高考数学总复习 1-2 命题及其关系 充分条件与必要条件课后演练知能检测 北师大版
高三高考数学复习课件1-2命题及其关系充分条件与必要条件

跟踪训练1 (1)命题“若x,y都是偶数,则x+y也是偶 数”的逆否命题是( )
A.若x+y是偶数,则x与y不都是偶数 B.若x+y是偶数,则x与y都不是偶数 C.若x+y不是偶数,则x与y不都是偶数 D.若x+y不是偶数,则x与y都不是偶数
(2)设原命题:若a+b≥2,则a,b中至少有一个不小于 1,则原命题与其逆命题的真假情况是( )
【答案】 A
题型一 命题及其关系 【例1】 (1)命题:“若x2<1,则-1<x<1”的逆否命题 是( ) A.若x2≥1,则x≥1或x≤-1 B.若-1<x<1,则x2<1 C.若x>1或x<-1,则x2>1 D.若x≥1或x≤-1,则x2≥1
(2)(2018·石家庄模拟)命题“若一个数是负数,则它的 平方是正数”的逆命题是( )
1-m≤1+m, 则1-m≥-2, ∴0≤m≤3.
1+m≤10,
∴当 0≤m≤3 时,x∈P 是 x∈S 的必要条件,即所求 m 的取
值范围是[0,3].
【思维升华】 充分条件、必要条件的应用,一般表现 在参数问题的求解上.解题时需注意:
(1)把充分条件、必要条件或充要条件转化为集合之间的 关系,然后根据集合之间的关系列出关于参数的不等式(或 不等式组)求解.
p是q的_充__分__不__必__要___条件
p⇒q且q⇒ p
p是q的__必__要__不__充__分___条件
p q且q⇒p
p是q的_充__要__条件
p⇔q
p是q的_既__不__充__分__也__不__必__要___条件 p q且q p
【知识拓展】 从集合角度理解充分条件与必要条件
若p以集合A的形式出现,q以集合B的形式出现,即A= {x|p(x)},B={x|q(x)},则关于充分条件、必要条件又可以 叙述为
2013年高考数学总复习1-2命题及其关系充分条件与必要条件课后演练知能检测北师大版

B.a≤1
C.a≥- 3 解析:由 ( x+ 1) 2>4 得 x>1 或 x<- 3,
D.a≤- 3
∴p: x>1 或 x<- 3,
∵綈 p 是綈 q 的充分而不必要条件,即 p 是 q 的必要不充分条件, ∴p? / q,但 q? p,∴ a≥1.
答案: A
二、填空题 ( 共 3 小题,每小题 5 分,共 15 分) 7.若“ x2>1”是“ x< a”的必要不充分条件,则 a 的最大值为 ________.
∴綈 p: { x| x<- 2 或 x> 10} . 又由 q: { x|1 - m≤ x≤1+ m, m> 0} 得: 綈 q: { x| x<1- m或 x> 1+ m,m> 0} . ∵綈 p 是綈 q 的必要不充分条件, ∴綈 q? 綈 p,但綈 p? / 綈 q,
∴ { m>0, -m≤- 2, + m> 10, 或 { m> 0, - m<- 2, + m≥10,
( 即等价关系 ) 证明.
∵a≥0,∴ 4a≥0,
∴4a+ 1> 0, ∴方程 x2+ x- a= 0 的判断式 Δ =4a+ 1>0, ∴方程 x2+ x- a= 0 有实根, 故原命题“若 a≥0,则 x2+ x- a= 0 有实根”为真命题.
又因原命题与其逆否命题等价, 所以“若 a≥0,则 x2+ x- a= 0 有实根”的逆否命题为真命题. 11.设 p:关于 x 的不等式 ax> 1 的解集是 { x| x< 0} ,q:函数 y= lg( ax2-x+ a) 的定义域为 R,
a 的取值范围是 ________.
当 a= 0 时,- 3≤0 成立;
当 a≠0时,得 { a< 0, Δ = 4a2+ 12a≤0, 解得- 3≤ a< 0,
高考数学一轮复习专题1.2命题及其关系、逻辑联结词、充分条件与必要条件(测)(2021年整理)

(浙江专版)2019年高考数学一轮复习专题1.2 命题及其关系、逻辑联结词、充分条件与必要条件(测)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望((浙江专版)2019年高考数学一轮复习专题1.2 命题及其关系、逻辑联结词、充分条件与必要条件(测))的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为(浙江专版)2019年高考数学一轮复习专题1.2 命题及其关系、逻辑联结词、充分条件与必要条件(测)的全部内容。
第02节命题及其关系、逻辑联结词、充分条件与必要条件班级__________ 姓名_____________ 学号___________ 得分__________一、选择题:本大题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.【2018年北京卷文】设a,b,c,d是非零实数,则“ad=bc"是“a,b,c,d成等比数列”的()A。
充分而不必要条件 B. 必要而不充分条件C。
充分必要条件 D。
既不充分也不必要条件【答案】B【解析】分析:证明“”“成等比数列”只需举出反例即可,论证“成等比数列”“”可利用等比数列的性质.详解:当时,不成等比数列,所以不是充分条件;当成等比数列时,则,所以是必要条件.综上所述,“"是“成等比数列”的必要不充分条件故选B.2.【2018届浙江省嘉兴市高三上期末】已知,x y是非零实数,则“x y>"是“11x y<”的A. 充分不必要条件 B。
必要不充分条件C。
充分必要条件 D。
既不充分也不必要条件【答案】D【解析】因为11x y<,所以0{x yx yxyxy>->⇒>或{x yxy<<,所以x y>是“11x y<”的既不充分也不必要条件,选D3。
高考数学一轮总复习 1.2命题及其关系、充分条件与必要条件课件

②命题“若a=0,则ab=0”的否命题是“若a≠0,则
ab≠0”;
③命题“若x,y都是偶数,则x+y也是偶数”的逆命题为真
命题;
④命题“若a∈M,则b∉M”与命题“若b∈M,则a∉M”等
价.
精选ppt
26
解析
(1)命题“若α=
π 4
,则tanα=1”的逆否命题是“若
tanα≠1,则α≠4π”.
精选ppt
答案 (1)A (2)A
精选ppt
31
【规律方法】 充要条件的判断,重在“从定义出发”,利 用命题“若p,则q”及其逆命题的真假进行区分,在具体解题 中,要注意分清“谁是条件”“谁是结论”.有时还可以通过其 逆否命题的真假加以区分.
精选ppt
32
变式思考 2 (1)设a,b为向量,则“|a·b|=|a||b|”是“a∥ b”的( )
答案 (1)C (2)②④
精选ppt
28
考点二 充分条件与必要条件的判断
【例2】 (1)给定两个命题p,q.若綈p是q的必要而不充分条
件,则p是綈q的( ) A.充分而不必要条件 B.必要而不充分条件 C.充要条件 D.既不充分也不必要条件
精选ppt
29
(2)“φ=π”是“曲线y=sin(2x+φ)过坐标原点的”( ) A.充分而不必要条件 B.必要而不充分条件 C.充分必要条件 D.既不充分也不必要条件
27
(2)对于①,若log2a>0=log21,则a>1,所以函数f(x)=logax 在其定义域内是增函数,故①不正确;对于②,依据一个命题的 否命题的定义可知,该说法正确;对于③,原命题的逆命题是 “若x+y是偶数,则x、y都是偶数”,是假命题,如1+3=4是偶 数,但3和1均为奇数,故③不正确;对于④,不难看出,命题 “若a∈M,则b∉M”与命题“若b∈M,则a∉M”互为逆否命 题,因此二者等价,所以④正确.综上可知正确的说法有②④.
(江西版)高考数学总复习 第一章1.2 命题及其关系、充分条件与必要条件教案 理 北师大版

2013年高考第一轮复习数学北师(江西版)理第一章1.2 命题及其关系、充分条件与必要条件考纲要求1.理解命题的概念.2.了解“若p ,则q ”形式的命题及其逆命题、否命题与逆否命题,会分析四种命题的相互关系.3.理解必要条件、充分条件与充要条件的意义.知识梳理 1.命题能够__________、用文字或符号表述的语句叫作命题.其中__________的命题叫作真命题,__________的命题叫作假命题.2.四种命题及其关系(1)四种命题的表示及相互之间的关系.(2)四种命题的真假关系①互为逆否的两个命题__________(__________或__________). ②互逆或互否的两个命题__________. 3.充分条件与必要条件(1)如果p ⇒q ,那么p 是q 的__________,q 是p 的__________. (2)如果p ⇒q ,q ⇒p ,那么p 是q 的__________,记作__________. 基础自测1.若命题p 的逆命题是q ,否命题是r ,则命题q 是命题r 的( ). A .逆命题 B .否命题 C .逆否命题 D .不等价命题2.命题“若a >-3,则a >-6”以及它的逆命题、否命题、逆否命题中假命题的个数为( ).A .1B .2C .3D .43.a <0,b <0的一个必要条件是( ). A .a +b <0 B .a -b >C .a b >1D .a b<-14.直线l 1∥l 2的一个充分条件是( ). A .l 1∥平面α,l 2∥平面αB .直线l 1⊥直线l 3,直线l 2⊥直线l 3C .l 1平行于l 2所在的平面D .l 1⊥平面α,l 2⊥平面α5.命题“如果x -2+(y +1)2=0,则x =2且y =-1”的逆否命题为__________. 思维拓展1.命题“若p,则q”的逆命题为真,逆否命题为假,则p是q的什么条件?提示:逆命题为真即q⇒p,逆否命题为假,即p q,故p是q的必要不充分条件.2.“命题的否定”与“否命题”一样吗?提示:不一样.“否命题”与“命题的否定”是两个不同的概念.如果原命题是“若p,则q”,那么这个原命题的否定是“若p,则q”,即只否定结论;而原命题的否命题是“若p,则q”,即既否定命题的条件,又否定命题的结论.3.如何理解充分条件与必要条件的传递性与对称性?提示:传递性:若p是q的充分(必要)条件,q是r的充分(必要)条件,则p是r的充分(必要)条件;对称性:若p是q的充分条件,则q是p的必要条件,即“p⇒q”⇔“q⇐p”.一、四种命题及其关系【例1】命题“若f(x)是奇函数,则f(-x)是奇函数”的否命题是__________.方法提炼1.命题真假的判定:对于命题真假的判定,关键是分清命题的条件与结论,只有将条件与结论分清,再结合所涉及的知识才能正确地判断命题的真假.2.掌握原命题和逆否命题,否命题和逆命题的等价性,当一个命题直接判断真假性不容易进行时,可以转而判断其逆否命题的真假.3.当一个命题有大前提而需写出其他三种命题时,必须保留大前提不变.请做[针对训练]1二、充分条件与必要条件的判定【例2-1】已知各个命题A,B,C,D,若A是B的充分不必要条件,C是B的必要不充分条件,D是C的充分必要条件,试问D是A的__________条件(填:充分不必要、必要不充分、充要、既不充分也不必要).【例2-2】是否存在实数m,使得2x+m<0是x2-2x-3>0的充分条件?方法提炼判断充分条件、必要条件的方法1.命题判断法设“若p,则q”为原命题,那么:(1)原命题为真,逆命题为假时,则p是q的充分不必要条件;(2)原命题为假,逆命题为真时,p是q的必要不充分条件;(3)原命题与逆命题都为真时,p是q的充要条件;(4)原命题与逆命题都为假时,p是q的既不充分也不必要条件.2.集合判断法从集合的观点看,建立命题p,q相应的集合:p:A={x|p(x)成立},q:B={x|q(x)成立},那么:(1)若A⊆B,则p是q的充分条件,若A B时,则p是q的充分不必要条件;(2)若B⊆A,则p是q的必要条件,若B A时,则p是q的必要不充分条件;(3)若A⊆B且B⊆A,即A=B时,则p是q的充要条件.3.等价转化法条件和结论带有否定性词语的命题,常转化为其逆否命题来判断.请做[针对训练]2三、充分条件与必要条件的证明及应用【例3-1】“x>0”是“3x2>0”成立的( ).A.充分不必要条件 B.必要不充分条件C.既不充分也不必要条件 D.充要条件【例3-2】已知P={x|x2-8x-20≤0},S={x|1-m≤x≤1+m}.(1)是否存在实数m,使x∈P是x∈S的充要条件,若存在,求出m的范围;(2)是否存在实数m,使x∈P是x∈S的必要条件,若存在,求出m的范围.【例3-3】已知数列{a n}的前n项和S n=p n+q(p≠0且p≠1),求证:数列{a n}成等比数列的充要条件是p≠0,p≠1且q=-1.方法提炼1.证明充要性首先要分清谁是条件,谁是结论.在这里要注意两种说法:“p 是q 的充要条件”与“p 的充要条件是q ”;前者p 是条件,后者q 是条件.2.证明分为两个环节:一是充分性,即由条件推结论;二是必要性,即由结论推条件.证明时,不要认为它是推理过程的“双向书写”,而应该进行由条件到结论,由结论到条件的两次证明.3.解决例3-2之类问题时,一般是把充分条件、必要条件或充要条件转化为集合之间的关系,然后根据集合之间的关系列出关于参数的不等式(组)求解.请做[针对训练]3考情分析从近两年的高考试题看,充要条件的判定、命题真假的判断等是高考的热点,题型以选择题、填空题为主,分值为5分,属中低档题目.本节知识常和函数、不等式、向量、三角函数及立体几何中直线、平面的位置关系等有关知识相结合,考查学生对函数的有关性质、不等式的解法及直线与平面位置关系判定的掌握程度.预测2013年高考仍将以充要条件的判定、判断命题的真假为主要考点,重点考查学生的逻辑推理能力.针对训练1.关于命题“若抛物线y =ax 2+bx +c 的开口向下,则{x |ax 2+bx +c <0}≠”的逆命题、否命题、逆否命题,下列结论成立的是( ).A .都真B .都假C .否命题真D .逆否命题真2.使不等式2x 2-5x -3≥0成立的一个充分不必要条件是( ). A .x <0 B .x ≥0C .x ∈{-1,3,5}D .x ≤-12或x ≥33.已知p :-4<x -a <4,q :(x -2)·(x -3)<0,且q 是p 的充分条件,则a 的取值范围为( ).A .-1<a <6B .-1≤a ≤6C .a <-1或a >6D .a ≤-1或a ≥64.(2012江西六校联考)如果对于任意实数x ,[x ]表示不超过x 的最大整数,例如[3.27]=3,[0.6]=0,那么“[x ]=[y ]”是“|x -y |<1”的( ).A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件5.(2011陕西高考,理12)设n ∈N +,一元二次方程x 2-4x +n =0有整数根的充要条件是n =__________.参考答案基础梳理自测 知识梳理1.判断真假 正确 错误2.(2)①等价 同真 同假 ②不等价3.(1)充分条件 必要条件 (2)充要条件 p ⇔q 基础自测1.C 解析:因为命题p 的逆命题是q ,即命题q 的逆命题是p ,又p 的否命题是r ,所以命题q 是命题r 的逆否命题,故选C.2.B 解析:原命题为真命题,从而其逆否命题也为真命题;逆命题:若a >-6,则a >-3为假命题,则否命题也为假命题.故选B.3.A 解析:由数的性质知:a <0,b <0,则a +b <0,所以选A.4.D 解析:平行于同一平面的两直线有三种位置关系,故A 错误;同理判断B ,C 错误,故D 正确.5.如果x ≠2或y ≠-1,则x -2+(y +1)2≠0 解析:“x =2且y =-1”的否定为“x≠2或y ≠-1”,x -2+(y +1)2=0的否定为x -2+(y +1)2≠0.故逆否命题为:“如果x ≠2或y ≠-1,则x -2+(y +1)2≠0”. 考点探究突破【例1】 若f (x )不是奇函数,则f (-x )不是奇函数解析:原命题的否命题是既否定题设又否定结论,故“若f (x )是奇函数,则f (-x )是奇函数”的否命题是“若f (x )不是奇函数,则f (-x )不是奇函数”.【例2-1】 必要不充分 解析:∵A ⇒B ⇒C ⇔D , 而DD A ,∴D 是A 的必要不充分条件. 【例2-2】 解:欲使2x +m <0是x 2-2x -3>0的充分条件,只要⎩⎨⎧⎭⎬⎫x |x <-m 2⊆{x |x <-1或x >3},则只要-m2≤-1,即m ≥2.故存在实数m ,使2x +m <0是x 2-2x -3>0的充分条件.【例3-1】 A 解析:∵x >0⇒3x 2>0,而3x 2>0D x >0,∴x >0是3x 2>0成立的充分不必要条件.【例3-2】 解:(1)由x 2-8x -20≤0, 得-2≤x ≤10.∴P ={x |-2≤x ≤10}, ∵x ∈P 是x ∈S 的充要条件,∴P =S , ∴⎩⎪⎨⎪⎧ 1-m =-2,1+m =10,∴⎩⎪⎨⎪⎧m =3,m =9. ∴这样的m 不存在.(2)由题意x ∈P 是x ∈S 的必要条件,则S ⊆P ,∴⎩⎪⎨⎪⎧1-m ≥-2,1+m ≤10,∴m ≤3.综上,可知m ≤3时,x ∈P 是x ∈S 的必要条件. 【例3-3】 解:先证充分性:当p ≠0,p ≠1,且q =-1时,S n =p n-1. ∴S 1=p -1,即a 1=p -1, 又n ≥2时,a n =S n -S n -1,∴a n =(p -1)p n -1(n ≥2). 又n =1时也满足,∴a n =(p -1)·p n -1(n ∈N +), ∴{a n }是等比数列.再证必要性:当n =1时,a 1=S 1=p +q ,当n ≥2时,a n =S n -S n -1=(p -1)·p n -1.由于p ≠0,p ≠1,∴当n ≥2时,{a n }是等比数列.要使{a n }(n ∈N +)是等比数列,则a 2a 1=p ,即(p -1)p =p (p +q ),∴q =-1,即{a n }是等比数列的充要条件是p ≠0且p ≠1且q =-1.演练巩固提升 针对训练1.D 解析:对于原命题:“若抛物线y =ax 2+bx +c 的开口向下,则{x |ax 2+bx +c <0}≠”,这是一个真命题,所以其逆否命题也为真命题,但其逆命题:“若{x |ax 2+bx +c <0}≠,则抛物线y =ax 2+bx +c 的开口向下”是一个假命题,因为当不等式ax 2+bx +c <0的解集非空时,可以有a >0,即抛物线的开口可以向上,因此否命题也是假命题,故选D.2.C 解析:∵2x 2-5x -3≥0成立的充要条件是x ≤-12或x ≥3,∴对于A ,当x =-13时,2x 2-5x -3<0.同理,B 选项也可用特殊值验证,而D 选项是它的充要条件,故选C.3.B 解析:设q ,p 表示的范围为集合A ,B ,则A =(2,3),B =(a -4,a +4). 因为q 是p 的充分条件,则有A ⊆B , 即⎩⎪⎨⎪⎧a -4≤2,a +4≥3,所以-1≤a ≤6.故选B. 4.A 解析:设[x ]=[y ]=n ,n ∈Z ,则x ,y ∈[n ,n +1),x -y ∈(-1,1),即|x -y |<1,所以[x ]=[y ]⇒|x -y |<1,反之,若x =2.1,y =1.9,满足|x -y |<1,但是[x ]=2,[y ]=1,所以[x ]≠[y ].故|x -y |<1 [x ]=[y ].因此,选A.5.3或4 解析:∵方程有实数根, ∴Δ=16-4n ≥0.∴n ≤4,原方程的根x =4±16-4n2=2±4-n 为整数,则4-n 为整数.又∵n ∈N +,∴n =3或4.反过来,当n =3时,方程x 2-4x +3=0的两根分别为1,3,是整数;当n =4时,方程x 2-4x +4=0的两根相等且为2,是整数.。
高三数学一轮复习 1-2命题及其关系、充分条件与必要条件 北师大版

首页
上页
下页
末页
第六章 数列
(2)原命题即是“若两个三角形全等,则它们的面积 相等”.
逆命题:若两个三角形面积相等,则这两个三角形全 等(或写成:面积相等的三角形全等).
否命题:若两个三角形不全等,则这两个三角形面积 不相等(或写成:不全等的三角形面积不相等).
首页
上页
下页
末页
第六章 数列
首页
上页
下页
末页
第六章 数列
[例1] 把下列命题改写成“若p,则q”的形式,并写 出它们的逆命题、否命题、逆否命题.
(1)正三角形的三内角相等; (2)全等三角形的面积相等; (3)已知a,b,c,d是实数,若a=b,c=d,则a+c= b+d. [分析] 先找出原命题的条件p和结论q,然后根据四 种命题之间的关系直接写出.
第六章 数列
首页
上页
下页
末页
第六章 数列
首页
上页
下页
末页
第六章 数列
考纲解读 1.理解命题的概念. 2.了解“若p,则q”形式的命题及其逆命题、否命题 与逆否命题,会分析四种命题的相互关系. 3.理解必要条件、充分条件与充要条件的意义. 考向预测 1.充分必要条件的判断和四种命题及其关系是本节 考查的热点. 2.多以选择题、填空题的形式出现,由于知识载体 丰富,具有较强的综合性,属中、低档题目.
首页
上页
下页
末页
第六章 数列
7.(2011·济南高二期末)判断命题“若m>0,则x2+x -m=0有实数根”的逆否命题的真假.
[解析] ∵m>0,∴4m>0,∴4m+1>0. ∵方程x2+x-m=0的判别式Δ=4m+1>0, 因而方程x2+x-m=0有实数根, ∴ 原 命 题 “ 若 m>0 , 则 x2 + x - m = 0 有 实 数 根 ” 为 真. 又因原命题与它的逆否命题等价, 所以“若m>0,则x2+x-m=0有实数根”的逆否命 题为真.
【2021】高考数学一轮复习学案:1_2 命题及其关系、充分条件与必要条件
第二节命题及其关系、充分条件与必要条件知识体系必备知识1.命题在数学中用语言、符号或式子表达的,可以判断真假的陈述句叫做命题.其中判断为真的语句叫做真命题,判断为假的语句叫做假命题.2.四种命题之间的关系(1)四种命题间的相互关系.(2)四种命题间的真假关系.①两个命题互为逆否命题,它们有相同的真假性;②两个命题为互逆命题或互否命题,它们的真假性没有关系.3.充分条件与必要条件(1)如果p⇒q,那么p是q的充分条件,q是p的必要条件.(2)如果p⇒q,q⇒p,那么p是q的充要条件.1.易混淆否命题与命题的否定否命题是既否定条件,又否定结论,而命题的否定是只否定命题的结论.2.易忽视充分与必要条件的不同A是B的充分不必要条件(A⇒B且B A)与A的充分不必要条件是B(B ⇒A且A B)两者的不同.基础小题1.有下列命题:①“若x+y>0,则x>0且y>0”的否命题;②“矩形的对角线相等”的否命题;③“若m≥1,则mx2-2(m+1)x+m+3>0的解集是R”的逆命题;④“若a+7是无理数,则a是无理数”的逆否命题.其中是真命题的序号是________.【解析】①的逆命题为“若x>0且y>0,则x+y>0”为真,故否命题为真;②的否命题为“不是矩形的图形,其对角线不相等”,为假命题;③的逆命题为,若mx2-2(m+1)x+m+3>0的解集为R,则m≥1.因为当m=0时,解集不是R,所以应有即m>1.所以③是假命题;④原命题为真,逆否命题也为真.答案:①④2.(教材改编)命题“若x>1,则x>0”的逆否命题是 ( )A.若x≤0,则x≤1B.若x≤0,则x>1C.若x>0,则x≤1D.若x<0,则x<1【解析】选A.依题意,命题“若x>1,则x>0”的逆否命题是“若x≤0,则x≤1”.3.给定两个命题p,q,若﹁p是q的必要而不充分条件,则p是﹁q的( )A.充分而不必要条件B.必要而不充分条件C.充要条件D.既不充分也不必要条件【解析】选A.由q⇒﹁p且﹁p q可得p⇒﹁q且﹁q p,所以p是﹁q的充分而不必要条件.4.设θ∈R,则“<”是“sin θ<”的 ( )A.充分而不必要条件B.必要而不充分条件C.充要条件D.既不充分也不必要条件【解析】选A.<⇔0<θ<⇒sin θ<,但当θ=0时,满足sin θ<,不满足<,所以是充分而不必要条件.5.函数f(x)=x2+mx+1的图象关于直线x=1对称的充要条件是________.【解析】已知函数f(x)=x2+mx+1的图象关于直线x=1对称,则m=-2;反之也成立,所以函数f(x)=x2+mx+1的图象关于直线x=1对称的充要条件是m=-2.答案:m=-2。
(旧教材适用)2023高考数学一轮总复习第一章集合与常用逻辑用语第2讲命题及其关系充分条件与必要条件
第2讲命题及其关系、充分条件与必要条件1.命题的概念用语言、符号或式子表达的,可以□01判断真假的陈述句叫做命题.判断为真的语句是□02真命题,判断为假的语句是□03假命题.2.四种命题及其关系3.充分条件、必要条件与充要条件的概念若p⇒q,则p是q的□08充分条件,q是p的□09必要条件p是q的□10充分不必要条件p⇒q且q⇒/pp是q的□11必要不充分条件p⇒/q且q⇒pp是q的□12充要条件p⇔qp是q的□13既不充分也不必要条件p⇒/q且q⇒/p1.两个命题互为逆否命题,它们具有相同的真假性.2.两个命题互为逆命题或互为否命题,它们的真假性没有关系.3.(1)若p是q的充分不必要条件,q是r的充分不必要条件,则p是r的充分不必要条件.(2)若p是q的充分不必要条件,则¬q是¬p的充分不必要条件.4.若A={x|p(x)},B={x|q(x)},则(1)若A⊆B,则p是q的充分条件;(2)若A⊇B,则p是q的必要条件;(3)若A=B,则p是q的充要条件;(4)若A B,则p是q的充分不必要条件;(5)若A B ,则p 是q 的必要不充分条件;(6)若A ⊆/ B 且A ⊉B ,则p 是q 的既不充分也不必要条件.1.若集合A ={2,4},B ={1,m 2},则“A ∩B ={4}”是“m =2”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件 答案 B解析 当m =2时,有A ∩B ={4};若A ∩B ={4},则m 2=4,解得m =±2,不能推出m B. 2.(2021·吉林长春高三监测(三))已知直线a ,b 与平面α,β,γ,能使α⊥β的充分条件是( )A .α⊥γ,β⊥γB .α∩β=a ,b ⊥a ,b ⊂βC .a ∥α,a ∥βD .a ∥α,a ⊥β 答案 D解析 a ∥α,过直线a 作平面与α交于直线b ,∴a ∥b ,又a ⊥β,∴b ⊥β,又b ⊂α,∴α⊥β.故选D.3.有下列几个命题:①“若a >b ,则1a >1b”的否命题;②“若x +y =0,则x ,y 互为相反数”的逆命题; ③“若x 2<4,则-2<x <2”的逆否命题. 其中真命题的序号是( ) A .① B .①② C .②③ D .①②③答案 C解析 ①原命题的否命题为“若a ≤b ,则1a ≤1b”,假命题;②原命题的逆命题为“若x ,y 互为相反数,则x +y =0”,真命题;③原命题为真命题,故其逆否命题为真命题.所以真命题的序号是②③.4.(2021·河南重点中学高三联考)“x =2k π+π4(k ∈Z )”是“tan x =1”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件 答案 A解析 当x =2k π+π4(k ∈Z )时,tan x =1,即充分性成立;当tan x =1时,x =2k π+π4(k ∈Z )或x =2k π+5π4(k ∈Z ),即必要性不成立.综上可得,“x =2k π+π4(k ∈Z )”是“tan x =1”的充分不必要条件.故选A.5.“若x ,y ∈R ,x 2+y 2=0,则x ,y 全为0”的否命题是 .答案 若x ,y ∈R ,x 2+y 2≠0,则x ,y 不全为0解析 根据命题“若p ,则q ”的否命题为“若¬p ,则¬q ”,其原命题的否命题是“若x ,y ∈R ,x 2+y 2≠0,则x ,y 不全为0”.6.(2022·安徽芜湖高三摸底)已知p :x 2-7x +10<0,q :x 2-4mx +3m 2<0,其中m >0.若¬q 是¬p 的充分不必要条件,则实数m 的取值范围为 .答案 ⎣⎢⎡⎦⎥⎤53,2解析 由¬q 是¬p 的充分不必要条件知p 是q 的充分不必要条件,又p :2<x <5,q :m <x <3m ,所以⎩⎪⎨⎪⎧m ≤2,3m ≥5,m >0,即53≤m ≤2.考向一 四种命题及其相互关系例1 写出下列命题的逆命题、否命题及逆否命题,并分别判断四种命题的真假: (1)末位数字是0的多位数一定是5的倍数; (2)在△ABC 中,若AB >AC ,则∠C >∠B ; (3)若x 2-2x -3>0,则x <-1或x >3.解 (1)原命题:若一个多位数的末位数字是0,则它是5的倍数. 逆命题:若一个多位数是5的倍数,则它的末位数字是0. 否命题:若一个多位数的末位数字不是0,则它不是5的倍数. 逆否命题:若一个多位数不是5的倍数,则它的末位数字不是0. 这里,原命题与逆否命题为真命题,逆命题与否命题是假命题. (2)逆命题:在△ABC 中,若∠C >∠B ,则AB >AC . 否命题:在△ABC 中,若AB ≤AC ,则∠C ≤∠B .逆否命题:在△ABC中,若∠C≤∠B,则AB≤AC.这里,四种命题都是真命题.(3)逆命题:若x<-1或x>3,则x2-2x-3>0.否命题:若x2-2x-3≤0,则-1≤x≤3.逆否命题:若-1≤x≤3,则x2-2x-3≤0.这里,四种命题都是真命题.(1)写一个命题的其他三种命题时,不是“若p,则q”形式的命题,需先改写.若命题有大前提,需保留大前提,本例(2)中,大前提“在△ABC中”需保留.(2)判断一个命题为真命题,要给出推理证明;判断一个命题是假命题,只需举出反例即可.(3)根据“原命题与逆否命题同真同假,逆命题与否命题同真同假”这一性质,当一个命题直接判断不易进行时,可转化为判断其等价命题的真假.1.给出下列命题:①“若a≤b,则a<b”的否命题;②“若a=1,则ax2-x+3≥0的解集为R”的逆否命题;③“周长相等的圆面积相等”的逆命题;④“若2x 为有理数,则x为无理数”的逆否命题.其中真命题的序号为( )A.②④B.①②③C.②③④D.①③④答案 B解析对于①,逆命题为真,故否命题为真;对于②,原命题为真,故逆否命题为真;对于③,“面积相等的圆周长相等”为真;对于④,“若2x为有理数,则x为0或无理数”,故原命题为假,逆否命题为假.故选B.精准设计考向,多角度探究突破考向二充分、必要条件的判断角度定义法判断充分、必要条件例2 (2021·北京高考)已知f(x)是定义在[0,1]上的函数,那么“函数f(x)在[0,1]上单调递增”是“函数f(x)在[0,1]上的最大值为f(1)”的( )A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件答案 A解析若函数f(x)在[0,1]上单调递增,则f(x)在[0,1]上的最大值为f(1),若f(x)在[0,1]上的最大值为f (1),比如f (x )=⎝ ⎛⎭⎪⎫x -132,但f (x )=⎝ ⎛⎭⎪⎫x -132在⎣⎢⎡⎦⎥⎤0,13上单调递减,在⎣⎢⎡⎦⎥⎤13,1上单调递增,故f (x )在[0,1]上的最大值为f (1)推不出f (x )在[0,1]上单调递增,故“函数f (x )在[0,1]上单调递增”是“函数f (x )在[0,1]上的最大值为f (1)”的充分而不必要条件,故选A.角度集合法判断充分、必要条件例3 (2021·天津高考)已知a ∈R ,则“a >6”是“a 2>36”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件 答案 A解析 若a >6,则a 2>36,故充分性成立;若a 2>36,则a >6或a <-6,推不出a >6,故必要性不成立.所以“a >6”是“a 2>36”的充分不必要条件.故选A.角度等价转化法判断充分、必要条件例4 给定两个命题p ,q .若¬p 是q 的必要不充分条件,则p 是¬q 的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件 答案 A解析 因为¬p 是q 的必要不充分条件,则q ⇒¬p 但¬p ⇒/ q ,其逆否命题为p ⇒¬q 但¬q ⇒/p ,所以p 是¬q 的充分不必要条件.充要条件的三种判断方法(1)定义法:根据p ⇒q ,q ⇒p 进行判断.(2)集合法:根据p ,q 成立时对应的集合之间的包含关系进行判断.(3)等价转化法:根据一个命题与其逆否命题的等价性,把要判断的命题转化为其逆否命题进行判断,这个方法特别适合以否定形式给出的问题,如“xy ≠1”是“x ≠1或y ≠1”的何种条件,即可转化为判断“x =1且y =1”是“xy =1”的何种条件.2.(2021·四川成都七中二诊)已知x ,y ∈R ,则“x 2+y 2<1”是“(x -1)(y-1)>0”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件 答案 A解析 由x 2+y 2<1,可得-1<x <1,且-1<y <1.则可得到(x -1)(y -1)>0,故充分性成立;反之若(x -1)(y -1)>0,可取x =y =2,显然得不到x 2+y 2<1,故必要性不成立,∴“x 2+y 2<1”是“(x -1)(y -1)>0”的充分不必要条件.故选A.3.设U 为全集,A ,B 是集合,则“存在集合C 使得A ⊆C ,B ⊆∁U C ”是“A ∩B =∅”的( ) A .充分而不必要条件 B .必要而不充分条件 C .充要条件D .既不充分也不必要条件 答案 C解析 由Venn 图易知充分性成立.反之,A ∩B =∅时,不妨取C =∁U B ,此时A ⊆C ,故必要性成立.故选C.4.如果x ,y 是实数,那么“x ≠y ”是“cos x ≠cos y ”的( ) A .充要条件 B .充分不必要条件 C .必要不充分条件 D .既不充分也不必要条件 答案 C解析 因为x =y ⇒cos x =cos y ,而cos x =cos y ⇒/ x =y ,所以“cos x =cos y ”是“x =y ”的必要不充分条件,即“x ≠y ”是“cos x ≠cos y ”的必要不充分条件.考向三 充分、必要条件的探求与应用例5 (1)“不等式x 2-x +m >0在R 上恒成立”的一个必要不充分条件是( ) A .m >14 B .0<m <1C .m >0D .m >1 答案 C解析 不等式x 2-x +m >0在R 上恒成立⇔1-4m <0,得m >14,在选项中只有“m >0”是“不等式x 2-x +m >0在R 上恒成立”的必要不充分条件,故选C.(2)(2022·郑州模拟)已知“p :(x -m )2>3(x -m )”是“q :x 2+3x -4<0”的必要不充分条件,则实数m 的取值范围为 .答案 (-∞,-7]∪[1,+∞)解析 由p 中的不等式(x -m )2>3(x -m ),得(x -m )(x -m -3)>0,解得x >m +3或x <m .由q 中的不等式x 2+3x -4<0,得(x -1)(x +4)<0,解得-4<xp 是q 的必要不充分条件,所以q ⇒p ,即m +3≤-4或m ≥1,解得m ≤-7或mm 的取值范围为(-∞,-7]∪[1,+∞).1.条件、结论的相对性充分条件、必要条件是相对的概念,在进行判断时,一定要注意哪个是“条件”,哪个是“结论”.要注意条件与结论间的推出方向.如“A 是B 的充分不必要条件”是指A ⇒B 但B ⇒/ A ;“A 的充分不必要条件是B ”是指B ⇒A 但A ⇒/ B .以上两种说法在充要条件的推理判断中经常出现且容易混淆.2.根据充分、必要条件求解参数范围的方法(1)解决此类问题一般是把充分条件、必要条件或充要条件转化为集合之间的关系,然后根据集合之间的关系列出关于参数的不等式(组)求解.(2)求解参数的取值范围时,一定要注意区间端点值的检验,尤其是利用两个集合之间的关系求解参数的取值范围时,不等式是否能够取等号决定端点值的取舍,处理不当容易出现漏解或增解的现象.p :A =⎩⎨⎧⎭⎬⎫x ⎪⎪⎪x -21-x ≤0,q :B ={x |x -a <0},若p 是q 的必要不充分条件,则实数a 的取值范围是( )A .(2,+∞) B.[2,+∞) C .(-∞,1) D .(-∞,1] 答案 D解析 ∵A =⎩⎨⎧⎭⎬⎫x ⎪⎪⎪x -21-x ≤0={x |(x -2)(x -1)≥0且x ≠1}={x |x <1或x ≥2},B ={x |x-a <0}={x |x <a },又p 是q 的必要不充分条件,∴B A ,由数轴可得a ≤1,故选D.6.一元二次方程ax 2+2x +1=0(a ≠0)有一个正根和一个负根的一个充分不必要条件是( )A .a <0B .a >0C .a <-1D .a >1答案 C解析 设ax 2+2x +1=0(a ≠0)的两个根分别为x 1,x 2,则一元二次方程ax 2+2x +1=0(a≠0)有一个正根和一个负根等价于⎩⎪⎨⎪⎧Δ=b 2-4ac =4-4a >0,x 1x 2=c a =1a <0,解得a <0,这是方程有一个正根和一个负根的充要条件,由题意可知选C.1.命题“若x2<1,则-1<x<1”的逆否命题是( )A.若x2≥1,则x≥1或x≤-1B.若-1<x<1,则x2<1C.若x>1或x<-1,则x2>1D.若x≥1或x≤-1,则x2≥1答案 D解析原命题的逆否命题是把条件和结论都否定后,再交换位置,注意“-1<x<1”的否定是“x≥1或x≤-1”.故选D.2.命题“若x2+y2=0,则x=y=0”的否命题是( )A.若x2+y2=0,则x,y中至少有一个不为0B.若x2+y2≠0,则x,y中至少有一个不为0C.若x2+y2≠0,则x,y都不为0D.若x2+y2=0,则x,y都不为0答案 B解析否命题是既否定条件又否定结论.3.命题“若m>-1,则m>-4”以及它的逆命题、否命题、逆否命题中,假命题的个数为( )A.1 B.2 C.3 D.4答案 B解析原命题为真命题,从而其逆否命题也为真命题;逆命题“若m>-4,则m>-1”为假命题,故否命题也为假命题,故选B.4.(2021·浙江高考)已知非零向量a,b,c,则“a·c=b·c”是“a=b”的( ) A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件答案 B解析由a·c=b·c可得(a-b)·c=0,所以(a-b)⊥c或a=b,所以“a·c=b·c”是“a=b”的必要不充分条件.故选B.5.(2022·开封模拟)已知直线l,m和平面α,m⊂α,则“l∥m”是“l∥α”的( ) A.充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件 答案 D解析 若l ∥m ,当l ⊄α时,l ∥α,当l ⊂α时不能得出l ∥α,故充分性不成立;若l ∥α,则l 与m 可能平行,也可能异面,故必要性也不成立.由上可知“l ∥m ”是“l ∥α”的既不充分也不必要条件.故选D.6.(2022·江西上饶六校联考)下面四个条件中,使a >b 成立的充分不必要条件是( ) A .a >b +1 B .a >b -1 C .a 2>b 2D .a 3>b 3答案 A解析 a >b +1⇒a >b ;反之,例如a =2,b =1满足a >b ,但a =b +1,即a >b 推不出a >b +1,故a >b +1是a >b 成立的充分不必要条件.故选A.7.下列命题中为真命题的是( ) A .命题“若x >y ,则x >|y |”的逆命题 B .命题“若x 2≤1,则x ≤1”的否命题 C .命题“若x =1,则x 2-x =0”的否命题 D .命题“若a >b ,则1a <1b”的逆否命题答案 A解析 A 中原命题的逆命题是“若x >|y |,则x >y ”,由x >|y |≥y 可知其是真命题;B 中原命题的否命题是“若x 2>1,则x >1”,是假命题,因为x 2>1⇔x >1或x <-1;C 中原命题的否命题是“若x ≠1,则x 2-x ≠0”,是假命题;D 中原命题是假命题,举例:a =1,b =-1.所以其逆否命题也是假命题.故选A.8.(2021·成都第一次诊断性检测)已知锐角三角形ABC 的三个内角分别为A ,B ,C ,则“sin A >sin B ”是“tan A >tan B ”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件 答案 C解析 在锐角三角形ABC 中,根据正弦定理a sin A =bsin B,知sin A >sin B ⇔a >b ⇔A >B ,而正切函数y =tan x 在⎝⎛⎭⎪⎫0,π2上单调递增,所以A >B ⇔tan A >tan B .故选C.9.若命题p 的否命题为r ,命题r 的逆命题为s ,p 的逆命题为t ,则s 是p 的逆命题t 的( )A .逆否命题B .否命题C .逆命题D .原命题答案 B解析 设命题p :“若x ,则y ”,则命题p 的否命题r 为“若¬x ,则¬y ”;命题r 的逆命题s 为“若¬y ,则¬x ”;又p 的逆命题t 为“若y ,则x ”,所以s 是p 的逆命题t 的否命题.10.(2022·山西吕梁一模)设p :关于x 的方程4x -2x-a =0有解;q :函数f (x )=log 2(x +a -2)在区间(0,+∞)上恒为正值,则p 是q 的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件 答案 B解析 由题意知p :方程a =4x -2x有解,a =⎝ ⎛⎭⎪⎫2x -122-14,所以a ≥-14,q :log 2(x +a-2)>0在(0,+∞)上恒成立,则0+a -2≥1,解得a ≥3,所以p 是q 的必要不充分条件.故选B.11.(2021·全国甲卷)等比数列{a n }的公比为q ,前n 项和为S n .设甲:q >0,乙:{S n }是递增数列,则( )A .甲是乙的充分条件但不是必要条件B .甲是乙的必要条件但不是充分条件C .甲是乙的充要条件D .甲既不是乙的充分条件也不是乙的必要条件 答案 B解析 当a 1=-1,q =2时,{S n }是递减数列,所以甲不是乙的充分条件;当{S n }是递增数列时,有a n +1=S n +1-S n =a 1q n >0,若a 1>0,则q n >0(n ∈N *),即q >0;若a 1<0,则q n <0(n ∈N *),这样的q 不存在,所以甲是乙的必要条件.故选B.12.已知命题p :x 2+2x -3>0;命题q :x >a ,且¬q 的一个充分不必要条件是¬p ,则a 的取值范围是( )A .[1,+∞)B .(-∞,1]C .[-1,+∞)D .(-∞,-3]答案 A解析 由x 2+2x -3>0,得x <-3或x >1,由¬q 的一个充分不必要条件是¬p ,可知¬p 是¬q 的充分不必要条件,等价于q 是p 的充分不必要条件.所以{x |x >a }{x |x <-3或x >1},所以a ≥1.13.王昌龄的《从军行》中两句诗为“黄沙百战穿金甲,不破楼兰终不还”,其中后一句中“攻破楼兰”是“返回家乡”的 条件(填“充分”“必要”“既不充分也不必要”中的一个).答案 必要解析 设p :攻破楼兰,q :返回家乡,由题意知¬p ⇒¬q ,所以q ⇒p ,故p 是q 的必要条件.14.给出下列不等式:①x <1;②0<x <1;③-1<x <0;④-1<x <1.其中可以作为“x 2<1”的一个充分条件的所有序号为 .答案 ②③④解析 由于x 2<1即-1<x <1,①显然不能使-1<x <1一定成立,②③④满足题意.15.(2021·云南昆明高三检测)已知p :12≤x ≤1,q :(x -a )(x -a -1)>0,若p 是¬q 的充分不必要条件,则实数a 的取值范围是 .答案 ⎩⎨⎧⎭⎬⎫a ⎪⎪⎪0≤a ≤12 解析 ¬q :(x -a )(x -a -1)≤0⇒a ≤x ≤ap 是¬q 的充分不必要条件,知⎩⎪⎨⎪⎧a ≤12,a +1>1或⎩⎪⎨⎪⎧a <12,a +1≥1⇒0≤a ≤12. 16.(2022·河南许昌高三阶段考试)给出下列命题:①已知集合A ={1,a },B ={1,2,3},则“a =3”是“A ⊆B ”的充分不必要条件; ②“x <0”是“ln (x +1)<0”的必要不充分条件;③“函数f (x )=cos 2ax -sin 2ax 的最小正周期为π”是“a =1”的充要条件;④“平面向量a 与b 的夹角是钝角”的充要条件是“a ·b <0”.其中正确命题的序号是 (把所有正确命题的序号都填上).答案 ①②解析 因为“a =3”可以推出“A ⊆B ”,但“A ⊆B ”不能推出“a =3”,所以“a =3”是“A ⊆B ”的充分不必要条件,故①正确;“x <0”不能推出“ln (x +1)<0”,但由ln (x +1)<0可得-1<x <0,即“ln (x +1)<0”可以推出“x <0”,所以“x <0”是“ln (x +1)<0”的必要不充分条件,故②正确;因为f (x )=cos 2ax -sin 2ax =cos2ax ,所以若其最小正周期为π,则2π2|a |=π⇒a =±1,因此“函数f (x )=cos 2ax -sin 2ax 的最小正周期为π”是“a =1”的必要不充分条件,故③错误;“平面向量a 与b 的夹角是钝角”可以推出“a ·b <0”,但a ·b <0时,平面向量a 与b 的夹角是钝角或平角,所以“a ·b <0”是“平面向量a 与b 的夹角是钝角”的必要不充分条件,故④错误.17.已知p :3-m 2<x <3+m 2,q :x (x -3)<0,若p 是q 的充分不必要条件,求实数m 的取值范围.解 记A =x 3-m 2<x <3+m 2,B ={x |x (x -3)<0}={x |0<x <3}.若p 是q 的充分不必要条件,则A B .注意到B ={x |0<x <3}≠∅,可分两种情况讨论:①若A =∅,即3-m 2≥3+m 2,解得m ≤0,此时A B ,符合题意; ②若A ≠∅,即3-m 2<3+m 2,解得m >0, 要使A B ,应有⎩⎪⎨⎪⎧3-m 2≥0,3+m 2<3,m >0或⎩⎪⎨⎪⎧3-m 2>0,3+m 2≤3,m >0, 解得0<m <3.综上可得,实数m 的取值范围是(-∞,3).18.已知集合A ={x |0<ax +1≤3}(a ≠0),集合B ={x |-1<x ≤2}.若命题p :x ∈A ,命题q :x ∈B ,且p 是q 的充分不必要条件,求实数a 的取值范围. 解 因为p 是q 的充分不必要条件,所以p ⇒q ,q ⇒/ p ,所以A B .由集合A 得-1<ax ≤2. (*)①当a >0时,由(*)式得A =⎩⎨⎧⎭⎬⎫x ⎪⎪⎪-1a <x ≤2a , 所以⎩⎪⎨⎪⎧-1a ≥-1,2a <2或⎩⎪⎨⎪⎧-1a >-1,2a ≤2,解得a >1; ②当a <0时,由(*)式得A =⎩⎨⎧⎭⎬⎫x ⎪⎪⎪2a ≤x <-1a ,所以⎩⎪⎨⎪⎧2a >-1,-1a ≤2,解得a <-2. 综上所述,实数a 的取值范围是{a |a <-2或a >1}.。
高考数学北师大版二轮复习课件1-2 命题及其关系充分条件与必要条件
(3)可转化为集合间的包含关系来判断.
【自主试解】
(1)若∠A=∠B,则 sin A=sin B,即 p⇒q.
又若 sin A=sin B,则 2Rsin A=2Rsin B,即 a=b. ∴∠A=∠B,即 q⇒p.所以 p 是 q 的充要条件. f-x (2)∵ =1, fx ∴f(-x)=f(x), ∴y=f(x)是偶函数,∴p⇒q. 取 f(x)=x2 为 R 上的偶函数, f-x 但 在 x=0 时没有意义,∴q⇒/p. fx ∴p 是 q 的充分不必要条件.
并写出否命题、逆否命题,然后证明所得结论,判定真假. 【自主试解】 (1)否命题:已知函数 f(x)在(-∞,+∞)上是增 加的,若 a+b<0,则 f(a)+f(b)<f(-a)+f(-b). 否命题为真命题,证明如下: ∵f(x)在(-∞,+∞)上是增加的,
若 a+b<0,则 a<-b,b<-a, ∴f(a)<f(-b),f(b)<f(-a). ∴f(a)+f(b)<f(-a)+f(-b), 故否命题为真命题. (2)逆否命题:已知函数 f(x)在(-∞,+∞)上是增加的,若 f(a) +f(b)<f(-a)+f(-b),则 a+b<0. 该逆否命题为真命题,证明如下:
) B.若 x2=1,则 x=1 D.若 x<y,则 x2<y2
1 1 解析:由 = 可得 x=y;由 x2=1 可得 x=± 1;由 x=y,则 x, x y y不一定有意义;而 x<y 不一定得到 x2<y2. 答案:A
二、四种命题及其关系 1.
2.四种命题的真假关系 (1)两个命题互为逆否命题,它们有 相同 的真假性; (2)两个命题互为逆命题或互为否命题,它们的真假性没有关系 .
高考数学一轮复习 1-2命题及其关系、充分条件与必要条件课件 文 北师大版
3 .在判断四种命题之间的关系时,首先要分 清命题的条件与结论,再比较每个命题的条件 与结论之间的关系,要注意四种命题关系的相 对性,一个命题定为原命题,也就相应地有了 它的“逆命题”、“否命题”和“逆否命 题”.
例1 (2010年营口模拟)分别写出下列命题的逆 命题形. (2)若q<1,则方程x2+2x+q=0有实根. (3)若x2+y2=0,则实数x、y全为零.
考点一 命题的关系及命题真假的判断 1 .判断一个语句是不是命题,就是要看它是 否符合“是陈述句 ”和“可以判断真假 ”这两 个条件.只有这两个条件都具备的语句才是命 题. 2 .对于命题真假的判定,关键是分清命题的 条件与结论,只有将条件与结论分清,再结合 所涉及的知识才能正确地判断命题的真假.
2.四种命题及其关系 (1)四种命题
命题 原命题 逆命题 否命题 逆否命题 表述形式 若p,则q 若q,则p 若¬p,则¬q 若¬q,则¬p
(2)四种命题间的逆否关系
(3)四种命题的真假关系 ①两个命题互为逆否命题,它们有相同的真假 性; ②两个命题互为逆命题或互为否命题,它们的 真假性没有关系.
解析:对于①,其否命题是“若x2+y2=0,则 x、y全为零”.这显然是正确的,故①为真命 题;对于②,其逆命题是 “若两多边形相似, 它们一定是正多边形”,这显然是错误的,故 ② 为 假 命 题 ; 对 于 ③ , 由 于 Δ = 1 + 4m , 当 m>0 时, Δ>0 ,所以原命题正确,其逆否命题 也正确,即③为真命题;对于④,原命题为真, 故逆否命题也为真.因此正确的是①③④,选 B. 答案:B
【解析】 (1)逆命题:全等三角形的面积相等,真命题.否命 题:面积不相等的两个三角形不是全等三角形,真命题.逆否 命题:两个不全等的三角形的面积不相等,假命题. (2)逆命题:若方程x2+2x+q=0有实根,则q<1,假命题. 否命题:若q≥1,则方程x2+2x+q=0无实根,假命题. 逆否命题:若方程x2+2x+q=0无实根,则q≥1,真命题. (3)逆命题:若实数x,y全为零,则x2+y2=0,真命题. 否命题:若x2+y2≠0,则实数x,y不全为零,真命题. 逆否命题:若实数x,y不全为零,则x2+y2≠0,真命题.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(时间:60分钟,满分:80分)
一、选择题(共6小题,每小题5分,满分30分)
1.(2012年蚌埠模拟)以下三个命题:
①命题“若x =2则x 2
=4”的逆否命题;
②“α=π4
”是“sin 2α=1”的充分不必要条件; ③命题“若q ≤1,则x 2+2x +q =0有实根”的否命题,其中正确的命题个数是( )
A .0
B .1
C .2
D .3
解析:①②③都是真命题,故选D.
答案:D
2.(2012年北京西城区期末)命题“若a >b ,则a +1>b ”的逆否命题是( )
A .若a +1≤b ,则a >b
B .若a +1<b ,则a >b
C .若a +1≤b ,则a ≤b
D .若a +1<b ,则a <b
解析:“若a >b ,则a +1>b ”的逆否命题为“若a +1≤b ,则a ≤b ”,故选C.
答案:C
3.(2012年日照月考)命题:“设a 、b 、c ∈R ,若ac 2>bc 2,则a >b ”及其逆命题、否命题、
逆否命题中真命题共有( )
A .3个
B .2个
C .1个
D .0个
解析:原命题的逆命题是:“若a >b ,则ac 2>bc 2”,不正确.
如c =0时,不成立;原命题的否命题是:“设a ,b ,c ∈R ,若ac 2≤bc 2,则a ≤b ”,不正确,如c =0;原命题的逆否命题与原命题等价,因为原命题真,故其逆否命题亦真,因此原命题及其逆否命题是真命题.
答案:B
4.(2012年乌鲁木齐高三二模)已知直线l ,m ,其中只有m 在平面α内,则“l ∥α”是“l
∥m ”的( )
A .充分不必要条件
B .必要不充分条件
C .充分必要条件
D .既不充分也不必要条件
解析:若l ∥α,且m ⊂α,则l 与m 平行或异面;若l ∥m ,l 不在平面α内,而m 在平面α内,则l ∥α.综上所述,“l ∥α”是“l ∥m ”的必要不充分条件,选B. 答案:B
5.(2012年西安五校第一次模拟)“a <-2”是“函数f (x )=ax +3在区间[-1,2]上存在零点
x 0”的( )
A .充分不必要条件
B .必要不充分条件
C .充要条件
D .既不充分也不必要条件
解析:当a <-2时,由f (x )=ax +3=0得,x =-3a ∈⎝ ⎛⎭
⎪⎫0,32⊂[-1,2];由函数f (x )=ax +3在区间[-1,2]上存在零点x 0得,x 0=-3
a
∈[-1,2],此时a =3也成立.因此,“a <-2”是“函数f (x )=ax +3在区间[-1,2]上存在零点x 0”的充分不必要条件,选A. 答案:A
6.(2012年合肥模拟)已知条件p :(x +1)2>4,条件q :x >a ,且綈p 是綈q 的充分而不必要
条件,则a 的取值范围是( )
A .a ≥1 B.a ≤1
C .a ≥-3
D .a ≤-3
解析:由(x +1)2>4得x >1或x <-3,
∴p :x >1或x <-3,
∵綈p 是綈q 的充分而不必要条件,即p 是q 的必要不充分条件,
∴p ⇒/q ,但q ⇒p ,∴a ≥1.
答案:A
二、填空题(共3小题,每小题5分,共15分)
7.若“x 2>1”是“x <a ”的必要不充分条件,则a 的最大值为________.
解析:由x 2>1,得x <-1或x >1,
又“x 2>1”是“x <a ”的必要不充分条件,知“x <a ”可以推出“x 2>1”,反之不成立,所以a ≤-1,
即a 的最大值为-1.
答案:-1
8.若命题“ax 2-2ax -3>0不成立”是真命题,则实数a 的取值范围是________.
解析:ax 2-2ax -3≤0恒成立,
当a =0时,-3≤0成立;
当a ≠0时,得{ a <0,Δ=4a 2+12a ≤0,解得-3≤a <0, 故-3≤a ≤0.
答案:[-3,0]
9.(2012年皖南八校联考(三))“a >1”是“函数f (x )=log a x -x +2(a >0,且a ≠1)有两个零
点”的________条件.(从充分性和必要性两个方面作答)
解析:若函数f (x )=log a x -x +2(a >0,且a ≠1)有两个零点,即函数y =log a x 的图像
与直线y =x -2有两个交点,结合图像易知,此时a >1;当a >1时,函数f (x )=log a x -x +2(a >0,且a ≠1)有两个零点,故“a >1”是“函数f (x )=log a x -x +2(a >0,且a ≠1)有两个零点”的充要条件.
答案:充要
三、解答题(共3小题,满分35分)
10.判断命题“若a ≥0,则x 2
+x -a =0有实根”的逆否命题的真假.
解析:法一:写出逆否命题,再判断其真假.
逆否命题:若x 2+x -a =0无实根,则a <0.
判断如下:
∵x 2+x -a =0无实根,
∴Δ=1+4a <0,
∴a <-14
<0, ∴“若x 2+x -a =0无实根,则a <0”为真命题.
法二:利用命题之间的关系:原命题与逆否命题同真同假(即等价关系)证明. ∵a ≥0,∴4a ≥0,
∴4a +1>0,
∴方程x 2+x -a =0的判断式Δ=4a +1>0,
∴方程x 2+x -a =0有实根,
故原命题“若a ≥0,则x 2+x -a =0有实根”为真命题.
又因原命题与其逆否命题等价,
所以“若a ≥0,则x 2+x -a =0有实根”的逆否命题为真命题.
11.设p :关于x 的不等式a x >1的解集是{x |x <0},q :函数y =lg(ax 2-x +a )的定义域为R ,
如果p 和q 有且仅有一个为真,求a 的取值范围.
解析:若p 真,则0<a <1;
若p 假,则a ≥1或a ≤0;
若q 真,由{ a >0,Δ=1-4a 2<0,得a >12
; 若q 假,则a ≤12
. 又p 和q 有且仅有一个为真,
当p 真q 假时,0<a ≤12
; 当p 假q 真时,a ≥1.
综上,得a ∈⎝ ⎛⎦⎥⎤0,12∪[1,+∞). 12.已知p :{}x | { x +2≥0,x -10≤0,q :{x |1-m ≤x ≤1+m ,m >0}.若綈p 是綈q
的必要不充分条件,求实数m 的取值范围.
解析:法一:p :{}
x | { x +2≥0,x -10≤0={x |-2≤x ≤10},
∴綈p :{x |x <-2或x >10}.
又由q :{x |1-m ≤x ≤1+m ,m >0}得:
綈q :{x |x <1-m 或x >1+m ,m >0}. ∵綈p 是綈q 的必要不充分条件,
∴綈q ⇒綈p ,但綈p ⇒/綈q ,
∴{ m >0,1-m ≤-2,1+m >10,
或{ m >0,1-m <-2,1+m ≥10,解得
m ≥9,
∴m 的取值范围是[9,+∞).
法二:p :{}x | { x +2≥0,x -10≤0
={x |-2≤x ≤10}, q :{x |1-m ≤x ≤1+m ,m >0}.
∵綈p 是綈q 的必要不充分条件,
即綈q ⇒綈p ,但綈p ⇒/綈q ,
它等价于p ⇒q ,但q ⇒/p .
∴{ m >0,1-m ≤-2,1+m >10,
或{ m >0,1-m <-2,1+m ≥10, 解得m ≥9.
∴m 的取值范围是[9,+∞).。