点和P 的圆的极坐标方程.23. 已知函数f (x )=|x −a 2|+|x −2a +1|. (1)当a =2时,求不等式f (x )≥4的解集;(2)若f (x )≥4,求a 的取值范围.参考答案与试题解析2020年高考全国卷Ⅱ数学(理)试卷一、选择1.【答案】A2.【答案】D3.【答案】B4.【答案】C5.【答案】B6.【答案】C7.【答案】A8.【答案】B9.【答案】D10.【答案】C11.【答案】A12.【答案】C 二、填空题13.【答案】√2214.【答案】3615.【答案】2√316.【答案】①③④三、解答题17.【答案】解:(1)在△ABC中,设内角A,B,C的对边分别为a,b,c,∵sin2A−sin2B−sin2C=sin B sin C,由正弦定理得,a2−b2−c2=bc,即b2+c2−a2=−bc,由余弦定理得,cos A=b2+c2−a22bc=−12.∵0<A<π,∴A=2π3.(2)由(1)知A=2π3,因为BC=3,即a=3,由余弦定理得,a2=b2+c2−2bc cos A,∴9=b2+c2+bc=(b+c)2−bc.由基本不等式√bc≤b+c2知bc≤(b+c)24,结合上式得9=(b+c)2−bc≥34(b+c)2,(b+c)2≤12,∴b+c≤2√3,当且仅当b=c=√3时取等号,∴△ABC周长的最大值为3+2√3.18.【答案】解:(1)由题意可知,1个样区这种野生动物数量的平均数=120020=60,故这种野生动物数量的估计值=60×200=12000.(2)由参考公式得,r=∑(x i−x¯)ni=1(y i−y¯)√∑(xi−x)2ni=1∑(y i−y)2ni=1=√80×9000=6√2≈0.94 .(3)由题意可知,各地块间植物覆盖面积差异很大,因此在调查时,先确定该地区各地块间植物覆盖面积大小并且由小到大排序,每十个分为一组,采用系统抽样的方法抽取20个地块作为样区进行样本统计.19.【答案】解:(1)F为C1的焦点,且AB⊥x轴,∴F(c,0),|AB|=2b2a,设C2的标准方程为y2=2px(p>0),∵F为C2的焦点,且AB⊥x轴,∴F(p2,0).由抛物线的定义可得,|CD|=2p.∵|CD|=43|AB|,C1与C2焦点重合,∴{c=p2,2p=43×2b2a,消去p得:4c=8b23a,∴3ac=2b2,∴3ac=2a2−2c2.设C1的离心率为e,则2e2+3e−2=0,∴e=12或e=−2(舍),故C1的离心率为12.(2)由(1)知a=2c,b=√3c,p=2c.∴C1:x24c2+y23c2=1,C2:y2=4cx,联立两曲线方程,消去y得3x2+16cx−12c2=0,∴(3x−2c)(x+6c)=0,∴x=23c或x=−6c(舍).从而|MF|=x+p2=23c+c=53c=5,∴c=3,∴C1与C2的标准方程分别为x236+y227=1,y2=12x.20.【答案】(1)证明:∵M,N分别为BC,B1C1的中点,底面为正三角形,∴B1N=BM,四边形BB1NM为矩形,A1N⊥B1C1,∴BB1//MN,而AA1//BB1,MN⊥B1C1,∴AA1//MN.又∵MN∩A1N=N,∴B1C1⊥面A1AMN.∵B1C1⊂面EB1C1F,∴平面A1AMN⊥平面EB1C1F.(2)∵三棱柱上下底面平行,平面EB1C1F与上下底面分别交于B1C1,EF,∴EF//B1C1//BC.∵AO//平面EB1C1F,AO⊂平面AMNA1,平面AMNA1∩平面EB1C1F=PN,∴AO//PN,四边形APNO为平行四边形,而O为正三角形的中心,AO=AB,∴A1N=3ON,AM=3AP,PN=BC=B1C1=3EF.由(1)知直线B1E在平面A1AMN内的投影为PN,直线B1E与平面A1AMN所成角即为等腰梯形EFC1B1中B1E与PN所成角.在等腰梯形EFC1B1中,令EF=1,过E作EH⊥B1C1于H,则PN =B 1C 1=EH =3,B 1H =1,B 1E =√10,sin ∠B1EH =B 1H B 1E=√1010. 所以直线B 1E 与平面A 1AMN 所成角的正弦值为√1010. 21.【答案】(1)解:∵ f (x )=2sin 3x cos x , ∴ f ′(x )=2sin 2x(3cos 2x −sin 2x) =−8sin 2x sin (x +π3)sin (x −π3).当x ∈(0,π3)时, f ′(x )>0, f (x )单调递增;当x ∈(π3,2π3)时, f ′(x )<0, f (x )单调递减;当x ∈(2π3,π)时, f ′(x )>0, f (x )单调递增.(2)证明:由f (x )=2sin 3x cos x 得, f (x )为R 上的奇函数. f 2(x )=4sin 6x cos 2x =4(1−cos 2x )3cos 2x =4(1−cos 2x )3×3cos 2x 3≤43×(3−3cos 2x+3cos 2x 4)4=(34)3.当1−cos 2x =3cos 2x ,即cos x =±12时等号成立,故|f (x )|≤3√38.(3)证明:由(2)知:sin 2x sin 2x ≤3√38=(34)32,sin 22x sin 4x ≤3√38=(34)32, sin 222x sin 23x ≤3√38=(34)32,⋯sin 22n−1x sin 2n x ≤3√38=(34)32,∴ sin 2x sin 32x sin 34x ⋯sin 32n−1x sin 22n x ≤(34)3n2 , ∴ sin 3x sin 32x sin 34x ⋯sin 32n−1x sin 32n x =sin x(sin 2x sin 32x sin 34x ⋯sin 32n−1x sin 22n x)sin 2nx ≤(34)3n 2,∴ sin 2x sin 22x sin 24x ⋯ sin 22n x ≤3n4n . 22.【答案】解:(1)C 1:{x =4cos 2θ,①y =4sin 2θ,②①+②得,x +y =4,故C 1的普通方程为:x +y −4=0. 由 {x =t +1t ,y =t −1t可得{x 2=t 2+2+1t 2,③y 2=t 2−2+1t2,④③−④得,x 2−y 2=4,故C 2的普通方程为:x 2−y 2=4. (2)联立C 1,C 2 {x +y −4=0,x 2−y 2=4,解得:{x =52,y =32, 所以点P 坐标为:P (52,32). 设所求圆圆心为Q (a,0),半径为a ,故圆心Q (a,0)到P (52,32)的距离为√(52−a)2+(32−0)2=a , 解得a =1710,所以圆Q 的圆心为(1710, 0),半径为1710,则圆Q 的直角坐标方程为:(x −1710)2+y 2=(1710)2,即.x 2+y 2−175x =0,所以所求圆的极坐标方程为: ρ=175cos θ.23. 【答案】解:(1)当a =2时,f (x )={7−2x ,x ≤3,1,3<x ≤4,2x −7,x >4.因此,不等式f (x )≥4的解集为{x|x ≤32或x ≥112}.(2)因为f (x )=|x −a 2|+|x −2a +1|≥|a 2−2a +1|=(a −1)2, 故当(a −1)2≥4,即|a −1|≥2时, f (x )≥4, 所以当a ≥3或a ≤−1时,f (x )≥4, 所以a 的取值范围是(−∞,−1]∪[3,+∞).。

2020年高考数学(理)考点分析与突破训练导数及其应用(解析版).

2020年高考数学(理)考点分析与突破训练导数及其应用(解析版).

热点导数及其应用【命题趋势】在目前高考全国卷的考点中,导数板块常常作为压轴题的形式出现,这块部分的试题难度呈现非减的态势,因此若想高考中数学拿高分的同学,都必须拿下导数这块的内容.函数单调性的讨论、零点问题和不等式恒成立的相关问题(包含不等式证明和由不等式恒成立求参数取值范围)是出题频率最高的.对于导数内容,其关键在于把握好导数,其关键在于把握好导数的几何意义即切线的斜率,这一基本概念和关系,在此基础上,引申出函数的单调性与导函数的关系,以及函数极值的概念求解和极值与最值的关系以及最值的求解.本专题选取了有代表性的选择,填空题与解答题,通过本专题的学习熟悉常规导数题目的思路解析与解题套路,从而在以后的导数题目中能够快速得到导数问题的得分技巧.【满分技巧】对于导数的各类题型都是万变不离其宗,要掌握住导数的集中核心题型,即函数的极值问题,函数的单调性的判定.因为函数零点问题可转化为极值点问题,函数恒成立与存在性问题可以转化为函数的最值问题,函数不等式证明一般转化为函数单调性和最值求解,而函数的极值和最值是由函数的单调性来确定的.所以函数导数部分的重点核心就是函数的单调性.对于函数零点问题贴别是分段函数零点问题是常考题型,数形结合是最快捷的方法,在此方法中应学会用导数的大小去判断原函数的单调区间,进而去求出对应的极值点与最值.恒成立与存在性问题也是伴随着导数经典题型,对于选择题来说,恒成立选择小题可以采用排除法与特殊值法相结合的验证方法能够比较快捷准确得到答案,对于填空以及大题则采用对函数进行求导,从而判定出函数的最值.函数的极值类问题是解答题中的一个重难点,对于非常规函数,超出一般解方程的范畴类题目则采用特殊值验证法,特殊值一般情况下是0,1等特殊数字进行验证求解.对于理科类导数类题目,对于比较复杂的导数题目.一般需要二次求导,但是要注意导数大小与原函数之间的关系,搞清楚导数与原函数的关系是解决此类题目的关键所在.含参不等式证明问题也是一种重难点题型,对于此类题型应采取的方法是:一双变量常见解题思路:1双变量化为单变量→寻找两变量的等量关系;2转化为构造新函数;二含参不等式常见解题思路:1参数分离;2通过运算化简消参(化简或不等关系);3将参数看成未知数,通过它的单调关系来进行消参.那么两种结构的解题思路理顺了,那么我们来看这道题.这是含参的双变量问题,一般来说,含参双变量问题我们一般是不采用转化为构造新函数,我们最好就双变量化为单变量,这就是我们解这道题的一个非常重要的思路:① 寻找双变量之间的关系并确定范围,并且确定参数的取值范围;②化简和尝试消参;③双变量化为单变量.④证明函数恒成立(求导、求极值……)(经典题型2018年全国一卷理21题)【考查题型】选择题,填空,解答题21题【限时检测】(建议用时:90分钟)1.(2019·全国高考真题(理))已知曲线ln x y ae x x =+在点),(ae 1处的切线方程 为b x y +=2,则( )A .a =e,b =−1B .a =e,b =1C .a =e −1,b =1D .a =e −1,b =−1【答案】D【解析】详解:1ln y '++=x ae x21=+=ae y ,即1a e -=将(1,1)代入b x y +=2得1.12==+b b 故故选D .【名师点睛】本题关键得到含有a ,b 的等式,利用导数几何意义和点在曲线上得到方程关系.2.(2019·安徽高三期中(理))已知函数11,1()4ln ,1x x f x x x +≤⎧=⎨⎩>,则方程()f x ax =恰有两个不同的实根时,实数a 的取值范围是A .10,e ⎛⎫ ⎪⎝⎭B .C .D .1,4e ⎛⎫⎪⎝⎭【答案】B 【解析】试题分析:ln y x =,所以1'y x=,设切点为00(,)x y ,则切线方程为0001()y y x x x -=-,即0001ln ()y x x x x -=-,与直线y ax =重合时,有01a x =,0ln 10x -=,解得0x e =,所以1a e =,当直线与直线114y x =+平行时,直线为14y x =,当1x =时,11ln ln1044x x -=-<,当x e =时,11ln ln 044x x e e -=->,当3x e =时,3311ln ln 044x x e e -=-<,所以ln y x =与14y x =在3(1,),(,)e e e 上有2个交点,所以直线在14y x =和1y x e =之间时与函数()f x 有2个交点,所以11[,)4a e∈,故选B .考点:函数图像的交点问题.3.(2019·临沂第十九中学高考模拟(理))设函数()xf x mπ=.若存在()f x 的极值点0x 满足()22200x f x m ⎡⎤+<⎣⎦,则m 的取值范围是( )A .()(),66,-∞-⋃∞B .()(),44,-∞-⋃∞C .()(),22,-∞-⋃∞D .()(),11,-∞-⋃∞ 【答案】C 【解析】由题意知:()f x 的极值为所以()203f x ⎡⎤=⎣⎦,因为00()0xf x m mππ='=, 所以0,2x k k z mπππ=+∈,所以01,2x k k z m =+∈即01122x k m =+≥,所以02m x ≥,即2200[()]x f x +≥24m +3,而已知()22200x f x m ⎡⎤+<⎣⎦,所以224m m >+3,故2334m >,解得2m >或2m <-,故选C.【名师点睛】本小题主要考查利用导数研究的极值,考查三角函数,考查一元二次不等式的解法,考查分析问题与解决问题的能力,三角函数出现在导数里面不常见,故做三角函数对应的导数题目时应注意用三角函数最值问题去解决.4(2019·四川高考模拟(文))已知函数32(x)(5)(4)f x a x b x =+-++,若函数()f x 是奇函数,且曲线()y f x =在点(3,(3))f 的切线与直线y 36x=+垂直,则a b +=( ) A .−32 B .−20C .25D .42【答案】A【解析】先根据函数是奇函数求出a 的值,再根据切线与直线垂直得到b 的值,即得a +b 因为函数f(x)是奇函数,所以--()f x f x =(),所以a =5.由题得43)(2'++=b x x f ,31)3('+==b f k因为切线与直线y 36x=+垂直,所以b+31=-6, 所以b=-37.所以a +b=-32.故选:A【名师点睛】本题主要考查奇函数的性质,考查导数的几何意义,意在考查学生对这些知识的理解掌握水平和分析推理能力.5.(2019·广东高考模拟(理))若函数()(cos )xf x e x a =-在区间,22ππ⎛⎫- ⎪⎝⎭上单调递减,则实数a 的取值范围是( )A .()+∞B .(1,)+∞C .)+∞D .[1,)+∞【答案】C【解析】对函数求导只需要,22x ππ⎛⎫∀∈- ⎪⎝⎭,()()sin cos 0xf x e x x a +'=--≤恒成立,即cos sin 4a x x x π⎛⎫≥-=+ ⎪⎝⎭恒成立,结合三角函数的性质得到函数的最值为,即可得到参数范围.【详解】由题意,,22x ππ⎛⎫∀∈-⎪⎝⎭,()()sin cos 0x f x e x x a +'=--≤恒成立,即cos sin 4a x x x π⎛⎫≥-=+ ⎪⎝⎭恒成立,当,22x ππ⎛⎫∈- ⎪⎝⎭时,3,444x πππ⎛⎫+∈- ⎪⎝⎭,(cos ,1424x x ππ⎛⎤⎛⎫⎛⎫∴+∈-+∈- ⎥ ⎪ ⎪ ⎝⎭⎝⎭⎝⎦,所以实数a 的取值范围是)+∞.故选:C 【名师点睛】这个题目考查了导数在研究函数的单调性中的应用,也考查了不等式恒成立求参的应用,此类题目最常见的方法有:通过变量分离,转化为函数最值问题.6(2018·河北衡水中学高考模拟(理))定义在R 上的可导函数()f x 满足()11f =, 且()2'1f x >,当3,22x ππ⎡⎤∈-⎢⎥⎣⎦时,则不等式23(2cos )2sin 22x f x +> 的解集为( )A .4,33ππ⎛⎫⎪⎝⎭B .4,33ππ⎛⎫-⎪⎝⎭C .0,3π⎛⎫⎪⎝⎭D .,33ππ⎛⎫-⎪⎝⎭ 【答案】D【解析】构造函数()()1122g x f x x =--,可得()g x 在定义域内R 上是增函数,且()10g =,进而根据23(2cos )2sin 022x f x +->转化成()(2cos )1g x g >,进而可求得答案 【详解】 令11()()22g x f x x =--,则1()'()0'2g x f x =->, ()g x ∴在定义域R 上是增函数,且11(1)(1)022g f =--=, 1(2cos )(2cos )cos 2g x f x x ∴=--23=(2cos )2sin 22x f x +-, ∴23(2cos )2sin 022x f x +->可转化成()(2cos )1g x g >,得到 2cos 1x >,又Q 3,22x ππ⎡⎤∈-⎢⎥⎣⎦,可以得到,33x ππ⎛⎫∴∈- ⎪⎝⎭故选D【名师点睛】本题考查利用函数的单调性求取值范围,此类题目应学会构造新的函数,利用新的函数去解决问题,此外此类题目最快捷的方法是特殊值与排除法相结合即可快速得到答案,特殊值首选应该选择当0=x 时,结果满足条件,故排除A ,C ,然后观察B,D 选项,带入特殊值3π=x 不满足条件.故选择D.二、填空题7.(2018·河北衡水中学高考模拟(理))若两曲线21y x =-与ln 1y a x =-存在公切线,则正实数a 的取值范围是__________. 【答案】(0,2]e【解析】设两个切点分别为1122(,),(,)A x y B x y ,两个切线方程分别为2111(1)2()y x x x x --=-,222(ln 1)()ay a x x x x --=-,化简得2112221,ln 1ay x x x y x a x a x =--=+--两条切线为同一条.可得122212ln ax x a x a x =-⎧=-⎨⎩, ,2224(ln 1)a x x =--,令22()44ln (0)g x x x x x =->,()4(12ln )g x x x =-',所以g(x)在递增,)+∞递减,max ()2g x g e ==.所以a ∈(]0,2e ,填(]0,2e .8(2019·临沂第十九中学高考模拟(理))设函数()xf x mπ=.若存在()f x 的极值点0x 满足()22200x f x m ⎡⎤+<⎣⎦,则m 的取值范围是( )A .()(),66,-∞-⋃∞B .()(),44,-∞-⋃∞C .()(),22,-∞-⋃∞D .()(),11,-∞-⋃∞ 【答案】C 【解析】由题意知:()f x的极值为所以()203f x ⎡⎤=⎣⎦,因为00()0xf x m mππ='=,所以0,2x k k z m πππ=+∈,所以01,2x k k z m =+∈即01122x k m =+≥,所以02m x ≥,即2200[()]x f x +≥24m +3,而已知()22200x f x m ⎡⎤+<⎣⎦,所以224m m >+3,故2334m >,解得2m >或2m <-,故选C.考点:本小题主要考查利用导数研究的极值,考查三角函数,考查一元二次不等式的解法,考查分析问题与解决问题的能力.9.(2019·天津高考模拟(理))已知函数()12cos 2xx f x e x e π⎛⎫=--- ⎪⎝⎭,其中e 为自然对数的底数,若()()()22300f af a f +-+<,则实数a 的取值范围为___________.【答案】312a -<< 【解析】【思路分析】利用奇偶性的定义判断函数的奇偶性,利用导数结合不等式与三角函数的有界性判断函数的单调性,再将原不等式转化为223a a <-求解即可. 【详解】()12cos 2x x f x e x e π⎛⎫=--- ⎪⎝⎭Q 12sin xx e x e =--, ()()12sin xx f x e x e --∴-=---()2sin 1x xx e f x e ⎛⎫=--=- ⎪⎝⎭-, ()f x ∴是奇函数,且()00f =,又()12'cos xx f x e ex -=+Q ,2,2c s 1o 2x xe x e +≥≤,()'0f x ∴≥, ()f x ∴在()+-∞∞,上递增, ()()()22300f a f a f ∴+-+<,化为()()()2233f af a f a <--=-,∴232312a a a <-⇒-<<,故答案为312a -<<.【名师点睛】本题主要考查利用导数研究函数的单调性,考查了奇偶性的应用、单调性的应用,属于难题. 解决抽象不等式()()f a f b <时,切勿将自变量代入函数解析式进行求解,首先应该注意考查函数()f x 的单调性.若函数()f x 为增函数,则a b <;若函数()f x 为减函数,则a b >.10.(2019·安徽高考模拟)设函数21(),()x x xf xg x x e+==,对任意()12,0,x x ∈+∞,不等式()()121g x f x k k ≤+恒成立,则正数k 的取值范围是_______. 【答案】121k e ≥- 【解析】对任意()12,0,x x ∈+∞,不等式()()121g x f x k k ≤+恒成立,则等价为()()121g x k f x k ≤+恒成立,()2112x f x x x x +=++≥=,当且仅当1x x =,即 1x =时取等号,即()f x 的最小值是2,由()x x g x e =,则()()21'x x x x e xe x g x e e --==,由()'0g x >得01x <<,此时函数()g x 为增函数,由()'0g x >得1x >,此时函数()g x 为减函数,即当1x =时,()g x 取得极大值同时也是最大值()11g e =,则()()12g x f x 的最大值为1122e e=,则由112k k e ≥+,得21ek k ≥+,即()211k e -≥,则121k e ≥-,故答案为121k e ≥-.三、解答题11.(2019·浙江高考模拟)已知函数()1ln f x x x x=-- . (1)若()1ln f x x x x=--在()1212,x x x x x =≠ 处导数相等,证明:()()1232ln2f x f x +>- ;(2)若对于任意(),1k ∈-∞ ,直线y kx b =+ 与曲线()y f x =都有唯一公共点,求实数b 的取值范围.【答案】(I )见解析(II )ln 2b ≥- 【思路分析】(1)由题x >0,()2111f x x x'=+-,由f (x )在x=x 1,x 2(x 1≠x 2)处导数相等,得到()()12f x f x m ''==,得21122211101110m x x m x x ⎧-+-=⎪⎪⎨⎪-+-=⎪⎩,由韦达定理得12111x x +=,由基本不等式得1212x x x x +=⋅>,得124x x ⋅>,由题意得()()()121212ln 1f x f x x x x x +=--,令124t x x =⋅>,则()1212ln 1ln 1x x x x t t --=--,令()()ln 14g t t t t =-->,,利用导数性质能证明()()432ln2g t g >=-.(2)由()f x kx b =+得1ln x x b x k x ---=,令()1ln x x bx h x x---=, 利用反证法可证明证明()1h x <恒成立.由对任意(),1k ∈-∞,()h x k =只有一个解,得()h x 为()0,+∞上的递增函数,()22ln 10x b x h x x ++-='∴≥得2ln 1b x x ≥--+,令()()2ln 10m x x x x=--+>,由此可求b 的取值范围.. 【过程详解】 (I )()2111f x x x'=+- 令()()12f x f x m ''==,得21122211101110m x x m x x ⎧-+-=⎪⎪⎨⎪-+-=⎪⎩,由韦达定理得12111x x +=即1212x x x x +=⋅>,得124x x ⋅>()()()()1212121211ln ln f x f x x x x x x x ⎛⎫∴+=+-+-+ ⎪⎝⎭()1212ln 1x x x x =--令124t x x =⋅>,则()1212ln 1ln 1x x x x t t --=--,令()()ln 14g t t t t =-->, 则()()1104g t t t>'=->,得()()432ln2g t g >=-(II )由()f x kx b =+得1ln x x bxk x---=令()1ln x x bx h x x---=, 则0x →+,()h x →-∞,(),1x h x →+∞→ 下面先证明()1h x <恒成立.若存在()00,x ∈+∞,使得()01h x ≥,0x →+Q ,()h x →-∞,且当自变量x 充分大时,()1ln 1x x bx h x x---=<,所以存在()100,x x ∈,()20,x x ∈+∞,使得()11h x <,()21h x <,取()(){}12max ,1k h x h x =<,则y k =与()y h x =至少有两个交点,矛盾.由对任意(),1k ∈-∞,()h x k =只有一个解,得()h x 为()0,+∞上的递增函数,()22ln 1x b x h x x ++-='∴≥ 得2ln 1b x x ≥--+,令()()2ln 10m x x x x =--+>,则()22212x m x x x x-=-=', 得()()max 2ln2b m x m ≥==-【名师点睛】本题考查函数的单调性,导数的运算及其应用,同时考查逻辑思维能力和综合应用能力属难题.12.(2019·浙江高考模拟)知函数()2x af x x a+=+,()()2ln 2g x x a a R =+∈.(1)求()f x 的单调区间;(2)证明:存在()0,1a ∈,使得方程()()f x g x =在()1,+∞上有唯一解. 【答案】(1)详见解析(2)详见解析 【思路分析】(1)求出函数f (x )的定义域,对函数f (x )求导得到22y x ax a =+-, 分0∆≤ 与0∆>,得到导函数在各区间段内的符号,得到函数f (x )的单调区间; (2)构造()()()h x f x g x =-,求导分析()h x 的单调性,找到12≤a<1时,()0h x <在(1,1上恒成立,在()1+∞上递增,而h(1)0x <,()20h e >,由函数零点存在定理得到存在()00,1a ∈,使得方程()0h x =在()1,+∞上有唯一解,即证得结论. 【过程详解】(1)函数f (x )的定义域为()(),,a a -∞-⋃-+∞,因为()()222x ax af x x a +-=+',令22y x ax a =+-,则2440a a ∆=+≤,即10a -≤≤,则()0f x '≥在()(),,a a -∞-⋃-+∞上恒成立,当1a <-或0a >,由220x ax a +->有x a >-x a <-由220x ax a +-<有a x a -<<-,综上,当10a -≤≤时,()f x 的递增区间是()(),,,a a -∞--+∞,当1a <-或0a >时,()f x 的递增区间是((),,a a -∞--+∞,递减区间是()(,,a a a a ----+;(2)令()()()22ln 2x ah x f x g x x a x a+=-=--+,当()0,1a ∈时,则()()()()()22222222x a x x ax ax ah x x x a x a x+--+-=-=++' ()((()2211x a x x x a x⎡⎤⎡⎤+--⎣⎦⎣⎦=+,因为()1,x ∈+∞,故当11x <<+()0h x '<,当1x 时,()0h x '>,所以()h x在(1,1上递减,在()1++∞上递增,即当11x =()h x 有最小值,又h (1)=1-2a ,当12≤a<1时,h (1)≤0,即()0h x <在(1,1+上恒成立, 又12≤a<1时,()2222ln 22ln 22ln 222x a x x h x x a x a x x lnx x a x x+=-->-->--=--+,取x=2e ,则22224260x lnx e e ,--=--=->即()20h e>,又()h x在()1+∞上递增,而h(1)0x <,由函数零点存在定理知()h x在()1+∞上存在唯一零点,所以当12≤a<1时即存在()0,1a ∈,使得方程()0h x =在()1,+∞上有唯一解,即方程()()f x g x =在()1,+∞上有唯一解.【名师点睛】本题主要考查导数的运算、导数在研究函数中的应用、函数零点等基础知识,考查了推理论证能力、运算求解能力,考查了函数与方程、分类与整合、化归与转化等数学思想方法,属于难题.13.(2018·河北衡水中学高考模拟(理))已知函数()ln xf x ax b x=-+在点 ()(),e f e 处的切线方程为2y ax e =-+.(2)若存在20,x e e ⎡⎤∈⎣⎦,满足()014f x e ≤+,求实数a 的取值范围. 【答案】(1) 实数b 的值为e .(2)211,24e ⎡⎫-+∞⎪⎢⎣⎭. 【解析】分析:(1)根据导数的几何意义求得曲线()y f x =在点()(),e f e 处的切线方程,与2y ax e =-+对照后可得b e =.(2)问题可转化为11ln 4a x x≥-在2,e e ⎡⎤⎣⎦上有解,令()11ln 4h x x x=-,2,x e e ⎡⎤∈⎣⎦,结合导数可得()()221124minh x h e e==-,故得实数a的取值范围为211,24e ⎡⎫-+∞⎪⎢⎣⎭. 详解:(1)函数()f x 的定义域为()()0,11,⋃+∞, ∵()ln xf x ax b x =-+, ∵()2ln 1'ln x f x a x-=-. ∵()'f e a =-, 又()e f e ae b =-+,∵所求切线方程为()()y e ae b a x e --+=--, 即y ax e b =-++.又函数()f x 在点()(),e f e 处的切线方程为2y ax e =-+, ∵b e =.(2)由题意得()00001ln 4x f x ax e e x =-+≤+, 所以问题转化为11ln 4a x x≥-在2,e e ⎡⎤⎣⎦上有解. 令()11ln 4h x x x=-,2,x e e ⎡⎤∈⎣⎦, 则()2222211ln 4'4ln 4ln x xh x x x x x x -=-=(22ln ln 4ln x x x x+-=. 令()ln p x x =-则当2,x e e ⎡⎤∈⎣⎦时,有()1'0p x x ==<. 所以函数()p x 在区间2,e e ⎡⎤⎣⎦上单调递减,所以()()ln 0p x p e e <=-<.所以()'0h x <,所以()h x 在区间2,e e ⎡⎤⎣⎦上单调递减.所以()()22221111ln 424h x h eee e ≥=-=-. 所以实数a 的取值范围为211,24e ⎡⎫-+∞⎪⎢⎣⎭. 【名师点睛】对于恒成立和能成立的问题,常用的解法是分离参数,转化为求函数最值的问题处理.解题时注意常用的结论:若()a f x >有解,则()min a f x >;若()a f x <有解,则()max a f x <.当函数的最值不存在时,可利用函数值域的端点值来代替,解题时特别要注意不等式中的等号能否成立.14.(2019·安徽六安一中高考模拟(理))已知函数()()2ln R 2a f x x x x a =-∈ . (1)若2a = ,求曲线()y f x = 在点()()1,1f 处的切线方程;(2)若()()()1g x f x a x =+- 在1x = 处取得极小值,求实数a 的取值范围. 【答案】(1)y x =-(2)1a <【解析】:(1)当2a =时,()2ln f x x x x =-,利用导数几何意义,能够求出此函数在1x =处的切线斜率,再求出切线方程;(2)对函数()g x 求导,令()()'ln h x g x x ax a ==-+,讨论)'(h x 的单调性,对a 分情况讨论,得出实数a 的取值范围. 试题解析:(1)当2a =时,()2ln f x x x x =-,()'ln 12f x x x =+-,()()11,'11f f =-=-,所以曲线()y f x =在点()()1,1f 处的切线方程为y x =-.(2)由已知得()()2ln 12a g x x x x a x =-+-,则()'ln g x x ax a =-+, 记()()'ln h x g x x ax a ==-+,则()()1110,'ax h h x a x x-==-=, ∵当0a ≤,()0,x ∈+∞时,()'0h x >,函数()'g x 单调递增, 所以当()0,1x ∈时,()'0g x <,当()1,x ∈+∞时,()'0g x >, 所以()g x 在1x =处取得极小值,满足题意.∵当01a <<时,10,x a ⎛⎫∈ ⎪⎝⎭时,()'0h x >,函数()'g x 单调递增, 可得当()0,1x ∈时,()'0g x <,11,x a ⎛⎫∈ ⎪⎝⎭时,()'0g x >当, 所以()g x 在1x =处取得极小值,满足题意.∵当1a =时,当()0,1x ∈时,()'0h x >,函数()'g x 单调递增,()1,x ∈+∞时,()'0h x <,()'g x 在()1,+∞内单调递减,所以当()0,x ∈+∞时,()'0g x ≤,()g x 单调递减,不合题意.∵当1a >时,即101a <<,当1,1x a ⎛⎫∈ ⎪⎝⎭时,()'0h x <,()'g x 单调递减, ()'0g x >,当()1,x ∈+∞时,()'0h x <,()'g x 单调递减,()'0g x <,所以()g x 在1x =处取得极大值,不合题意. 综上可知,实数a 的取值范围为1a <.【名师点睛】本题主要考查了导数在研究函数单调性、最值上的应用,考的知识点有导数几何意义,导数的应用等,属于中档题.分类讨论时注意不重不漏. 15.(2019·山东高考模拟(理))已知函数()()21ln ,2f x x xg x mx ==. (1)若函数()f x 与()g x 的图象上存在关于原点对称的点,求实数m 的取值范围; (2)设()()()F x f x g x =--,已知()F x 在()0,∞+上存在两个极值点12,x x ,且12x x <,求证:2122x x e >(其中e 为自然对数的底数).【答案】(1)2m e≥-;(2)证明见解析. 【解析】(1)函数21()2g x mx =关于原点对称的函数解析式为212y mx =-.函数()f x 与()g x 的图象上存在关于原点对称的点,等价于方程21ln 2x x mx =-在(0,)+∞有解.即12lnx mx =,2lnx m x ⇒=,令2()lnx g x x=,(0)x >,利用导数研究函数的单调性极值即可得出.(2)2122x x e >等价于122()2ln ln x x +>,等价于12()22ln x x ln >-21()()()ln 2F x f x g x x x mx =--=--,()1ln F x x mx '=---,(0)x >,再利用导数研究函数的单调性、极值,利用分析法即可得证. 【详解】(1)函数()f x 与()g x 的图像上存在关于原点对称的点,即21()()2g x m x --=--的图像与函数()ln f x x x =的图像有交点, 即21()ln 2m x x x --=在(0,)+∞上有解. 即1ln 2x m x=-在(0,)+∞上有解. 设ln ()x x x ϕ=-,(0x >),则2ln 1()x x xϕ'-= 当(0,)x e ∈时,()x ϕ为减函数;当(,)x e ∈+∞时,()x ϕ为增函数,所以min 1()()x e e ϕϕ==-,即2m e≥-. (2)证明:()()21212122ln 2ln 2ln 2ln 2x x e x x x x ⇔+>⇔>->. 可得()()()21ln 2F x f x g x x x mx =--=--, ()1ln F x x mx '=---,()0x >,∵()F x 在()0+∞,上存在两个极值点1x ,2x ,且12x x <, ∵()1ln h x x mx =++,()0x >,在()0+∞,上存在两个零点1x ,2x ,且12x x <, ∵11ln 1x mx =--,22ln 1x mx =--.∵()()1212ln 2x x m x x =-+-,()1122lnx m x x x =--.∵()1121221112221ln 1x ln x x x x x x x x x x x ++==--,令()12 01x t x =∈,,则()121ln ln 1t x x t t +=-, 要证明:()12ln 2ln 2x x >-.即证明:()1ln 2ln 2,011t t t t +>-∈-,, 即证明:()()1ln 2ln 20,011t t t t ---⋅<∈+,. 令()()()1220,011t h t lnt ln t t -=--⋅<∈+,,()10h =. ()()()()()()22222122ln 21212()()ln 22ln 20111t t t t h t t t t t t t +---+'=--⋅==>+++. ∵函数()h t 在()01t ∈,上单调递增.∵()()10h t h <=,即1ln 2ln 21t t t +>--,()01t ∈,成立.∵2x 1x 2>e 2成立. 【名师点睛】本题考查了利用导数研究函数的单调性极值与最值、方程与不等式的解法、等价转化方法、分析法,考查了推理能力与计算能力,属于难题.。

2020高考全国二卷理科数学试题分析解析解读

2020高考全国二卷理科数学试题分析解析解读

2020高考全国二卷理科数学试题分析解析解读2020年高考数学试题重点考查了数学学科主干的内容,聚焦关键能力和数学素养的考查,注重数学应用价值和创新意识培养,以及数学建模。

试题体现了考主干知识、考基本能力、考核心素养,重视思维、关注应用、鼓励创新的指导思想,很好的体现了高考评价体系“一核、四层、四翼”的内涵和要求。

相较于2018年、2019年的试题,2020年理科数学试题总体结构变化很大,难度也明显加大,题目文字阅读量增多。

主观题在内容布局和考查难度上进行了较大的改变,解析几何解答题位置提前到19题,难度下降,放弃了直线和曲线位置关系的考察。

今年试题突显了数学学科素养的导向,注重基本能力的考查,全面覆盖了基础知识,增强了综合性及应用性,以社会生活中真实情境作为问题的载体,贴近实际,联系社会生活,在数学教育和评价中真正的落实了“立德树人”的根本任务。

2020年高考数学Ⅱ卷试题聚焦主干知识,突出核心素养,注重对高中基础内容的全面考查。

集合、三角、概率、数列、解析几何、立体几何、函数、平面向量、排列组合、复数等内容在选择题和填空题中得到了有效的考查。

试卷强调对主干内容的重点考查,体现了全面性、基础性和综合性的考查要求。

在解答题中重点考查了解三角形、概率统计、圆锥曲线、立体几何、函数与导数等主干内容。

其中解答题18题考察了相关系数,为了实现平稳过渡,对于相关系数的考察并不难。

试卷联系生活实际,建立数学模型,突显了数学应用价值和创新意识培养的重要性。

填空压轴题为复合命题真值判断和立体几何结合问题,这也是首次把简易逻辑放到压轴题位置。

总体来说,2020年高考数学试题体现了考核主干知识、基本能力和核心素养,注重思维、应用和创新的指导思想,符合高考评价体系“一核、四层、四翼”的内涵和要求。

2020年数学高考试题设计了真实的问题情境,与实际紧密联系,具有鲜明的时代特色。

例如,高考理科Ⅱ卷客观题的第(3)题以新冠肺炎疫情为问题背景,以志愿服务为问题情境设计题目,旨在宣传引领舆论导向,服务发展大局,传播正能量,对高中生进行爱国主义教育。

2020年高考理数全国卷2 试题详解

2020年高考理数全国卷2 试题详解
∴ 3 4k 2 4 4k ,k Z ,
此时 2 的终边落在第三、四象限及 y 轴的非正半轴上,∴ sin 2 0 ,故选 D.
方法二、当
6
时, cos 2
cos
3
0 ,选项
B
错误;

3
时,
cos
2
cos
2 3
0
,选项
A
错误;
由 在第四象限可得: sin 0, cos 0 ,则 sin 2 2sin cos 0 ,选项
2020 年高考数学全国卷 2
理数
一、选择题:本题共 12 小题,每小题 5 分,共 60 分.在每小题给出的四个选项中,只有一
项是符合题目要求的.
1.已知集合U 2,1,0,1, 2,3, A 1,0,1, B 1, 2 则 ðU (A B) ( )
A. {−2,3} B. {−2,2,3} C. {−2,−1,0,3} D. {−2,−1,0,2,3}
S27
27(9
9 27) 2
3402
.故选
C
5.若过点(2,1)的圆与两坐标轴都相切,则圆心到直线 2x y 3 0 的距离为( )
A. 5 5
B. 2 5 5
C. 3 5 5
【答案】B
【解析】由于圆上的点 2,1 在第一象限,
D. 4 5 5
若圆心不在第一象限, 则圆与至少与一条坐标轴相交,不合乎题意,所以圆心必在第一象限,
900 4.北京天坛的圜丘坛为古代祭天的场所,分上、中、下三层,上
层中心有一块圆形石板(称为天心石),环绕天心石砌 9 块扇面形
石板构成第一环,向外每环依次增加 9 块,下一层的第一环比上 一层的最后一环多 9 块,向外每环依次也增加 9 块,已知每层环

2020年全国2卷数学压轴题剖析

2020年全国2卷数学压轴题剖析

2020年全国2卷关键试题分析9.设函数12ln 12ln )(--+=x x x f ,则)(x f A .是偶函数,且在),21(+∞单调递增B .是奇函数,且在21,21(-单调递减C .是偶函数,且在)21,(--∞单调递增D .是奇函数,且在21,(--∞单调递减【点评】这是《高观点下函数导数压轴题的系统性解读》要求背住的奇函数,当)21,21(-∈x 时,)21ln()12ln(12ln 12ln )(x x x x x f --+=--+=,因为)21ln(),12ln(x y x y --=+=都单增,B 错。

选D.11.若y x y x ---<-3322,则()A.0)1ln(>+-x y B .0)1ln(<+-x y C .0ln >-y x D .0ln <-y x 【解析】独立变量,分别放两边,构造相同的结构,即y y x x ---<-3232。

易得x x x f --=32)(单增,所以y x <,知A 正确.12.0-1周期序列在通信技术中有着重要应用,若序列⋯⋯n a a a 21满足),2,1)(1,0(⋯=∈i a i ,且存在正整数m ,使得),2,1(⋯==+i a a i m i 成立,则称其为0-1周期序列,并称满足),2,1(⋯==+i a a i m i 的最小正整数m 为这个序列的周期.对于周期为m 的0-1序列⋯⋯n a a a 21,∑=+-⋯==m i k i i m k aa m k C 1)1,,2,1(1)(是描述其性质的重要指标.下列周期为5的0-1序列中,满足)4,3,2,1(51)(=≤k k C 的序列是A .11010…B .11011…C .10001…D .11001…【解析】严格按照定义,一一检验,可得C 正确。

直观判断1越少,)(k C 越小。

16.设有下列四个命题:1P :两两相交且不过同一点的三条直线必在同一平面内.2P :过空间中任意三点有且仅有一个平面.3P :若空间两条直线不相交,则这两条直线平行.4P :若直线⊂l 平面α,直线⊥m 平面α,则l m ⊥.则下述命题中所有真命题的序号是________.①41p p ∧②21p p ∧③32p p ∨⌝④43p p ⌝∨⌝【答案】①③④21.(12分)已知函数()2sin sin 2f x x x =.(1)讨论()f x 在区间()0,π的单调性;(2)证明:()8f x ≤;(3)设*n ∈N ,证明:22223sin sin 2sin 4sin 24nn n x x x x ≤ .【分析】(1)()2'2sin cos sin 22sin cos 2sin sin 3f x x x x x x x x =+=,所以在0,3π⎛⎫ ⎪⎝⎭单增,2,33ππ⎛⎫ ⎪⎝⎭单减,2,3ππ⎛⎫ ⎪⎝⎭单增;(2)注意到()()f x f x π+=,所以周期为π,只需考虑()0,x π∈,由(1)知2()max (0),(),(),()33f x f f f f πππ⎧⎫≤=⎨⎬⎩⎭,(3)为了利用第(2)问,缩小条件和结论的差异,对条件的常数进行变形,得3223sin sin 2()4x x ≤,结论可变为233222223sin sin 2sin 4sin 2()4n x x x x ⎡⎤≤⎢⎥⎣⎦,即证:3333323sin sin 2sin 4sin 2()4n n x x x x ⎡⎤≤⎢⎥⎣⎦ 。

2020年高考理科数学(2卷):答案详细解析(word版)

2020年高考理科数学(2卷):答案详细解析(word版)

2020年普通高等学校招生全国统一考试理科数学(II 卷)答案详解一、选择题:本题共12小题,每小题5分,共60分. 在每小题给出的四个选项中,有一项是符合题目要求的.1. (集合)已知集合{}2,1,0,1,2,3U =--,{}1,0,1A =-,{}1,2B =,则()C U A B =A. {}2,3-B. {}2,2,3-C. {}2,1,0,3--D. {}2,1,0,2,3--【解析】∵{1,0,1,2}A B =-,∴(){}C 2,3U AB =-. 【答案】A2. (三角函数)若α为第四象限角,则A. cos20α>B. cos20α<C. sin 20α>D. sin 20α<【解析】α为第四象限角,即π2π2π2k k α-+<<,∴π4π24πk k α-+<<, ∴2α是第三或第四象限角,∴sin 20α<.【答案】D3. (概率统计,同文3)在新冠肺炎疫情防控期间,某超市开通网上销售业务,每天能完成1200份订单的配货,由于订单量大幅增加,导致订单积压,为解决困难,许多志愿者踊跃报名参加配货工作,已知该超市某日积压500份订单未配货,预计第二天的新订单超过1600份的概率为0.05. 志愿者每人每天能完成50份订单的配货,为使第二天完成积压订单及当日订单的配货的概率不小于0.95,则至少需要志愿者A.10名B.18名C.24名D.32名【解析】该超市某日积压500份订单未配货,次日新订单不超过1600份的概率为0.95,共2100份,其中1200份不需要志愿者,志愿者只需负责900份,故需要900÷50=18名志愿者.【答案】B4.(数列)北京天坛的圜丘坛为古代祭天的场所,分上、中、下三层,上层中心有一块圆形石板(称为天心石),环绕天心石砌9块扇面形石板构成第一环,向外每环依次增加9块. 下一层的第一环比上一层的最后一环多9块,向外每环依次增加9块. 已知每层环数相同,且下层比中层多729块,则三层共有扇面形石板(不含天心石)A .3699块B .3474块C .3402块D .3339块【解析】设每一层有n 环,由题意可知从内到外每环的扇面形石板块数之间构成等差数列,且19a =,9d =,由等差数列性质可知,n S 、2n n S S -、32n n S S -也构成等差数列,且公差229d n d n '==.因下层比中层多729块,故有2322()()9729n n n n S S S S n ---==,解得9n =. 因此三层共有扇面形石板的块数为327127262726==272799=340222n S S a d ⨯⨯+=⨯+⨯. 【答案】C5. (解析几何,同文8)若过点(2,1)的圆与两坐标轴都相切,则圆心到直线230x y --=的距离为A .5 B. 25 C. 35 D. 45【解析】如图A5所示,设圆的方程为222()()x a y b r -+-=,∵ 圆过点(2, 1)且与两坐标轴都相切,∴ 222(2)(1)a b r a b r ==⎧⎨-+-=⎩,解得1a b r ===或5a b r ===, 即圆心坐标为(1,1)或(5,5),圆心到直线230x y --=22211325521⨯--+或22255325=521⨯--+.图A5【答案】B6.(数列)数列()n a 中,12a =,m n m n a a a +=,若1551210...22k k k a a a ++++++=-,则k =A. 2B. 3C. 4D. 5【解析】∵m n m n a a a +=,∴211211n k n k k k a a a a a a a +--===,故有1210111551210...(222)(22)22k k k k k a a a a a ++++++=+++=-=-,∴42k a =又∵2111211112n n n n n n a a a a a a a a ---======,∴ 422k k a ==,∴4k =.【答案】C7.(立体几何)下图是一个多面体的三视图,这个多面体某条棱的一个端点在正视图中对应的点为M,在俯视图中对应的点为N,则该端点在侧视图中对应的点为A.E B.F C.G D.H【解析】由三视图的特点,如图A7所示,该端点在侧视图中对应的点为E.图A7【答案】A8.(解析几何,同文9)设O为坐标原点,直线x a=与双曲线C:22221 x ya b-=(a>0,b>0)的两条渐近线分别交于D,E两点,若ODE∆的面积为8,则C的焦距的最小值为A.4B.8C.16D.32【解析】如图A8所示,双曲线C:22221x ya b-=(a>0,b>0)的渐近线为by xa=±,由题意可知,(,)D a b ,(,)E a b -,∴ 1282ODE S a b ab ∆=⋅==, ∴ 焦距22226422248c a b a a =+=+≥⨯=,当且仅当22a =时,等号成立. 故C 的焦距的最小值为8.图A8【答案】B9.(函数)设函数()ln |21|ln |21|f x x x =+--,则()f xA.是偶函数,且在1(,)2+∞单调递增 B.是奇函数,且在11(,)22-单调递减 C.是偶函数,且在1(,)2-∞-单调递增 D.是奇函数,且在1(,)2-∞-单调递减 【解析】∵()ln |21|ln |21|ln |21|ln |21|()f x x x x x f x -=-+---=--+=-,∴()f x 是奇函数,∵()ln ||g x x =,1()g x x '=,(即ln ||x 与ln x ,二者的导函数相同) ∴224()2121(21)(21)f x x x x x -'=-=+--+, 当1(,)2x ∈-∞-时,()0f x '<,()f x 在1(,)2-∞-单调递减. 当11()22x ∈-,时,()0f x '>,()f x 在1(,)2-∞-单调递增.当1()2x ∈+∞,时,()0f x '<,()f x 在1(,)2-∞-单调递减. 【答案】D10.(立体几何,同文11)已知△ABC 是面积为934的等边三角形,且其顶点都在球O 的球面上,若球O 的表面积为16π,则O 到平面ABC 的距离为A .3B .32 C .1 D .32【解析】由题意可知239344ABC S AB ∆==,∴3AB =, 如图A10所示,设球O 的半径为R ,则24π16πR =,∴2R =,设O 在△ABC 上的射影为O 1,则O 1是△ABC 的外接圆的圆心, 故123333O A == O 到平面ABC 的距离22111OO R O A =-=.图A10【答案】C11. (函数,同文12)若2233x y x y ---<-,则A. ln(1)0y x -+>B. ln(1)0y x -+<C. ln ||0x y ->D. ln ||0x y -<【解析】2233x y x y ---<-可化为2323x x y y ---<-,设1()2323x x x x f x -⎛⎫=-=- ⎪⎝⎭,由指数函数的性质易知()f x 在R 上单调递增,∵2323x x y y ---<-,∴ x y <,∴0y x ->,∴11y x -+>,∴In(1)0y x -+>.【答案】A12. (概率统计)0-1周期序列在通信技术中有着重要应用,若序列12...n a a a 满足 {}0,1(1,2,...)i a i ∈=,且存在正整数m ,使得(1,2,...)i m i a a i +==成立,则称其为0-1周期序列,并满足(1,2,...)i m i a a i +==的最小正整数m 为这个序列的周期,对于周期为m 的0-1序列12...n a a a ,11()(1,2,...1)i m i k i C k a a k m m +===-∑是描述其性质的重要指标,下列周期为5的0-1的序列中,满足1()(1,2,3,4)5C k k ≤=的序列是A. 11010...B. 11011...C. 10001...D. 11001...【解析】解法一(计数思想):由5111()(1,2,3,4)55i i k i C k a a k +==≤=∑,可得511i i k i a a +=≤∑. 因0=1i i k a a +⎧⎨⎩,故对于每一个(1,2,3,4)k k =,1i i k a a +=的个数不超过1,所以对于所有的(1,2,3,4)k k =,1i i k a a +=的总个数不能超过4.A 选项:1i i k a a +=的个数为236A =,故A 选项不符合题意.B 选项:1i i k a a +=的个数为2412A =,故B 选项不符合题意. D 选项:1i i k a a +=的个数为236A =,故D 选项不符合题意.C 选项:1i i k a a +=的个数为222A =,即151(4)a a k ==和511(1)a a k ==,因此可推出1(1)(4)5C C ==,(2)(3)0C C ==,故C 选项符合题意. 解法二(排除法): 由解法一可知,对于每一个(1,2,3,4)k k =,1i i k a a +=的个数不超过1.A 选项:当2k =时,241a a =,411a a =,故A 选项不符合题意.B 选项:当1k =时,121a a =,451a a =,故B 选项不符合题意.D 选项:当1k =时,121a a =,511a a =,故D 选项不符合题意.C 选项:序列的一个周期内只有两个1,1i i k a a +=的情况只有151(4)a a k ==和511(1)a a k ==,因此可推出1(1)(4)5C C ==,(2)(3)0C C ==,故C 选项符合题意.解法三(答案验证法):按照题设的定义11()(1,2,...1)i mi k i C k a a k m m +===-∑,逐个验证答案,使用排除法,即可得到正确选项. 如A 选项,121(2)(01010)=555C =++++>,排除A 选项,其余的这里不再赘述. 【答案】C二、填空题:本题共4小题,每小题5分,共20分.13.(平面向量)已知单位向量a ,b 的夹角为45°,k -a b 与a 垂直,则k =_______. 【解析】∵()ka b a -⊥,∴22()02ka b a ka a b k -⋅=-⋅=-=,∴22=k . 【答案】22 14.(概率统计)4名同学到3个小区参加垃圾分类宣传活动,每名同学只去1个小区,每个小区至少安排1名同学,则不同的安排方法共有 种.【解析】根据题意,先把4名同学分为3组,其中1组有两人,2组各有一人,即从4名同学中任选两人即可,故有24C 种选法;将分成的3组同学安排到3个小区,共有33A 种方法;所以不同的安排方法共有234336=C A 种.【答案】36 15.(复数)设复数1z ,2z 满足122z z ==,则123z z i +,则12z z -=_______.【解析】解法一:在复平面内,用向量思想求解,原问题等价于:平面向量b a ,满足2||||==b a ,且,1)3(=+b a ,求||b a -.∵2222||2||2||||b a b a b a +=-++,∴16||42=-+b a ,∴12||2=-b a ,∴32||=-b a . 即1223-=z z解法二:在复平面内,如图A15所示,因12122==+=z z z z ,则1z ,2z ,12+z z 组成一个等边三角形,所以1z ,2z 之间的夹角为120°,所以22o 1212122cos120=44423-=+-++=z z z z z z .图A15【答案】316.(立体几何,同文16)设有下列4个命题:1P :两两相交且不过同一点的三条直线必在同一平面内.2P :过空间中任意三点有且仅有一个平面.3P :若空间两条直线不相交,则这两条直线平行.4p :若直线l ⊂平面α,直线m ⊥平面α,则m l ⊥.则下述命题中所有真命题的序号是_________① 14p p ∧ ② 12p p ∧ ③ 23p p ⌝∨ ④ 34p p ⌝∨⌝【解析】由公理2可知,p 1为真,p 2为假,2p ⌝为真;若空间两条直线不相交,则这两条直线可能平行,也可能异面,所以p 3为假,3p ⌝为真;由线面垂直的定义可知p 4为真;所以①14p p ∧为真命题,②12p p ∧为假命题,③23p p ⌝∨为真命题,④34p p ⌝∨⌝为真命题,故真命题的序号是①③④.【答案】①③④三、解答题:共70分. 解答应写出文字说明、证明过程或演算步骤. 第17~21题为必考题,每个试题考生都必须作答. 第22、23题为选考题,考生根据要求作答.(一)必考题,共60分.17.(12分)(三角函数)ABC ∆中,222sin sin sin sin sin A B C B C --=,(1)求A ;(2)若3BC =,求ABC ∆周长的最大值.【解析】(1)由正弦定理和已知条件得222BC AC AB AC AB --=⋅,△ 由余弦定理得2222cos BC AC AB AC AB A =+-⋅, △ 由△,△得1cos 2A =-. 因为0πA <<,所以2π3A =. (2)由正弦定理及(1)得23sin sin sin AC AB BC B C A ===,从而 23AC B =,3π)3cos 3AB A B B B =--=-. 故π333cos 323)3BC AC AB B B B ++=+=++. 又π03B <<,所以当π6B =时,ABC △周长取得最大值33+. 18.(12分)(概率统计,同文18)某沙漠地区经过治理,生态系统得到很大改善,野生动物数量有所增加,为调查该地区某种野生动物的数量,将其分为面积相近的200个地块,从这些地块中用简单随机抽样的方法抽取20个作为样区,调查得到样本数据()()1,220i i x y i =⋅⋅⋅,,,,其中i x 和i y 分别表示第i 个样区的植物覆盖面积(单位:公顷)和这种野生动物的数量,并计算得()()()()22202020202011111601200-80-9000--800ii i i i i i i i i i xy x xy yx x y y ==========∑∑∑∑∑,,,,.(1)求该地区这种野生动物数量的估计值(这种野生动物数量的估计值等于样区这种野生动物数量的平均数乘以地块数);(2)求样本()(),1,2,,20i i x y i =⋯的相关系数(精确到0.01);(3)根据现有统计资料,各地块间植物覆盖面积差异很大,为提高样本的代表性以获得该地区这种野生动物数量更准确的估计,请给出一种你认为更合理的抽样方法,并说明理由。

【2020精品高考提分卷】全国卷Ⅱ高考压轴卷 数学 Word版含解析

【2020精品高考提分卷】全国卷Ⅱ高考压轴卷  数学  Word版含解析

2020全国卷Ⅱ高考压轴卷数学一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知复数z 满足11i 12z z -=+,则复数z 在复平面内对应点在( ) A .第一象限B .第二象限C .第三象限D .第四象限2.已知集合{}06M x x =≤≤, {}232x N x =≤,则M N ⋃=( )A. (],6-∞B. (],5-∞C. []0,6D. []0,53.已知向量2=a ,1=b ,()22⋅-=a a b ,则a 与b 的夹角为( )A .30︒B .60︒C .90︒D .150︒4.《莱因德纸草书》是世界上最古老的数学著作之一,书中有这样一道题目:把100个面包分给5个人,使每个人所得面包成等差数列,且较大的三份之和的17等于较小的两份之和,问最小的一份为( )A.65 B.611 C. 35 D. 310 5.若是2和8的等比中项,则圆锥曲线的离心率是( )A .B .C .或D .或【答案】D6. 《九章算术》中,将底面是直角三角形的直三棱柱称之为“堑堵”,已知某“堑堵”的三视图如图所示,则该“堑堵”的表面积为( )A .4B.6+C.4+ D .2n7.在ABC ∆中,内角,,A B C 所对的边分别为,,a b c ,若sin 1sin 2B C =, ()2213cos 2ab B BA BC -=⋅,则角C =( ) A.6π B. 3π C. 2π D. 3π或2π8. 如图为函数()y f x =的图象,则该函数可能为( )A .sin xy x=B .cos xy x=C .sin ||xy x =D .|sin |x y x=9.执行如图所示程序框图,若输出的S 值为20-,在条件框内应填写( )A .3?i >B .4?i <C .4?i >D .5?i <10.已知抛物线()220y px p =>的焦点为F ,准线l 与x 轴交于点A ,点P 在抛物线上,点P 到准线l 的距离为d ,点O 关于准线l 的对称点为点B , BP 交y 轴于点M ,若BP a BM =, 23OM d =,则实数a 的值是( )A.34 B. 12 C. 23 D. 3211.已知不等式组20240x y x y y x y m-≥+≤≥⎧⎪+⎨≤⎪⎪⎪⎩表示的平面区域为M ,若m 是整数,且平面区域M内的整点(),x y 恰有3个(其中整点是指横、纵坐标都是整数的点),则m 的值是( )A. 1B. 2C. 3D. 412.已知函数()f x 的导函数为()f x ',且满足()32123f x x ax bx =+++, ()()24f x f x +='-',若函数()6ln 2f x x x ≥+恒成立,则实数b 的取值范围为( )A. [)64ln3,++∞B. [)5ln5,++∞C. [)66ln6,++∞D. [)4ln2,++∞ 二、填空题:本大题共4小题,每小题5分.13.某学校选修网球课程的学生中,高一、高二、高三年级分别有50名、40名、40名.现用分层抽样的方法在这130名学生中抽取一个样本,已知在高二年级学生中抽取了8名,则在高一年级学生中应抽取的人数为_______.14.设P 为曲线2:23C y x x =++上的点,且曲线C 在点P 处切线倾斜角的取值范围为0,4⎡⎤⎢⎥⎣⎦π,则点P 横坐标的取值范围为 . 15.已知正四棱锥P ABCD -内接于半径为94的球O 中(且球心O 在该棱锥内部),底面ABCD 的边长为2,则点A 到平面PBC 的距离是__________.16.若双曲线()222210,0x y a b a b-=>>上存在一点P 满足以OP 为边长的正三角形的内切圆的面积等于236c π(其中O 为坐标原点, c 为双曲线的半焦距),则双曲线的离心率的取值范围是 .三、解答题:解答应写出文字说明、证明过程或演算步骤.17.(本小满分题12分)设数列{}n a 的前n 项和为n S ,1110,910n n a a S +==+. (1)求证:{lg }n a 是等差数列; (2)设n T 是数列13{}(lg )(lg )n n a a +的前n 项和,求使21(5)4n T m m >-对所有的*n N ∈都成立的最大正整数m 的值.进入11月份,香港大学自主招生开始报名,“五校联盟”统一对五校高三学生进行综合素质测试,在所有参加测试的学生中随机抽取了部分学生的成绩,得到如图所示的成绩频率分布直方图:(1)估计五校学生综合素质成绩的平均值;(2)某校决定从本校综合素质成绩排名前6名同学中,推荐3人参加自主招生考试,若已知6名同学中有4名理科生,2名文科生,试求这2人中含文科生的概率.19.(本题满分12分)如图,在三棱锥P ADE -中, 4AD =, AP = AP ⊥底面ADE ,以AD 为直径的圆经过点E .(1)求证: DE ⊥平面PAE ;(2)若60DAE ∠=︒,过直线AD 作三棱锥P ADE -的截面ADF 交PE 于点F ,且45FAE ∠=︒,求截面ADF 分三棱锥P ADE -所成的两部分的体积之比.已知椭圆C 的两个焦点分别为F 1(-10,0),F 2(10,0),且椭圆C 过点P (3,2). (1)求椭圆C 的标准方程;(2)与直线OP 平行的直线交椭圆C 于A ,B 两点,求△P AB 面积的最大值.21. (本小题满分12分)已知函数()e x f x ax =-(a 为常数)的图象与y 轴交于点A ,曲线()y f x =在点A 处的切线斜率为2-.(1)求a 的值及函数()f x 的单调区间;(2)设()231g x x x =-+,证明:当0x >时,()()f x g x >恒成立.22.(本小题满分10分)【选修4-4:坐标系与参数方程】在平面直角坐标系xOy 中,以O 为极点,x 轴的非负半轴为极轴建立极坐标系.已知曲线M 的参数方程为1cos 1sin x y ϕϕ=+=+⎧⎨⎩(ϕ为参数),过原点O 且倾斜角为α的直线l 交M 于A 、B 两点.(1)求l 和M 的极坐标方程;(2)当4π0,α⎛⎤∈ ⎥⎝⎦时,求OA OB +的取值范围.23.(本小题满分10分)【选修4-5:不等式选讲】 已知函数()121f x x x =++-. (1)解不等式()2f x x ≤+;(2)若()3231g x x m x =-+-,对1x ∀∈R ,2x ∃∈R ,使()()12f x g x =成立,求实数m 的取值范围.2020全国卷Ⅱ高考压轴卷数学答案一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.【答案】D 【解析】设复数i z a b =+,(),a b ∈R ,则i z a b =-,因为11i 12z z -=+,所以()()211i z z -=-,所以2(1)2i a b --()1i a b =+-,所以可得2221a bb a -=-⎧⎨-=+⎩,解得5343a b ⎧=⎪⎪⎨⎪=-⎪⎩,所以54i 33z =-,所以复数z 在复平面内对应点54,33⎛⎫- ⎪⎝⎭在第四象限上.故选D .2【答案】A【解析】 因为{}06M x x =≤≤, {}232{|5}x N x x x =≤=≤, 所以{|6}M N x x ⋃=≤,故选A. 3.【答案】B【解析】△()222422⋅-=-⋅=-⋅=a a b a a b a b ,△1⋅=a b .设a 与b 的夹角为θ,则1cos 2θ⋅==a b a b ,又0180θ︒≤≤︒,△60θ=︒,即a 与b 的夹角为60︒. 4.【答案】C【解析】分析:根据已知条件,设等差数列的公差为d ,将已知条件转化为等式,求出等差数列的首项和公差,再得出答案。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2020 年高考理科数学全国卷二导数压轴题解析
已知函数2()x f x e ax =-.
(1)若1a =,证明:当0x ≥时,()1f x ≥. (2)若()f x 在(0,)+∞只有一个零点,求a . 题目分析:
本题主要通过函数的性质证明不等式以及判断函数零点的问题考察学生对于函数单调性以及零点存在定理性的应用,综合考察学生化归与分类讨论的数学思想,题目设置相对较易,利于选拔不同能力层次的学生。

第1小问,通过对函数以及其导函数的单调性以及值域判断即可求解。

官方标准答案中通过()()x g x e f x -=的变形化成2()x ax bx c e C -+++的形式,这种形式的函数求导之后仍为2()x ax bx c e -++这种形式的函数,指数函数的系数为代数函数,非常容易求解零点,并且这种变形并不影响函数零点的变化。

这种变形思想值得引起注意,对以后导数命题有着很大的指引作用。

但是,这种变形对大多数高考考生而言很难想到。

因此,以下求解针对函数()f x 本身以及其导函数的单调性和零点问题进行讨论,始终贯穿最基本的导函数正负号与原函数单调性的关系以及零点存在性定理这些高中阶段的知识点,力求完整的解答该类题目。

题目解答:
(1)若1a =,2()x f x e x =-,()2x f x e x '=-,()2x f x e ''=-.
当[0,ln 2)x ∈时,()0f x ''<,()f x '单调递减;当(ln 2,)x ∈+∞时,()0f x ''>,()f x '单调递增; 所以()(ln 2)22ln 20f x f ''≥=->,从而()f x 在[0,)+∞单调递增;所以()(0)1f x f ≥=,得证. (2)当0a ≤时,()0f x >恒成立,无零点,不合题意.
当0a >时,()2x f x e ax '=-,()2x f x e a ''=-.
当[0,ln 2)x a ∈时,()0f x ''<,()f x '单调递减;当(ln 2,)x a ∈+∞时,()0f x ''>,()f x '单调递增;所以()(ln 2)2(1ln 2)f x f a a a ''≥=-.
当02
e
a <≤
时,()0f x '≥,从而()f x 在[0,)+∞单调递增,()(0)1f x f ≥=,在(0,)+∞无零点,不合题意.
当2
e
a >
时,易证2ln 2a a >. (0)10f '=>,(ln 2)0f a '<,由(1)可知,22(2)=(2)10a f a e a '->>.
由零点存在性定理可知必然存在一点1(0,ln 2)x a ∈使得1()0f x '=,2(ln 22)x a a ∈,使得2()0f x '=;
所以当1(0,)x x ∈时,()0f x '>,()f x 单调递增,12(,)x x x ∈,
()0f x '<,()f x 单调递减,2(,)x x ∈+∞,()0f x '>,()f x 单调递增,
即当2x x =时()f x 取得极小值
22
22
()x f x e ax =-由2()0f x '=得
2
2
2x e a x =
从而
2
2
222
2()(2)
2
x x e f x e ax x =-=-当22x =时,即2
4
e a =时,极小值2()0
f x =恰好成立,此时在()f x 在(0,)+∞只有一个零点
2x =,满足题意.
当224e e a <<时,即212x <<时(易证2x
e x
在(1,)+∞单调递增),极小值2()0f x >,此时在(0,)+∞无零点,不合题意.
x
当24e a >时,即22x >时,(0)10f =>,2()0f x <, 32(3)(3)0a f a e a a =->(易证3
1
3x e x >恒成立),由零点存在性定理可知()f x 在区间2(0,)x 和2(,3)x a 各有一根,不合题意.
综上所述,2
4
e a =.。

相关文档
最新文档