变量与函数知识点

变量与函数知识点
变量与函数知识点

变量与函数知识点

【篇一:变量与函数知识点】

Ⅱ.图象法:用图象表示两个变量之间的函数关系,这种表示函数的

方法叫做图象法.它的优点是能够形象直观地显示出数据的变化规律,为研究函数的性质提供方便,但所画出的图象是近似的、局部的,所以由图象确定的函数往往不够准确.

例如:长春市某天气温随时间变化的图象如图11-1所示,从图象

上能看出温度随时间变化的情况,时间是自变量.

Ⅲ.解析法:用自变量x的各种数学运算构成的式子表示函数y的方

法叫做解析法.它的优点是简明扼要、规范准确,便于理解函数的

性质,但并非适用于所有函数.

例如:正方形的面积用s表示,正方形的边长用a表示,则正方形

的面积公式为s=a2;若周长用p表示,则周长的公式为p=4a,这

就是表示正方形的边长与面积和周长的函数关系,其中正方形的边

长a是自变量,面积s和周长p是因变量.

知识点4 函数关系式

Ⅰ.用来表示函数关系的等式叫做函数关系式,也称为函数解析式.

Ⅱ.我们应从以下几个方面来理解函数关系式的概念:

(1)函数关系式是等式.例如:y=2x+3就是一个函数关系式,我

们可以说代数式2x+3是x的函数,但不能说2x+3是函数关系式.(2)函数关系式中指明了哪个是自变量,哪个是函数.通常等式右

边的代数式中的变量是自变量,等式左边的一个变量表示函数.例如:y=2x2+3中,y是x的函数,x是自变量.

(3)书写函数关系式是有顺序的.例如:y=x-3表示y是x的函数;若x=y+3,则表示x是y的函数.也就是说,求y关于x的函数关

系式,必须用自变量x的代数式表示y,即得到的等式的左边是一个

变量y,右边是一个含x的代数式.

知识点5 自变量的取值范围的确定

Ⅰ.函数自变量的取值范围的确定必须考虑两个方面:首先,自变量

的取值必须使含自变量的代数式有意义;其次,自变量的取值应使

实际问题有意义.这两个方面缺一不可,尤其是后者,同学们在学

习过程中特别容易忽略.因此,在分析具体问题时,一定要细致周

到地从多方面考虑.

例如:y=中,自变量x在代数式中,要使有意义,则自变量的取值范围是x≠0.

Ⅱ.在函数关系式中,自变量的取值要使函数关系有意义,可分下列几种情况:

(1)当函数关系式是一个只含有一个自变量的整式时,自变量的取值范围是全体实数.例如:y=2x-1中,自变量x的取值范围是全体实数.

(3)当函数关系式是分式时,自变量的取值范围是使分母不为零的实数.

(4)当函数关系式是二次根式时,自变量的取值范围是使被开方数不小于零的实数.

(5)自变量的取值范围可以是有限或无限的,也可以是几个数或单独的一个数.例如:y=中,自变量x的取值范围是x=0;y=中,自变量x的取值范围是x=3.

(6)在一个函数关系式中,当自变量x同时含在分式和二次根式中时,函数自变量的取值范围是它们的公共解.

知识点6 函数值

函数值是指自变量在数值范围内取某个值时,因变量与之对应的确定的值

例如:在正方形的面积公式s=a2中,若a=2;则s=4;若a=3,则s=9,这说明4是当a=2时的函数值,9是当a=3时的函数值.典例剖析

基本概念题

例1 下列变量之间的关系不是函数关系的是()

a.长方形的宽一定,其长与面积 b.正方形的周长与面积

c.等腰三角形的底边与面积 d.球的体积与球的半径

答案:c

基础知识应用题

本节有关的基础知识包括:(1)确定函数关系;(2)求函数值;(3)求函数关系的解析式.

例2 如图11-2所示,图中有几个变量?你能将其中某个变量看成是另一个变量的函数吗?如果能,求出当t=12分时对应的路程s.[分析] 从图中可以看出,有两个变量t与s,而s=vt,v是常量,所以t与s构成函数关系,从图中还可以看出,当t=3分时,s=20,这说明走20米的路程用了3分,则速度v=米/分.

解:从图中看出,有两个变量t和s.

如果把t看作自变量,s看作因变量,

则路程s,速度v,时间t之间的关系式为s=vt.

从图中看出,每取一个t值,都有一个s值与之对应,

当t=3时,s=20,

∴20=3v,∴v=(米/分).

∴s与t之间的关系式为s=t,

∴可以将s看作t的函数.

又∵s=t,

小结要确定函数关系,就要确定两个变量中,哪个是自变量,哪个是因变量,还要注意到其他的量都必须是常量.求函数值的方法有两种,一种是从图中找出来,另一种是用求代数式的值的方法求出来.

综合应用题

本节知识的综合应用包括:(1)由图象分析现象;(2)由现象确定函数关系;(3)培养识图能力.

例3 李奶奶晚饭以后外出散步,碰到老邻居交谈了一会儿,返回途中,在读报栏前看了一会儿报,如图11-3所示的是据此情况画出的图象,请你回答下列问题.

(1)李奶奶是在什么地方碰到老邻居的?交谈了多少时间?

(2)读报栏大约离家多远?

(3)李奶奶在哪段时间走得最快?你是怎么计算的?

(4)图中反映了哪些变量之间的关系?其中哪个是自变量?哪个是因变量?你能将其中某个变量看成是另一个变量的函数吗?

解:(1)李奶奶是在离家600米处碰到老邻居的,交谈了大约10分.

(2)读报栏大约离家300米.

(3)李奶奶在40~45分这段时间内走得最快,这是因为:

④从35分到40分,她在读报栏读报,也就是读报栏离家大约300米的距离;

(4)从图中反映出了李奶奶外出散步时间与离家距离这两个变量之间的关系,其中外出散步时间是自变量,离家距离是因变量,离家距离是散步时间的函数.

小结该题目要求主动观察某些运动变化过程,体会函数的概念,培养利用函数观点认识世界和解决实际问题的能力.

a.从家出发花了一个公共阅报栏,看了一会儿报就回家了

b.从家出发,到了一个公共阅报栏,看了一会儿报后,继续向前走了一段,然后回家了

c.从家出发,一直散步(没有停留),然后回家了

d.从家出发,散了一会儿步,就找同学去了,18分后才开始返回老师评一评从图象上可以看出,每一个时间t都对应一个距离s,当时间在变化,而距离不变时,表示在原地不动,而其他时间对应的距离都在变化,说明此人在运动,当12分时对应的距离是500米,说明此时离家最远,当18分时,对应的距离是o,说明她从出发到返回共用了18分.故正确答案为b项.

探索与创新题

本节知识的探索与创新主要包括:(1)与相关学科的整合;(2)读图和利用图象的预测能力.

例4 王老师讲完“变量与函数”这节知识后,让同学们说出几个实际生活中有函数关系的实例,并指出其中的常量与变量,自变量与因变量及函数.

甲生说:“如果设路程为s(千米),速度为v(千米/时),时间为t(时),当路程s为一定值时,s为常量,v,t为变量,v是自变量,t是因变量,t是v的函数.”

乙生说:“甲生所举实例中,t是自变量,v是因变量,t是v的函数.”

丙生说:“甲生所举实例中,当v为一定值时,v为常量,s,t是变量,t为自变量,s为因变量,s是t的函数.”

你认为哪一位同学的说法正确?

[分析] 由于s=vt,当路程s为一定值时,解得v=或t=,即v是t 的函数或t是v的函数;当v为一定值时,对于s=vt来说,s是t 的函数,因此,甲、乙、丙三位同学的说法都是正确的.

解:三位同学的说法都是正确的.

小结函数的概念是建立在变量的基础之上的,应正确理解常量与变量,有的量在某一个变化过程中是常量,而在另一个变化过程中则为变量,所以,变量与常量是相对的.小学学过的正比例、反比例关系以及物理中的一些数量关系、公式等都是函数关系.

易错与疑难题

例5 画出函数y=x-1的图象.

错解:(1)列表:在自变量x的取值范围内取一些值,并算出对应

的y值;

【篇二:变量与函数知识点】

1.常量和变量

在某变化过程中可以取不同数值的量,叫做变量.在某变化过程中保

持同一数值的量或数,叫常量或常数.

2.函数

设在一个变化过程中有两个变量x与y,如果对于x在某一范围的每

一个值,y都有唯一的值与它对应,那么就说x是自变量,y是x的函数.3.自变量的取值范围

(1)整式:自变量取一切实数.

(2)分式:分母不为零.

(3)偶次方根:被开方数为非负数.

(4)零指数与负整数指数幂:底数不为零.

4.函数值

对于自变量在取值范围内的一个确定的值,如当x=a时,函数有唯一

确定的对应值,这个对应值,叫做x=a时的函数值.

5.函数的表示法

(1)解析法;(2)列表法;(3)图象法.

6.函数的图象

把自变量x的一个值和函数y的对应值分别作为点的横坐标和纵坐标,可以在平面直角坐标系内描出一个点,所有这些点的集合,叫做这个

函数的图象.

由函数解析式画函数图象的步骤:

(1)写出函数解析式及自变量的取值范围;

(2)列表:列表给出自变量与函数的一些对应值;

(3)描点:以表中对应值为坐标,在坐标平面内描出相应的点;

(4)连线:用平滑曲线,按照自变量由小到大的顺序,把所描各点连接起来.

7.一次函数

(1)一次函数

如果y=kx+b(k、b是常数,k≠0),那么y叫做x的一次函数.

特别地,当b=0时,一次函数y=kx+b成为y=kx(k是常数,k≠0),这时,y叫做x的正比例函数.

(2)一次函数的图象

一次函数y=kx+b的图象是一条经过(0,b)点和点的直线.

特别地,正比例函数图象是一条经过原点的直线.

需要说明的是,在平面直角坐标系中,“直线”并不等价于“一次函数y=kx+b(k≠0)的图象”,因为还有直线y=m(此时k=0)和直线x=n(此时k不存在),它们不是一次函数图象.

(3)一次函数的性质

当k>0时,y随x的增大而增大;当k<0时,y随x的增大而减小.直线y=kx+b与y轴的交点坐标为(0,b),与x轴的交点坐标为.

(4)用函数观点看方程(组)与不等式

①任何一元一次方程都可以转化为ax+b=0(a,b为常数,a≠0)的形式,所以解一元一次方程可以转化为:一次函数y=kx+b(k,b为常

数,k≠0),当y=0时,求相应的自变量的值,从图象上看,相当于已知直

线y=kx+b,确定它与x轴交点的横坐标.

②二元一次方程组对应两个一次函数,于是也对应两条直线,从“数”的角度看,解方程组相当于考虑自变量为何值时两个函数值相等,以及这两个函数值是何值;从“形”的角度看,解方程组相当于确定两条直线的交点的坐标.

③任何一元一次不等式都可以转化ax+b>0或ax+b<0(a、b为

常数,a≠0)的形式,解一元一次不等式可以看做:当一次函数值大于0或小于0时,求自变量相应的取值范围.

8.反比例函数

(1)反比例函数

如果 (k是常数,k≠0),那么y叫做x的反比例函数.

(2)反比例函数的图象

反比例函数的图象是双曲线.

(3)反比例函数的性质

①当k>0时,图象的两个分支分别在第一、三象限内,在各自的象限内,y随x的增大而减小.

②当k<0时,图象的两个分支分别在第二、四象限内,在各自的象限内,y随x的增大而增大.

(4)k的两种求法

①若点(x0,y0)在双曲线上,则k=x0y0.

②k的几何意义:

若双曲线上任一点a(x,y),ab⊥x轴于b,则s△aob

(5)正比例函数和反比例函数的交点问题

若正比例函数y=k1x(k1≠0),反比例函数 ,则

当k1k2<0时,两函数图象无交点;

当k1k2>0时,两函数图象有两个交点,坐标分别为由此可知,正反比

例函数的图象若有交点,两交点一定关于原点对称.

1.二次函数

如果y=ax2+bx+c(a,b,c为常数,a≠0),那么y叫做x的二次函数.

几种特殊的二次函数:y=ax2(a≠0);y=ax2+c(ac≠0);y=ax2+

bx(ab≠0);y=a(x-h)2(a≠0).

2.二次函数的图象

二次函数y=ax2+bx+c的图象是对称轴平行于y轴的一条抛物线.由y=ax2(a≠0)的图象,通过平移可得到y=a(x-h)2+k(a≠0)的图象.3.二次函数的性质

二次函数y=ax2+bx+c的性质对应在它的图象上,有如下性质:(1)抛物线y=ax2+bx+c的顶点是 ,对称轴是直线 ,顶点必在对称轴上;

(2)若a>0,抛物线y=ax2+bx+c的开口向上,因此,对于抛物线上的

任意一点(x,y),当x<时,y随x的增大而减小;当x>时,y随x的增

大而增大;当x= ,y有最小值;

若a<0,抛物线y=ax2+bx+c的开口向下,因此,对于抛物线上的任

意一点(x,y),当x< ,y随x的增大而增大;当时,y随x的增大而减小;当x=时,y有最大值;

(3)抛物线y=ax2+bx+c与y轴的交点为(0,c);

(4)在二次函数y=ax2+bx+c中,令y=0可得到抛物线y=ax2+

bx+c与x轴交点的情况:

当????=b2-4ac>0,抛物线y=ax2+bx+c与x轴有两个不同的

公共点,它们的坐标分别是和 ,这两点的距离为;当????=0时,抛物线y=ax2+bx+c与x轴只有一个公共点,即为此抛物线的顶点;当????<0时,抛物线y=ax2+bx+c与x轴没有公共点.

4.抛物线的平移

抛物线y=a(x-h)2+k与y=ax2形状相同,位置不同.把抛物线y

=ax2向上(下)、向左(右)平移,可以得到抛物线y=a(x-h)2+k.平

移的方向、距离要根据h、k的值来决定.1.常量和变量

在某变化过程中可以取不同数值的量,叫做变量.在某变化过程中保

持同一数值的量或数,叫常量或常数.

2.函数

设在一个变化过程中有两个变量x与y,如果对于x在某一范围的每

一个值,y都有唯一的值与它对应,那么就说x是自变量,y是x的函数.3.自变量的取值范围

(1)整式:自变量取一切实数.

(2)分式:分母不为零.

(3)偶次方根:被开方数为非负数.

(4)零指数与负整数指数幂:底数不为零.

4.函数值

对于自变量在取值范围内的一个确定的值,如当x=a时,函数有唯一

确定的对应值,这个对应值,叫做x=a时的函数值.

5.函数的表示法

(1)解析法;(2)列表法;(3)图象法.

6.函数的图象

把自变量x的一个值和函数y的对应值分别作为点的横坐标和纵坐标,可以在平面直角坐标系内描出一个点,所有这些点的集合,叫做这个

函数的图象.

由函数解析式画函数图象的步骤:

(1)写出函数解析式及自变量的取值范围;

(2)列表:列表给出自变量与函数的一些对应值;

(3)描点:以表中对应值为坐标,在坐标平面内描出相应的点;

(4)连线:用平滑曲线,按照自变量由小到大的顺序,把所描各点连接起来.

7.一次函数

(1)一次函数

如果y=kx+b(k、b是常数,k≠0),那么y叫做x的一次函数.

特别地,当b=0时,一次函数y=kx+b成为y=kx(k是常数,k≠0),这时,y叫做x的正比例函数.

(2)一次函数的图象

一次函数y=kx+b的图象是一条经过(0,b)点和点的直线.

特别地,正比例函数图象是一条经过原点的直线.

需要说明的是,在平面直角坐标系中,“直线”并不等价于“一次函数y=kx+b(k≠0)的图象”,因为还有直线y=m(此时k=0)和直线x=n(此

时k不存在),它们不是一次函数图象.

(3)一次函数的性质

当k>0时,y随x的增大而增大;当k<0时,y随x的增大而减小.

直线y=kx+b与y轴的交点坐标为(0,b),与x轴的交点坐标为.

(4)用函数观点看方程(组)与不等式

①任何一元一次方程都可以转化为ax+b=0(a,b为常数,a≠0)的形式,所以解一元一次方程可以转化为:一次函数y=kx+b(k,b为常

数,k≠0),当y=0时,求相应的自变量的值,从图象上看,相当于已知直

线y=kx+b,确定它与x轴交点的横坐标.

②二元一次方程组对应两个一次函数,于是也对应两条直线,从“数”的角度看,解方程组相当于考虑自变量为何值时两个函数值相等,以及这两个函数值是何值;从“形”的角度看,解方程组相当于确定两条直线的交点的坐标.

③任何一元一次不等式都可以转化ax+b>0或ax+b<0(a、b为

常数,a≠0)的形式,解一元一次不等式可以看做:当一次函数值大于0或小于0时,求自变量相应的取值范围.

8.反比例函数

(1)反比例函数

如果 (k是常数,k≠0),那么y叫做x的反比例函数.

(2)反比例函数的图象

反比例函数的图象是双曲线.

(3)反比例函数的性质

①当k>0时,图象的两个分支分别在第一、三象限内,在各自的象限内,y随x的增大而减小.

②当k<0时,图象的两个分支分别在第二、四象限内,在各自的象限内,y随x的增大而增大.

(4)k的两种求法

①若点(x0,y0)在双曲线上,则k=x0y0.

②k的几何意义:

若双曲线上任一点a(x,y),ab⊥x轴于b,则s△aob

(5)正比例函数和反比例函数的交点问题

若正比例函数y=k1x(k1≠0),反比例函数 ,则

当k1k2<0时,两函数图象无交点;

当k1k2>0时,两函数图象有两个交点,坐标分别为由此可知,正反比例函数的图象若有交点,两交点一定关于原点对称.

1.二次函数

如果y=ax2+bx+c(a,b,c为常数,a≠0),那么y叫做x的二次函数.

几种特殊的二次函数:y=ax2(a≠0);y=ax2+c(ac≠0);y=ax2+

bx(ab≠0);y=a(x-h)2(a≠0).

2.二次函数的图象

二次函数y=ax2+bx+c的图象是对称轴平行于y轴的一条抛物线.由y=ax2(a≠0)的图象,通过平移可得到y=a(x-h)2+k(a≠0)的图象.3.二次函数的性质

二次函数y=ax2+bx+c的性质对应在它的图象上,有如下性质:(1)抛物线y=ax2+bx+c的顶点是 ,对称轴是直线 ,顶点必在对称轴上;

(2)若a>0,抛物线y=ax2+bx+c的开口向上,因此,对于抛物线上的

任意一点(x,y),当x<时,y随x的增大而减小;当x>时,y随x的增

大而增大;当x= ,y有最小值;

若a<0,抛物线y=ax2+bx+c的开口向下,因此,对于抛物线上的任

意一点(x,y),当x< ,y随x的增大而增大;当时,y随x的增大而减小;当x=时,y有最大值;

(3)抛物线y=ax2+bx+c与y轴的交点为(0,c);

(4)在二次函数y=ax2+bx+c中,令y=0可得到抛物线y=ax2+

bx+c与x轴交点的情况:

当????=b2-4ac>0,抛物线y=ax2+bx+c与x轴有两个不同的

公共点,它们的坐标分别是和 ,这两点的距离为;当????=0时,抛物线y=ax2+bx+c与x轴只有一个公共点,即为此抛物线的顶点;当????<0时,抛物线y=ax2+bx+c与x轴没有公共点.

4.抛物线的平移

抛物线y=a(x-h)2+k与y=ax2形状相同,位置不同.把抛物线y

=ax2向上(下)、向左(右)平移,可以得到抛物线y=a(x-h)2+k.平

移的方向、距离要根据h、k的值来决定.1.常量和变量

在某变化过程中可以取不同数值的量,叫做变量.在某变化过程中保

持同一数值的量或数,叫常量或常数.

2.函数

设在一个变化过程中有两个变量x与y,如果对于x在某一范围的每

一个值,y都有唯一的值与它对应,那么就说x是自变量,y是x的函数.3.自变量的取值范围

(1)整式:自变量取一切实数.

(2)分式:分母不为零.

(3)偶次方根:被开方数为非负数.

(4)零指数与负整数指数幂:底数不为零.

4.函数值

5.函数的表示法

(1)解析法;(2)列表法;(3)图象法.

6.函数的图象

把自变量x的一个值和函数y的对应值分别作为点的横坐标和纵坐标,可以在平面直角坐标系内描出一个点,所有这些点的集合,叫做这个函数的图象.

由函数解析式画函数图象的步骤:

(1)写出函数解析式及自变量的取值范围;

(2)列表:列表给出自变量与函数的一些对应值;

(3)描点:以表中对应值为坐标,在坐标平面内描出相应的点;

(4)连线:用平滑曲线,按照自变量由小到大的顺序,把所描各点连接起来.

7.一次函数

(1)一次函数

如果y=kx+b(k、b是常数,k≠0),那么y叫做x的一次函数.

特别地,当b=0时,一次函数y=kx+b成为y=kx(k是常数,k≠0),这时,y叫做x的正比例函数.

(2)一次函数的图象

一次函数y=kx+b的图象是一条经过(0,b)点和点的直线.

特别地,正比例函数图象是一条经过原点的直线.

需要说明的是,在平面直角坐标系中,“直线”并不等价于“一次函数y=kx+b(k≠0)的图象”,因为还有直线y=m(此时k=0)和直线x=n(此时k不存在),它们不是一次函数图象.

(3)一次函数的性质

当k>0时,y随x的增大而增大;当k<0时,y随x的增大而减小.直线y=kx+b与y轴的交点坐标为(0,b),与x轴的交点坐标为.

(4)用函数观点看方程(组)与不等式

①任何一元一次方程都可以转化为ax+b=0(a,b为常数,a≠0)的形式,所以解一元一次方程可以转化为:一次函数y=kx+b(k,b为常

数,k≠0),当y=0时,求相应的自变量的值,从图象上看,相当于已知直

线y=kx+b,确定它与x轴交点的横坐标.

②二元一次方程组对应两个一次函数,于是也对应两条直线,从“数”的角度看,解方程组相当于考虑自变量为何值时两个函数值相等,以及这

两个函数值是何值;从“形”的角度看,解方程组相当于确定两条直线

的交点的坐标.

③任何一元一次不等式都可以转化ax+b>0或ax+b<0(a、b为

常数,a≠0)的形式,解一元一次不等式可以看做:当一次函数值大于0

或小于0时,求自变量相应的取值范围.

8.反比例函数

(1)反比例函数

如果 (k是常数,k≠0),那么y叫做x的反比例函数.

(2)反比例函数的图象

反比例函数的图象是双曲线.

(3)反比例函数的性质

①当k>0时,图象的两个分支分别在第一、三象限内,在各自的象限内,y随x的增大而减小.

②当k<0时,图象的两个分支分别在第二、四象限内,在各自的象限内,y随x的增大而增大.

(4)k的两种求法

①若点(x0,y0)在双曲线上,则k=x0y0.

②k的几何意义:

若双曲线上任一点a(x,y),ab⊥x轴于b,则s△aob

(5)正比例函数和反比例函数的交点问题

若正比例函数y=k1x(k1≠0),反比例函数 ,则

当k1k2<0时,两函数图象无交点;

当k1k2>0时,两函数图象有两个交点,坐标分别为由此可知,正反比

例函数的图象若有交点,两交点一定关于原点对称.

1.二次函数

如果y=ax2+bx+c(a,b,c为常数,a≠0),那么y叫做x的二次函数.

几种特殊的二次函数:y=ax2(a≠0);y=ax2+c(ac≠0);y=ax2+

bx(ab≠0);y=a(x-h)2(a≠0).

2.二次函数的图象

二次函数y=ax2+bx+c的图象是对称轴平行于y轴的一条抛物线.由y=ax2(a≠0)的图象,通过平移可得到y=a(x-h)2+k(a≠0)的图象.3.二次函数的性质

二次函数y=ax2+bx+c的性质对应在它的图象上,有如下性质:(1)抛物线y=ax2+bx+c的顶点是 ,对称轴是直线 ,顶点必在对称轴上;

(2)若a>0,抛物线y=ax2+bx+c的开口向上,因此,对于抛物线上的

任意一点(x,y),当x<时,y随x的增大而减小;当x>时,y随x的增

大而增大;当x= ,y有最小值;

若a<0,抛物线y=ax2+bx+c的开口向下,因此,对于抛物线上的任

意一点(x,y),当x< ,y随x的增大而增大;当时,y随x的增大而减小;当x=时,y有最大值;

(3)抛物线y=ax2+bx+c与y轴的交点为(0,c);

(4)在二次函数y=ax2+bx+c中,令y=0可得到抛物线y=ax2+

bx+c与x轴交点的情况:

当????=b2-4ac>0,抛物线y=ax2+bx+c与x轴有两个不同的

公共点,它们的坐标分别是和 ,这两点的距离为;当????=0时,抛物线y=ax2+bx+c与x轴只有一个公共点,即为此抛物线的顶点;当????<0时,抛物线y=ax2+bx+c与x轴没有公共点.

4.抛物线的平移

最新初中函数知识点总结与练习大全资料

考点一、平面直角坐标系 1、平面直角坐标系 在平面内画两条互相垂直且有公共原点的数轴,就组成了平面直角坐标系。 其中,水平的数轴叫做x 轴或横轴,取向右为正方向;铅直的数轴叫做y 轴或纵轴,取向上为正方向;两轴的交点O (即公共的原点)叫做直角坐标系的原点;建立了直角坐标系的平面,叫做坐标平面。 为了便于描述坐标平面内点的位置,把坐标平面被x 轴和y 轴分割而成的四个部分,分别叫做第一象限、第二象限、第三象限、第四象限。 注意:x 轴和y 轴上的点,不属于任何象限。 2、点的坐标的概念 点的坐标用(a ,b )表示,其顺序是横坐标在前,纵坐标在后,中间有“,”分开,横、纵坐标的位置不能颠倒。平面内点的坐标是有序实数对,当b a ≠时, (a ,b )和(b ,a )是两个不同点的坐标。 考点二、不同位置的点的坐标的特征 1、各象限内点的坐标的特征 点P(x,y)在第一象限0,0>>? y x 点P(x,y)在第二象限0,0>?y x 2、坐标轴上的点的特征 点P(x,y)在x 轴上0=? y ,x 为任意实数 点P(x,y)在y 轴上,y 0=?x 为任意实数 点P(x,y)既在x 轴上,又在y ?轴上x ,y 同时为零,即点P 坐标为(0,0) 3、两条坐标轴夹角平分线上点的坐标的特征 点P(x,y)在第一、三象限夹角平分线上?x 与y 相等 点P(x,y)在第二、四象限夹角平分线上?x 与y 互为相反数 4、和坐标轴平行的直线上点的坐标的特征 位于平行于x 轴的直线上的各点的纵坐标相同。 位于平行于y 轴的直线上的各点的横坐标相同。 5、关于x 轴、y 轴或远点对称的点的坐标的特征 点P 与点p ’关于x 轴对称?横坐标相等,纵坐标互为相反数 点P 与点p ’关于y 轴对称?纵坐标相等,横坐标互为相反数 点P 与点p ’关于原点对称?横、纵坐标均互为相反数 6、点到坐标轴及原点的距离 点P(x,y)到坐标轴及原点的距离: (1)点P(x,y)到x 轴的距离等于y (2)点P(x,y)到y 轴的距离等于 x (3)点P(x,y)到原点的距离等于2 2y x + 考点三、函数及其相关概念 1、变量与常量 在某一变化过程中,可以取不同数值的量叫做变量,数值保持不变的量叫做常量。 一般地,在某一变化过程中有两个变量x 与y ,如果对于x 的每一个值,y 都有唯一确定的值与它对应,那么就说x 是自变量,y 是x 的函数。 2、函数解析式 用来表示函数关系的数学式子叫做函数解析式或函数关系式。 使函数有意义的自变量的取值的全体,叫做自变量的取值范围。 3、函数的三种表示法及其优缺点 (1)解析法 :两个变量间的函数关系,有时可以用一个含有这两个变量及数字运算符号的等式表示,这种表示法叫做解析法。 (2)列表法:把自变量x 的一系列值和函数y 的对应值列成一个表来表示函数关系,这种表示法叫做列表法。 (3)图像法:用图像表示函数关系的方法叫做图像法。 4、由函数解析式画其图像的一般步骤:(1)列表:列表给出自变量与函数的一些对应值 (2)描点:以表中每对对应值为坐标,在坐标平面内描出相应的点 (3)连线:按照自变量由小到大的顺序,把所描各点用平滑的曲线连接起来。 考点四、正比例函数和一次函数 1、正比例函数和一次函数的概念 一般地,如果 b kx y +=(k ,b 是常数,k ≠0),那么y 叫做x 的一次函数。

八年级数学下册第十九章一次函数函数变量与函数测试题新人教版

第十九章一次函数 19.1 函数 19.1.1 变量与函数 1.下列关系式中,y不是x的函数的是( B ) (A)y=(B)y2=2x (C)y=x (D)y=x2-2 2.函数y=的自变量x的取值范围是( B ) (A)x≠0 (B)x>-3 (C)x≥-3且x≠0 (D)x>-3且x≠0 3.下列图象中,y是x的函数的是( C ) 4.某学校欲购买一些足球,单价为35元/个,总价y随购买个数x的变化而变化.其中的变量为总价y和个数x,常量是单价3 5 元/个. 5.当x=2及x=-3时,分别求出下列函数的函数值: (1)y=(x+1)(x-2); (2)y=. 解:(1)当x=2时,y=(x+1)(x-2)=(2+1)×(2-2)=0, 当x=-3时,y=(x+1)(x-2)=(-3+1)×(-3-2)=10. (2)当x=2时,y===4, 当x=-3时,y===. 6.分别写出下列各题中的函数解析式及自变量的取值范围. (1)已知等腰三角形的面积为20,设它的底边长为x,底边上的高y随x的变化而变化. (2)水池中有水10 L,此后每小时漏水0.05 L,水池中的水量V随时间t的变化而变化.

解:(1)y=,x>0. (2)V=10-0.05t,0≤t≤200. 7.如图,等腰Rt△ABC的直角边长与正方形MNPQ的边长均为10,AC与MN在同一直线上,开始时点A与点M重合,让△ABC向右运动,最后点A与点N重合. (1)试写出重叠部分面积y与AM的长度x之间的函数解析式并写出自变量的取值范围; (2)当AM=1时,重叠部分的面积是多少? 解:(1)y与x之间的函数解析式为y=x2, 自变量的取值范围是0≤x≤10. (2)当AM=1,即x=1时, y=×12=. 所以,当AM的长为1时,重叠部分的面积为.

19.1.1《变量与函数》反思

19.1.1《变量与函数》教学反思 本节课是八年级学生初步接触函数的入门课,必须让学生准确认识变量与常量的特征,初步感受现实世界各种变量之间相互联系的复杂性,同时感受到数学研究方法的化繁为简,知道在初中阶段主要研究两个变量之间的特殊对应关系。 函数定义的关键词是:“两个变量”、“唯一确定”、“与其对应”;函数的要点是:1 有两个变量,2 一个变量的值随另一个变量的值的变化而变化,3 一个变量的值确定另一个变量总有唯一确定的值与其对应;函数的实质是:两个变量之间的对应关系;学习函数的意义是:用运动变化的观念观察事物。与学习进行仔细的研究,有助于函数意义的理解,但是,不可能在一课的学时内真正理解函数的意义,继续布置作业:每个同学列举出几个反映函数关系的实例,培育学生用函数的观念看待现实世界,最后,我还说明了,函数的学习,是我们数学认识的第二个飞跃,代数式的学习,是数学认识的第一次飞跃:由具体的数、孤立的数到一般的具有普遍意义的数,函数的学习,是由静止的不变的数到运动变化的数。 在函数概念的教学中,应突出“变化”的思想和“对应”的思想。从概念的起源来看,函数是随着数学研究事物的运动、变化而出现的,他刻画了客观世界事物间的动态变化和相互依存的关系,这种关系反映了运动变化过程中的两个变量之间的制约关系。因此,变化是函数概念产生的源头,是制约概念学习的关节点,同时也是概念教学的一个重要突破口。教师可以通过大量的典型实例,让学生反复观察、反复比较、反复分析每个具体问题的量与量之间的变化关系,把静止的表达式看动态的变化过程,让他们从原来的常量、代数式、方程式和算式的静态的关系中,逐步过渡到变量、函数这些表示量与量之间的动态的关系上,使学生的认识实现 为了快速明了的引出课题,课前让学生收集一些变化的实例,从学生的生活入手,开门见山,来指明本节课的学习内容。本课的引例较为丰富,但有些内容学生解决较为困难,于是我采取了三种不同的提问方式:1.教师问,学生答; 2.学生自主回答; 3.学生合作交流回答。为了较好的突出重点突破难点,在处理教学活动过程中,让学生思考每个变化活动中反映的是哪个量随哪个量的变化而变化,并提出一个量确定时另一个量是否唯一确定的问题,在得出变量和常量概念的同时渗透函数的概念.为了更好的让学生理解变量和常量的意义,由“问题中分别涉及哪些量?哪些量是变化的,哪些量是始终不变的?”一系列问题,在借助生活实例回答的过程中,归纳总结出变量与常量的概念,并能指出具体问题中的变量与常量。函数的概念是把学生由常量数学的学习引入变量数学的学习的过程,学生初步接触函数的概念,难以理解定义中“唯一确定”的准确含义,我设置了以下二个问题:1.在前面研究的每个问题中,都出现了几个变量?它们之间是相互影响,相互制约的。2.在二个变量中,一个量在变化的过程中每取一个值,另一个量有多少个值与它对应?来理解具体实例中二个变量的特殊对应关系,初步理解函数的概念。为了进一步让学生理解“唯一对应”关系,借助函数图像,使学生直观的感受二个变量之间特殊对应关系-----唯一对应。通过这种从实际问题出发的探究方式,使学生体验从具体到抽象的认识过程,及时给出函数的定义。再从抽象转化到实际应用中去,加深学生对函数概念的理解。为了加强学生辨析函数的能力,我准备了一道思考题,Y2=X中对于X的每一个值Y都

初中函数知识点总结非常全

知识点一、平面直角坐标系 1、平面直角坐标系 在平面内画两条互相垂直且有公共原点的数轴,就组成了平面直角坐标系。 其中,水平的数轴叫做x 轴或横轴,取向右为正方向;铅直的数轴叫做y 轴或纵轴,取向上为正方向;两轴的交点O (即公共的原点)叫做直角坐标系的原点;建立了直角坐标系的平面,叫做坐标平面。 为了便于描述坐标平面内点的位置,把坐标平面被x 轴和y 轴分割而成的四个部分,分别叫做第一象限、第二象限、第三象限、第四象限。 注意:x 轴和y 轴上的点,不属于任何象限。 2、点的坐标的概念 点的坐标用(a ,b )表示,其顺序是横坐标在前,纵坐标在后,中间有“,”分开,横、纵坐标的位置不能颠倒。平面内点的坐标是有序实数对,当b a ≠时,(a ,b )和(b ,a )是两个不同点的坐标。 知识点二、不同位置的点的坐标的特征 1、各象限内点的坐标的特征 点P(x,y)在第一象限0,0>>?y x 点P(x,y)在第二象限0,0>?y x 2、坐标轴上的点的特征 点P(x,y)在x 轴上0=?y ,x 为任意实数 点P(x,y)在y 轴上0=?x ,y 为任意实数 点P(x,y)既在x 轴上,又在y 轴上?x ,y 同时为零,即点P 坐标为(0,0) 3、两条坐标轴夹角平分线上点的坐标的特征 点P(x,y)在第一、三象限夹角平分线上?x 与y 相等 点P(x,y)在第二、四象限夹角平分线上?x 与y 互为相反数 4、和坐标轴平行的直线上点的坐标的特征 位于平行于x 轴的直线上的各点的纵坐标相同。 位于平行于y 轴的直线上的各点的横坐标相同。 5、关于x 轴、y 轴或远点对称的点的坐标的特征 点P 与点p ’关于x 轴对称?横坐标相等,纵坐标互为相反数 点P 与点p ’关于y 轴对称?纵坐标相等,横坐标互为相反数 点P 与点p ’关于原点对称?横、纵坐标均互为相反数 6、点到坐标轴及原点的距离 点P(x,y)到坐标轴及原点的距离: (1)点P(x,y)到x 轴的距离等于y (2)点P(x,y)到y 轴的距离等于x (3)点P(x,y)到原点的距离等于2 2y x + 知识点三、函数及其相关概念 1、变量与常量 在某一变化过程中,可以取不同数值的量叫做变量,数值保持不变的量叫做常量。 一般地,在某一变化过程中有两个变量x 与y ,如果对于x 的每一个值,y 都有唯一确定的值与它对应,那么就说x 是自变量,y 是x 的函数。 2、函数解析式 用来表示函数关系的数学式子叫做函数解析式或函数关系式。 使函数有意义的自变量的取值的全体,叫做自变量的取值范围。 3、函数的三种表示法及其优缺点 (1)解析法 两个变量间的函数关系,有时可以用一个含有这两个变量及数字运算符号的等式表示,这种表示法叫做解析法。 (2)列表法 把自变量x 的一系列值和函数y 的对应值列成一个表来表示函数关系,这种表示法叫做列表法。 (3)图像法 用图像表示函数关系的方法叫做图像法。 4、由函数解析式画其图像的一般步骤 (1)列表:列表给出自变量与函数的一些对应值 (2)描点:以表中每对对应值为坐标,在坐标平面内描出相应的点 (3)连线:按照自变量由小到大的顺序,把所描各点用平滑的曲线连接起来。 知识点四、正比例函数和一次函数 1、正比例函数和一次函数的概念

函数与变量的测试题

关于函数与变量的测试题 一、填空题(每小题3分,共24分) 1.矩形的面积为,则长和宽之间的关系为,当长一定时,是常量, 是变量. 2.飞船每分钟转30转,用函数解析式表示转数和时间之间的关系式是. 3.函数中自变量的取值范围是 4.函数中,当时,,当时,. 5.点在函数的图象上,则点的坐标是. 6.函数中自变量的取值范围为. 7.下列:①;②;③;④,具有函数关系(自变量为)的是. 8.圆的面积中,自变量的取值范围是. 二、选择题(每小题3分,共24分) 1.在圆的周长公式中,下列说法错误的是() A.是变量,2是常量 B.是变量,是常量 C.是自变量,是的函数 D.将写成,则可看作是自变量,是的函数 2.边形的内角和,其中自变量的取值范围是() A.全体实数 B.全体整数 C. D.大于或等于3的整数 3.在下表中,设表示乘公共汽车的站数,表示应付的'票价(元) (站)12345678910 (元)1122233344 根据此表,下列说法正确的是() A.是的函数 B.不是的函数 C.是的函数 D.以上说法都不对

4.油箱中有油20升,油从管道中匀速流出,100分钟流成.油箱中剩油量(升)与流出的时间(分)间的函数关系式是() A.B.C.D. 5.根据下表写出函数解析式() A.B.C.D. 6.如果每盒圆珠笔有12支,售价为18元,那么圆珠笔的售价(元)与支数 之间的函数关系式为() A.B.C.D. 7.设等腰三角形(两底角相等的三角形)顶角的度数为,底角的度数为,则 有() A.(为全体实数) B. C.D. 8.下列有序实数对中,是函数中自变量与函数值的一对对应值的是 ()[B.C.D. 三、解答题(共40分) 1.(10分)如图1是襄樊地区一天的气温随时间变化的图象,根据图象回答:在这一天中: (1)气温(℃)(填“是”或“不是”)时间(时)的函数. (2)时气温最高,时气温最低,最高汽温是℃,最低气温是℃. (3)10时的气温是℃. (4)时气温是4℃. (5)时间内,气温不断上升. (6)时间内,气温持续不变. 2.(10分)按图2方式摆放餐桌和椅子.若用来表示餐桌的张数,来表示可 坐人数,则随着餐桌数的增加: (1)题中有几个变量?

2.1.1(一)变量与函数的概念教案

第二章函数 §2.1函数 2.1.1 函数 第1课时变量与函数的概念 【学习要求】 1.通过丰富实例,加深对函数概念的理解,学会用集合与对应的语言来刻画函数,体会对应关系在刻 画函数概念中的作用. 2.了解构成函数的三要素. 3.能够正确使用“区间”的符号表示某些集合. 【学法指导】 通过实例体会函数是描述变量之间的依赖关系的重要数学模型,在此基础上学习用集合与对应的语言来刻画函数,体会用集合与对应刻画函数的必要性的重要性. 填一填:知识要点、记下疑难点 1.函数的概念:设集合A是一个非空的数集,对A中的任意数x,按照确定的法则f,都有唯一确定的数y与它对应,则这种对应关系叫做集合A上的一个函数.记作y=f(x),x∈A.其中x叫做自变量,自变量的取值范围(数集A)叫做这个函数的定义域. 2.区间概念:设a,b∈R,且aa,x≤a,x

变量与函数测试题及答案

变量与函数测试题及答 案 LEKIBM standardization office【IBM5AB- LEKIBMK08- LEKIBM2C】

八年级上册第变量与函数水平测试题 跟踪反馈 挑战自我 一、慧眼识金选一选!(每小题3分,共24分) 1.某人要在规定的时间内加工100个零件,则工作效率η与时间t 之间的关系中,下列说法正确的是( ). (A )数100和η,t 都是变量 (B )数100和η都是常量 (C )η和t 是变量 (D )数100和t 都是常量 2. 汽车离开甲站10千米后,以60千米/时的速度匀速前进了t 小时,则汽车离开甲站所走的路程s (千米)与时间t (小时)之间的关系式是( ). (A )1060s t =+ (B )60s t = (C )6010s t =- (D )1060s t =- 3.(课本39页习题1变形)如图,若输入x 的值为-5,则输出的结果( ). (A )―6 (B )―5 (C )5 (D )6 4.下列图表列出了一项实验的统计数据,表示将皮球从高d 处落下时,弹跳高度b 与下落高度d 的关系: 50 80 100 150 25 40 50 75 则能反映这种关系的式子是( ). (A )2b d = (B )2b d = (C )2 d b = (D )25b d =- 5.下列函数中,自变量x 不能为1的是( ). (A )1y x = (B )21x y x +=- (C )21y x =+ (D )8 x y = 6.(2008年广安)下列图形中的曲线不表示y 是x 的函数的是( ) (B ) y x y x y x y

C语言中变量和函数的声明与定义

变量 在将变量前,先解释一下声明和定义这两个概念。声明一个变量意味着向编译器描述变量的类型,但并不为变量分配存储空间。定义一个变量意味着在声明变量的同时还要为变量分配存储空间。在定义一个变量的同时还可以对变量进行初始化。 局部变量通常只定义不声明,而全局变量多在源文件中定义,在头文件中声明。 局部变量 在一个函数的内部定义的变量是内部变量,它只在本函数范围内有效。自动变量auto 函数中的局部变量,其缺省格式是自动变量类型。例如,在函数体中int b, c=3。和auto int b, c=3。是等价的。 自动变量是动态分配存储空间的,函数结束后就释放。自动变量如不赋初值,则它的值是一个不确定的值。 静态局部变量static 静态局部变量是指在函数体内声明和定义的局部变量,它仅供本函数使用,即其他函数不能调用它。静态局部变量的值在函数调用结束后不消失而保留原值,即其占用的存储单元不释放,在下一次函数调用时,该变量已有值,就是上一次函数调用结束时的值。 静态局部变量在静态存储区分配存储单元,在程序的整个运行期间都不释放。静态局部变量是在编译时赋初值的,即只赋初值一次。

在SDT编译器中,建议对静态局部变量赋初值,否则该静态局部变量的初值为不确定值。在其他编译器中,未初始化的静态局部变量的初值可能为零,这由具体的编译器所决定,使用前最好测试一下。 寄存器变量register 带register修饰符的变量暗示(仅仅是暗示而不是命令)编译程序本变量将被频繁使用,如果可能的话,应将其保留在CPU的寄存器中,以加快其存取速度。 对于现有的大多数编译程序,最好不要使用register修饰符。因为它是对早期低效的C编译程序的一个很有价值的补充。随着编译程序技术的进步,在决定哪些变量应当被存到寄存器中时,现在的C编译程序能比程序员做出更好的决定。 全局变量 在函数之外定义的变量称为外部变量,外部变量是全局变量,它可以为本文件中其他函数所共用。全局变量都是静态存储方式,都是在编译时分配内存,但是作用范围有所不同。 静态外部变量static 静态外部变量只能在本文件中使用。所以静态外部变量应该在当前源文件中声明和定义。 外部变量extern 定义函数中的全局变量时,其缺省格式是外部变量类型。外部变量应该在一个头文件中声明,在当前源文件中定义。外部变量允许其他文件引用。

一次函数变量与函数

奇趣数学:一次函数: 变量~函数 (第一课时 变量、函数的概念) 知识点归纳: 1、变量:在一个变化过程中可以取不同数值的量。 常量:在一个变化过程中只能取同一数值的量。 2、函数:一般的,在一个变化过程中,如果有两个变量x 和y ,并且对于x 的每一个确定的值,y 都有唯一确定的值与其对应,那么我们就把x 称为自变量,把y 称为因变量,y 是x 的函数。 *判断Y 是否为X 的函数,只要看X 取值确定的时候,Y 是否有唯一确定的值与之对应 3、定义域:(取值范围)一般的,一个函数的自变量允许取值的范围,叫做这个函数的定义域。 4、确定函数定义域的方法: (1)关系式为整式时,函数定义域为全体实数; (2)关系式含有分式时,分式的分母不等于零; (3)关系式含有二次根式时,被开放方数大于等于零; (4)关系式中含有指数为零的式子时,底数不等于零; (5)实际问题中,函数定义域还要和实际情况相符合,使之有意义。 练习: 例 若一个等腰三角形的周长是24. (1)写出其底边长y 随腰长x 变化的关系式. (2)指出其中的常量与变量,自变量与函数. (3)求自变量的取值范围.(4)底边长为10时,其腰长为多少? ◆仔细读题,一定要选择最佳答案哟! 1.骆驼被称为“沙漠之舟”,它的体温随时间的变化而变化.在这一问题中,自变量是( ). A.沙漠 B.体温 C.时间 D.骆驼 2.长方形的周长为24cm ,其中一边为x (其中0>x ),面积为y 2 cm ,则这样的长方形中y 与x 的关系可以写为( ). A.2 x y = B.()2 12x y -= C.()x x y ?-=12 D.()x y -=122. 3.函数11 2 ++--= x x x y 的自变量x 的取值范围为 ( ) . A .x ≠1 B .x >-1 C .x ≥-1 D .x ≥-1且 x ≠1

2020-2021学年 华东师大版八年级数学下册 17.1 变量与函数 同步测试题

17.1 变量与函数同步测试题 (满分120分;时间:90分钟) 一、选择题(本题共计6 小题,每题3 分,共计18分,) 1. 半径是R的圆的周长C=2πR,下列说法正确的是() A.C、π、R是变量 B.C是变量,2、π、R是常量 C.R是变量,2、π、C是常量 D.C、R是变量,2、π是常量 2. 下面的图表列出了一项试验的统计数据,表示将皮球从高处?落下,弹跳高度m与下落高度?的关系 试问下面哪个式子能表示这种关系(单位:cm)() A.m=?2 B.m=2? C.m=? D.m=?+25 2 3. 弹簧挂上物体后会伸长,测得一弹簧的长度y(cm)与悬挂的物体的质量x(kg)间有下面的关系: 下列说法不正确的是() A.x和y都是变量,且x是自变量,y是因变量 B.弹簧不悬挂重物时的长度为0 C.在弹性限度内,物体质量每增加1kg,弹簧长度y增加0.5cm D.在弹性限度内,所挂物体的质量为7kg,弹簧长度为13.5cm 4. 1?6个月的婴儿生长发育得非常快,出生体重为4000克的婴儿,他们的体重y(克)

和月龄x(月)之间的关系如表所示,则6个月大的婴儿的体重为() A.7600克 B.7800克 C.8200克 D.8500克 5. 如果用总长为60m的篱笆围成一个长方形场地,设长方形的面积为S(m2),周长为 p(m),一边长为a(m),那么S,p,a中是变量的是() A.S和p B.S和a C.p和a D.S,p,a 6. 下面关于函数的三种表示方法叙述错误的是() A.用图象法表示函数关系,可以直观地看出因变量如何随着自变量而变化 B.用列表法表示函数关系,可以很清楚地看出自变量取的值与因变量的对应值 C.用公式法表示函数关系,可以方便地计算函数值 D.任何函数关系都可以用上述三种方法来表示 二、填空题(本题共计8 小题,每题3 分,共计24分,) 7. 潍坊市出租车计价方式如下:行驶距离在2.5km以内(含2.5km)付起步价6元,超过2.5km后,每多行驶1km加收1.4元,试写出乘车费用y(元)与乘车距离x(km)(x>2.5)之间的函数关系为________. 8. 设路程为s,人速度为v,时间为t,在关系式s=vt中,当t一定时,s随v的变化而变化,则________为函数值,________为自变量,________为常量. 9. 在下列关系式中:①长方形的宽一定时,其长与面积的关系;②等腰三角形的底边长与面积;③圆的面积与圆的半径.其中,是函数关系的是________(填序号). 10. 声音在空气中传播的速度y(米/秒)(简称音速)与气温x(°C)之间的关系如下从表中可知音速y随温度x的升高而________.在气温为20°C的一天召开运动会,某人看到发令枪的烟0.2秒后,听到了枪声,则由此可知,这个人距发令地点________米.

变量与函数教案

变量与函数 教学目的: 1.了解常量与变量的意义,能分清实例中的常量与变量; 2.了解自变量与函数的意义,能列举函数的实例,并能写出简单的函数关系式; 3.通过函数概念,初步形成学生利用函数的观点认识现实世界的意识和能力。经历函数概念的抽象概括过程,体会函数的模型思想。让学生主动地从事观察、操作、交流、归纳等探索活动,形成自己对数学知识的理解和有效的学习模式。 教学重点:函数概念的形成过程。 教学难点:理解函数概念。 教学过程: 一、创设情境 问题1:图1是某地一天内的气温变化图.这张图告诉我们哪些信息? 看出回答: (1)这天的6时,10时和14时的气温分别为多少?任意给出这天中的某一时刻,说出这一时刻的气温. (2)这一天中,最高气温是多少?最低气温是多少? (3)这一天中,什么时候的气温在逐渐升高?什么时候的气温在逐渐降低? 思考:这张图是怎样来展示这天各时刻的温度和刻画这天的气温变化规律的?

问题2:银行对各种不同的存款方式都规定了相应的利率,下表是20XX年7月中国工商银行为”整存整取”的存款方式规定的年利率. 观察上表,说一说随着存期x的增长,相应的年利率y是如何变化的? 问题3:收音机的刻度盘的波长和频率分别是用米(m)和千赫兹(kHz)为单位标刻的.下面是一些对对应的数值: 仔细的观察你能发现什么? 问题4:圆的面积是随着半径增大而增大的.如果用r表示圆的半径,S表示圆面积,则S与r之间满足什么关系?利用这个关系式,试求出半径为 1cm,1.5cm,2cm,2.6cm,3.2cm时圆的面积,并将结果填入下表: 由此你可以得到什么结论? 二、形成概念 (一)变量与常量概念的形成过程 1.举例、归纳 问题1:某地一天内的气温变化图(示图)学生观察气温随时间变化的情况,引出“变量”。 问题2:学生观察随着存期x的增长,相应的年利率y是如何变化的过程,加深对变量的认识,引出“常量”。 设问:一个量变化,具体地说是它的什么在变?什么不变呢? 引导学生观察发现:是量的数值变与不变。 归纳变量与常量的定义并板书。 在其他二个问题中有哪些是变量?哪些是常量?

初中函数知识点专题讲解

知识点1函数及其相关概念 1、变量与常量 在某一变化过程中,可以取不同数值的量叫做变量,数值保持不变的量叫做常量。 一般地,在某一变化过程中有两个变量x 与y ,如果对于x 的每一个值,y 都有唯一确定的值与它对应,那么就说x 是自变量,y 是x 的函数。 2、函数解析式 用来表示函数关系的数学式子叫做函数解析式或函数关系式。 使函数有意义的自变量的取值的全体,叫做自变量的取值范围。 3、函数的三种表示法及其优缺点 (1)解析法 两个变量间的函数关系,有时可以用一个含有这两个变量及数字运算符号的等式表示,这种表示法叫做解析法。 (2)列表法 把自变量x 的一系列值和函数y 的对应值列成一个表来表示函数关系,这种表示法叫做列表法。 (3)图像法 用图像表示函数关系的方法叫做图像法。 4、由函数解析式画其图像的一般步骤 (1)列表:列表给出自变量与函数的一些对应值 (2)描点:以表中每对对应值为坐标,在坐标平面内描出相应的点 (3)连线:按照自变量由小到大的顺序,把所描各点用平滑的曲线连接起来。 知识点四,正比例函数和一次函数 1、正比例函数和一次函数的概念 一般地,如果b kx y +=(k ,b 是常数,k ≠0),那么y 叫做x 的一次函数。 特别地,当一次函数b kx y +=中的b 为0时,kx y =(k 为常数,k ≠0)。这时,y 叫做x 的正比例函数。 2、一次函数的图像 所有一次函数的图像都是一条直线 3、一次函数、正比例函数图像的主要特征: 一次函数b kx y +=的图像是经过点(0,b )的直线;正比例函数kx y =的图像是经过原点(0,0)的直线。

变量与函数测试题

变量与函数、函数的图象及正比例函数测试题习题一 一、填空题 1、某本书的单价是14元,当购买x 本这种书时,花费为y 元,则用x 表示y 时,应有 ,其中变量是 ,常量是 。 2、一汽车油箱中有油60升,若每小时耗油6升,则油箱中剩余油量y (升)与时间t (时)之间的函数关系式为 ,其中变量是 ,常量是 。 3、当x =2时,函数y =2x+k 和y=3kx -2的函数值相等,则k = 。 4、已知矩形的周长为6,设它的一条边长为x ,那么它的面积y 与x 之间的函数关系式是 ,x 的取值围为 。 5、一盒装冰淇淋售价19元,装有6枝小冰淇淋,请写出每枝冰淇淋售价 y (元)与函数x (枝)之间的关系式 。 6、在函数关系式33 4R V π=中, 是常量, 是变量。 7、函数的三种表示方法是 , , 。 8、用描点法画函数图象的一般步骤是 , , 。 9、一棵2米高树苗,按平均每年长高10厘米计算,树高h (厘米)与年数n 之 间的函数关系式是 ,自变量n 的取值围是 。 10、形如_____ ______的函数是正比例函数 11、正比例函数y=kx (k 为常数,k<0)的图象依次经过第________象限,函数 值y 随自变量x 的增大而_________. 12、已知y 与x 成正比例,且x=2时y=-6,则y 与x 的函数关系式为____ __. 二、选择题 13、函数y =x 的取值围是( ) A .x ≥2 B .x>2 C .x<2 D .x ≠2 14、下列关系中的两个量成正比例的是( ) A .从甲地到乙地,所用的时间和速度; B .正方形的面积与边长 C .买同样的作业本所要的钱数和作业本的数量; D .人的体重与身高 15、下列函数中,y 是x 的正比例函数的是( ) A .y=4x+1 B .y=2x 2 C .y=-5x D . 16、若函数y=(2m+6)x 2+(1-m )x 是正比例函数,则m 的值是( ) A .m=-3 B .m=1 C .m=3 D .m>-3 17、已知(x 1,y 1)和(x 2,y 2)是直线y=-3x 上的两点,且x 1>x 2,则y 1与y 2? 的大小关系是( ) A .y 1>y 2 B .y 1

八年级数学:变量与函数 练习(含答案)

八年级数学:变量与函数练习(含答案) 一、选择题: 1.下列关于圆的面积S与半径R之间的函数关系式S=πR2中,有关常量和变量的说法正确的是() A.S,R2是变量,π是常量 B.S,R是变量,2是常量 C.S,R是变量,π是常量 D.S,R是变量,π和2是常量 2.据调查,?北京石景山苹果园地铁站自行车存车处在某星期日的存车量为4000次,其中电动车存车费是每辆一次0.3元,普通车存车费是每辆一次0.2元.?若普通车存车数为x辆次,存车费总收入为y元,则y关于x的函数关系式是() A.y=0.1x+800(0≤x≤4000) B.y=0.1x+1200(0≤x≤4000) C.y=-0.1x+800(0≤x≤4000) D.y=-0.1x+1200(0≤x≤4000) 3.某同学在测量体温时意识到体温计的读数与水银柱的长度之间可能存在着某种函数关系,就此他与同学们选择了一种类型的体温计,经历了收集数据、分析数据、得出结论的探索过程.他们收集的数据如下: 请你根据上述数据分析判断,水银柱的长度L(mm)与体温计的读数t℃(35≤t?≤42)之间存在的函数关系式为() A.L= 1 10 t-66 B.L= 113 70 t C.L=6t- 307 2 D.L= 3955 2t 二、填空题 4.小明带10元钱去文具商店买日记本,已知每本日记本定价2元,?则小明剩余的钱y(元)与所买日记本的本数x(元)?之间的关系可表示为y=?10-?2x.?在这个问题中______是变量,_______是常量. 5.在函数y= 1 2 x- 中,自变量x的取值范围是______. 6.某种活期储蓄的月利率是0.16%,存入10000元本金,按国家规定,?取款时应缴纳利息部分20%的利息税,则这种活期储蓄扣除利息税后,实得本息和y(元)与所存月数x之间的函

17.1.1变量与函数

17.1.1变量与函数 知识技能目标 1.掌握常量和变量、自变量和因变量(函数)基本概念; 2.了解表示函数关系的三种方法:解析法、列表法、图象法,并会用解析法表示数量关系. 过程性目标 1.通过实际问题,引导学生直观感知,领悟函数基本概念的意义; 2.引导学生联系代数式和方程的相关知识,继续探索数量关系,增强数学建模意识,列出函数关系式. 教学过程 一、创设情境 在学习与生活中,经常要研究一些数量关系,先看下面的问题. 问题1如图是某地一天内的气温变化图. 看图回答: (1)这天的6时、10时和14时的气温分别为多少?任意给出这天中的某一时刻,说出这一时刻的气温. (2)这一天中,最高气温是多少?最低气温是多少? (3)这一天中,什么时段的气温在逐渐升高?什么时段的气温在逐渐降低? 解(1)这天的6时、10时和14时的气温分别为-1℃、2℃、5℃; (2)这一天中,最高气温是5℃.最低气温是-4℃; (3)这一天中,3时~14时的气温在逐渐升高.0时~3时和14时~24时的气温在逐渐降低. 从图中我们可以看到,随着时间t(时)的变化,相应地气温T(℃)也随之变化.那么在生活中是否还有其它类似的数量关系呢? 二、探究归纳 问题2 小蕾在过14岁生日的时候,看到了爸爸为她记录的各周岁时的体重,如下表:

观察上表,说说随着年龄的增长,小蕾的体重是如何变化的?在哪一段时间内体重增加较快? 解随着年龄的增长,小蕾的体重也随着增长,且在1-2岁增加较快. 问题3 收音机刻度盘的波长和频率分别是用米(m)和千赫兹(kHz)为单位标刻的.下面是一些对应的数值: 观察上表回答: (1)波长l和频率f数值之间有什么关系? (2)波长l越大,频率f就________. 解(1) l 与f的乘积是一个定值,即 lf= 或者说 (2)波长 问题4 S与r之间满 时圆的面积,并将结果填入下表: 解S= 圆的半径越大,它的面积就越大. 在上面的问题中,我们研究了一些数量关系,它们都刻画了某些变化规律.这里出现了各种各样的量,特别值得注意的是出现了一些数值会发生变化的量.例如问题1中,刻画气温变化规律的量是时间t和气温T,气温T随着时间t的变化而变化,它们都会取不同的数值.像这样在某一变化过程中,可以取不同数值的量,叫做变量(variable). 上面各个问题中,都出现了两个变量,它们互相依赖,密切相关.一般地,如果在一个变化过程中,有两个变量,例如x和y,对于x的每一个值,y都有惟一的值与之对应,我们就说x是自变量

变量与函数 知识讲解

变量与函数 【学习目标】 1.知道现实生活中存在变量和常量,变量在变化的过程中有其固有的范围(即变量的取值范围); 2.能初步理解函数的概念;能初步掌握确定常见简单函数的自变量取值范围的基本方法;给出自变量的一个值,会求出相应的函数值. 3. 理解函数图象上的点的坐标与其解析式之间的关系,会判断一个点是否在函数的图象上,明确交点坐标反映到函数上的含义. 4. 初步理解函数的图象的概念,掌握用“描点法”画一个函数的图象的一般步骤,对已知图象能读图、识图,从图象解释函数变化的关系. 【要点梳理】 要点一、变量、常量的概念 在一个变化过程中,我们称数值发生变化的量为变量.数值保持不变的量叫做常量. 要点诠释:一般地,常量是不发生变化的量,变量是发生变化的量,这些都是针对某个变化过程而言的.例如,60s t =,速度60千米/时是常量,时间t 和里程s 为变量. 要点二、函数的定义 一般地,在一个变化过程中. 如果有两个变量x 与y ,并且对于x 的每一个确定的值,y 都有唯一确定的值与其对应,那么我们就说 x 是自变量,y 是x 的函数. 要点诠释:对于函数的定义,应从以下几个方面去理解: (1)函数的实质,揭示了两个变量之间的对应关系; (2)对于自变量x 的取值,必须要使代数式有实际意义; (3)判断两个变量之间是否有函数关系,要看对于x 允许取的每一个值,y 是否 都有唯一确定的值与它相对应. (4)两个函数是同一函数至少具备两个条件: ①函数关系式相同(或变形后相同); ②自变量x 的取值范围相同. 否则,就不是相同的函数.而其中函数关系式相同与否比较容易注意到,自变 量x 的取值范围有时容易忽视,这点应注意. 要点三、函数的定义域与函数值 函数的自变量允许取值的范围,叫做这个函数的定义域. 要点诠释:考虑自变量的取值必须使解析式有意义。 (1)当解析式是整式时,自变量的取值范围是全体实数; (2)当解析式是分式时,自变量的取值范围是使分母不为零的实数; (3)当解析式是二次根式时,自变量的取值范围是使被开方数不小于零的实数; (4)当解析式中含有零指数幂或负整数指数幂时,自变量的取值应使相应的底数 不为零; (5)当解析式表示实际问题时,自变量的取值必须使实际问题有意义. y 是x 的函数,如果当x =a 时y =b ,那么b 叫做当自变量为a 时的函数值.在函数用记号()y f x =表示时,()f a 表示当x a =时的函数值. 要点诠释: 对于每个确定的自变量值,函数值是唯一的,但反过来,可以不唯一,即一个函数值对

一次函数知识点总结与常见题型-一次函数知识点整理

一次函数知识点总结与常见题型 基本概念 1、变量:在一个变化过程中可以取不同数值的量。 常量:在一个变化过程中只能取同一数值的量。 例题:在匀速运动公式vt s =中,v 表示速度,t 表示时间,s 表示在时间t 所走的路程,则变量是________,常量是_______。在圆的周长公式C =2πr 中,变量是________,常量是_________. 2、函数:一般的,在一个变化过程中,如果有两个变量x 和y ,并且对于x 的每一个确定的值,y 都有唯一确定的值与 其对应,那么我们就把x 称为自变量,把y 称为因变量,y 是x 的函数。 *判断Y 是否为X 的函数,只要看X 取值确定的时候,Y 是否有唯一确定的值与之对应 例题:下列函数(1)y =πx (2)y =2x -1 (3)y =1x (4)y =21-3x (5)y =x 2 -1中,是一次函数的有( ) (A )4个 (B )3个 (C )2个 (D )1个 3、定义域:一般的,一个函数的自变量允许取值的围,叫做这个函数的定义域。 4、确定函数定义域的方法: (1)关系式为整式时,函数定义域为全体实数;(2)关系式含有分式时,分式的分母不等于零; (3)关系式含有二次根式时,被开放方数大于等于零;(4)关系式中含有指数为零的式子时,底数不等于零; (5)实际问题中,函数定义域还要和实际情况相符合,使之有意义。 例题:下列函数中,自变量x 的取值围是x ≥2的是( ) A .y B .y C .y D .y 函数y = x 的取值围是___________. 已知函数22 1 +-=x y ,当11≤<-x 时,y 的取值围是 ( ) A .2325≤<-y B .2523<0时,直线y =kx 经过三、一象限,从左向右上升,即随x 的增大y 也增大;当k <0时,?直线y =kx 经过二、四象限,从左向右下降,即随x 增大y 反而减小. (1) 解析式:y =kx (k 是常数,k ≠0) (2) 必过点:(0,0)、(1,k ) (3) 走向:k >0时,图像经过一、三象限;k <0时,?图像经过二、四象限 (4) 增减性:k >0,y 随x 的增大而增大;k <0,y 随x 增大而减小 (5) 倾斜度:|k |越大,越接近y 轴;|k |越小,越接近x 轴 例题:(1).正比例函数(35)y m x =+,当m 时,y 随x 的增大而增大. (2)若23y x b =+-是正比例函数,则b 的值是 ( ) A .0 B . 23 C .23- D .32 - .(3)函数y =(k -1)x ,y 随x 增大而减小,则k 的围是 ( ) A .0k C .1≤k D .1

相关文档
最新文档