向量法求空间角(有答案)

合集下载

向量法求空间角

向量法求空间角
, ,
C
D
A
B
3.如图四棱锥S-ABCD中,AB//CD,BC⊥CD, 侧面SAB为等边三角形,AB=BC=2,CD=SD=1 (1)求异面直线AB与SD所成角的大小; (2)求AB与平面SCB所成角的正弦值; (3)求平面SAD与平面SBC所成 锐二面角的余弦值;
向量法求空间角
1.异面直线所成角:
cos

C
a a
D
| cos a, b |
A

b

B
A
D1
2.直线与平面所成角:
n
O
sin
| cos n, AB |

B

n

B A
3.二面角:

D
cos cos AB, CD
AB CD AB CD
n1

l

n2
z
S
O C B
y
底面ABCD为平行四边形, 2.四棱锥 S ABCD 中, 侧面 SBC 底面ABCD,已知ABC 45

AB 2 BC 2 2
SA SB 3
Ⅰ)求直线SA与直线BC所成角的大小; Ⅱ)求直线SD与平面SBC所成角的大小. Ⅲ)求平面SAB与平面SBC所成角的大小. S
n2

n1
l

l
cos cos n1, n2
cos

cos n1, n2
cos
n1 n2 n1 n2
1.如图,已知:直角梯形OABC 中,OA∥BC,∠AOC=90°, SO⊥面OABC,且 OS=OC=BC=1,OA=2。 求: A (1)异面直线SA和OB x 所成的角的余弦值; (2)OS与面SAB所成角的余弦值; (3)二面角B-AS-O的余弦值;

专题8.8 立体几何中的向量方法(二)—求空间角与距离(重难点突破)(解析版)

专题8.8  立体几何中的向量方法(二)—求空间角与距离(重难点突破)(解析版)

专题8.7 立体几何中的向量方法(二)求空间角与距离一、考纲要求1.能用向量方法解决直线与直线、直线与平面、平面与平面的夹角的计算问题;2.了解向量方法在研究立体几何问题中的应用.二、考点梳理考点一 异面直线所成的角设a ,b 分别是两异面直线l 1,l 2的方向向量,则a 与b 的夹角β l 1与l 2所成的角θ范围 (0,π) ⎝⎛⎦⎤0,π2 求法cos β=a ·b|a ||b |cos θ=|cos β|=|a ·b ||a ||b |考点二 求直线与平面所成的角设直线l 的方向向量为a ,平面α的法向量为n ,直线l 与平面α所成的角为θ,则sin θ=|cos 〈a ,n 〉|=|a ·n ||a ||n |.考点三 求二面角的大小(1)如图①,AB ,CD 是二面角α-l -β的两个面内与棱l 垂直的直线,则二面角的大小θ=__〈AB →,CD →〉.(2)如图②③,n 1,n 2 分别是二面角α-l -β的两个半平面α,β的法向量,则二面角的大小θ满足|cos θ|=|cos 〈n 1,n 2〉|,二面角的平面角大小是向量n 1与n 2的夹角(或其补角). 【特别提醒】1.线面角θ的正弦值等于直线的方向向量a 与平面的法向量n 所成角的余弦值的绝对值,即sin θ=|cos 〈a ,n 〉|,不要误记为cos θ=|cos 〈a ,n 〉|.2.二面角与法向量的夹角:利用平面的法向量求二面角的大小时,当求出两半平面α,β的法向量n 1,n 2时,要根据向量坐标在图形中观察法向量的方向,来确定二面角与向量n 1,n 2的夹角是相等,还是互补.三、题型分析例1. (黑龙江鹤岗一中2019届期末)如图,在空间四边形OABC 中,OA =8,AB =6,AC =4,BC =5,∠OAC =45°,∠OAB =60°,则OA 与BC 所成角的余弦值为( )A.3-225B.2-26C.12D.32【答案】A【解析】因为BC →=AC →-AB →,所以OA →·BC →=OA →·AC →-OA →·AB →=|OA →||AC →|cos 〈OA →,AC →〉-|OA →||AB →|cos 〈OA →,AB →〉=8×4×cos 135°-8×6×cos 120°=-162+24. 所以cos 〈OA →,BC →〉=OA →·BC →|OA →||BC →|=24-1628×5=3-225.即OA 与BC 所成角的余弦值为3-225.【变式训练1-1】、(天津新华中学2019届高三质检)如图所示,四棱柱ABCD -A 1B 1C 1D 1中,底面为平行四边形,以顶点A 为端点的三条棱长都为1,且两两夹角为60°.(1)求AC 1的长; (2)求证:AC 1⊥BD ;(3)求BD 1与AC 夹角的余弦值.【解析】(1) 记AB →=a ,AD →=b ,AA 1→=c ,则|a |=|b |=|c |=1,〈a ,b 〉=〈b ,c 〉=〈c ,a 〉=60°, ∴a ·b =b ·c =c ·a =12.|AC 1→|2=(a +b +c )2=a 2+b 2+c 2+2(a ·b +b ·c +c ·a )=1+1+1+2×⎝⎛⎭⎫12+12+12=6, ∴|AC →1|=6,即AC 1的长为 6. (2)证明 ∵AC 1→=a +b +c ,BD →=b -a ,∴AC 1→·BD →=(a +b +c )·(b -a )=a ·b +|b |2+b ·c -|a |2-a ·b -a ·c =b ·c -a ·c =|b ||c |cos 60°-|a ||c |cos 60°=0.∴AC 1→⊥BD →,∴AC 1⊥BD .(3)解 BD 1→=b +c -a ,AC →=a +b ,∴|BD 1→|=2,|AC →|=3, BD 1→·AC →=(b +c -a )·(a +b )=b 2-a 2+a ·c +b ·c =1.∴cos 〈BD 1→,AC →〉=BD 1→·AC →|BD 1→||AC →|=66.∴AC 与BD 1夹角的余弦值为66.例2、(2018年天津卷)如图,且AD =2BC ,,且EG =AD ,且CD =2FG ,,DA =DC =DG =2.(I )若M 为CF 的中点,N 为EG 的中点,求证:;(II )求二面角的正弦值;(III )若点P 在线段DG 上,且直线BP 与平面ADGE 所成的角为60°,求线段DP 的长.【答案】(Ⅰ)证明见解析;(Ⅱ);(Ⅲ).【解析】依题意,可以建立以D 为原点, 分别以,,的方向为x 轴,y 轴,z 轴的正方向的空间直角坐标系(如图),可得D (0,0,0),A (2,0,0),B (1,2,0),C (0,2,0),E (2,0,2),F (0,1,2),G (0,0,2),M (0,,1),N (1,0,2).(Ⅰ)依题意=(0,2,0),=(2,0,2).设n0=(x,y,z)为平面CDE的法向量,则即不妨令z=–1,可得n0=(1,0,–1).又=(1,,1),可得,又因为直线MN平面CDE,所以MN∥平面CDE.(Ⅱ)依题意,可得=(–1,0,0),,=(0,–1,2).设n=(x,y,z)为平面BCE的法向量,则即不妨令z=1,可得n=(0,1,1).设m=(x,y,z)为平面BCF的法向量,则即不妨令z=1,可得m=(0,2,1).因此有cos<m,n>=,于是sin<m,n>=.所以,二面角E–BC–F的正弦值为.(Ⅲ)设线段DP的长为h(h∈[0,2]),则点P的坐标为(0,0,h),可得.易知,=(0,2,0)为平面ADGE的一个法向量,故,由题意,可得=sin60°=,解得h=∈[0,2].所以线段的长为.【变式训练2-1】、(吉林长春市实验中学2019届高三模拟)如图所示,在四棱锥P-ABCD中,底面ABCD 是正方形,侧棱PD⊥底面ABCD,PD=DC,E是PC的中点,过点E作EF⊥PB于点F.求证:(1)PA ∥平面EDB ; (2)PB ⊥平面EFD .【证明】以D 为坐标原点,射线DA ,DC ,DP 分别为x 轴、y 轴、z 轴的正方向建立如图所示的空间直角坐标系D -xyz .设DC =a .(1)连接AC 交BD 于点G ,连接EG .依题意得A (a,0,0),P (0,0,a ),C (0,a,0),E ⎝⎛⎭⎫0,a 2,a 2. 因为底面ABCD 是正方形,所以G 为AC 的中点故点G 的坐标为⎝⎛⎭⎫a 2,a 2,0,所以PA ―→=(a,0,-a ),EG ―→=⎝⎛⎭⎫a2,0,-a 2, 则PA ―→=2EG ―→,故PA ∥EG .而EG ⊂平面EDB ,PA ⊄平面EDB ,所以PA ∥平面EDB . (2)依题意得B (a ,a,0),所以PB ―→=(a ,a ,-a ).又DE ―→=⎝⎛⎭⎫0,a 2,a 2, 故PB ―→·DE ―→=0+a 22-a 22=0,所以PB ⊥DE ,所以PB ⊥DE .由题可知EF ⊥PB ,且EF ∩DE =E ,所以PB ⊥平面EFD .例3、如图,在四棱锥PABCD 中,底面ABCD 是矩形,PA ⊥底面ABCD ,E 是PC 的中点.已知AB =2,AD =22,PA =2,求异面直线BC 与AE 所成的角的大小.【解析】 建立如图所示的空间直角坐标系,则A(0,0,0),B(2,0,0),C(2,22,0),E(1,2,1),AE →=(1,2,1),BC →=(0,22,0).设AE →与BC →的夹角为θ,则cosθ=AE →·BC →|AE →|·|BC →|=42×22=22,所以θ=π4,所以异面直线BC 与AE 所成的角的大小是π4.【变式训练3-1】、 如图所示,在空间直角坐标系中有直三棱柱ABCA 1B 1C 1,CA =CC 1=2CB ,则直线BC 1与直线AB 1夹角的余弦值为________.【答案】55【解析】 不妨令CB =1,则CA =CC 1=2,可得C(0,0,0),B(0,0,1),C 1(0,2,0),A(2,0,0),B 1(0,2,1),所以BC 1→=(0,2,-1),AB 1→=(-2,2,1),所以cos 〈BC 1→,AB 1→〉=BC 1→·AB 1→|BC 1→|·|AB 1→|=4-15×9=15=55>0,所以BC 1→与AB 1→的夹角即为直线BC 1与直线AB 1的夹角,所以直线BC 1与直线AB 1夹角的余弦值为55.【变式训练3-2】、如图,已知三棱柱ABC -A 1B 1C 1,平面A 1ACC 1⊥平面ABC ,∠ABC =90°,∠BAC =30°,A 1A =A 1C =AC ,E ,F 分别是AC ,A 1B 1的中点. (1)证明:EF ⊥BC ;(2)求直线EF 与平面A 1BC 所成角的余弦值.【解析】 (1)证明:连接A 1E ,因为A 1A =A 1C ,E 是AC 的中点,所以A 1E ⊥AC . 又平面A 1ACC 1⊥平面ABC ,A 1E ⊂平面A 1ACC 1, 平面A 1ACC 1∩平面ABC =AC ,所以A 1E ⊥平面ABC .如图,以点E 为原点,分别以射线EC ,EA 1为y ,z 轴的正半轴,建立空间直角坐标系E -xyz . 不妨设AC =4,则A 1(0,0,23),B (3,1,0),B 1(3,3,23),F ⎝⎛⎭⎫32,32,23,C (0,2,0). 因此,EF ―→=⎝⎛⎭⎫32,32,23,BC ―→=(-3,1,0).由EF ―→·BC ―→=0得EF ⊥BC .(2)设直线EF 与平面A 1BC 所成角为θ.由(1)可得BC ―→=(-3,1,0),A 1C ―→=(0,2,-23).设平面A 1BC 的法向量为n =(x ,y ,z ).由⎩⎪⎨⎪⎧BC ―→·n =0,A 1C ―→·n =0,得⎩⎨⎧-3x +y =0,y -3z =0.取n =(1, 3,1),故sin θ=|cos 〈EF ―→,n 〉|=|EF ―→·n ||EF ―→|·|n |=45,∴cos θ=35.因此,直线EF 与平面A 1BC 所成的角的余弦值为35.。

(完整版)利用空间向量法证明与求空间角——解答题篇·解题技能(教师)

(完整版)利用空间向量法证明与求空间角——解答题篇·解题技能(教师)

课题利用空间向量法证明与求空间角——解答题篇·解题技能一、空间向量(一)空间向量基本定理对于如果三个向量a r ,b r ,c r 不共面,那么对空间任一向量p u r存在唯一的有序实数组{,,}x y z ,使p xa yb zc =++u r r r r(二)空间向量的坐标表示(1)空间直角坐标系设123,,e e e u r u u r u r 为有公共起点O 的三个两两垂直的单位向量(称它们为正交基底),以123,,e e e u r u u r u r的公共起点O 为原点,分别以123,,e e e u r u u r u r 的方向为x 轴,y 轴,z 轴的正方向建立空间直角坐标系O xyz -。

建立空间直角坐标系要遵循“左手法则”。

(2)空间向量的坐标对于空间任一向量p u r ,一定可以把它平移,使它的起点与原点O 重合,得到向量OP p =u u u r u r 。

由空间向量基本定理可知,存在有序实数组{,,}x y z ,使p xa yb zc =++u r r r r。

我们把,,x y z 称作向量p u r 在单位正交基底123,,e e e u r u u r u r下的坐标,记作(,,)p x y x =u r 。

点的坐标:此时向量p u r 的坐标恰是点P 在空间直角坐标系O xyz -中的坐标(,,)x y x 。

(3)空间向量运算的坐标表示 ① 空间向量的坐标运算法则设123(,,)a a a a =r ,123(,,)b b b b =r,则112233(,,)a b a b a b a b +=+++r r112233(,,)a b a b a b a b -=--- 123(,,)()a a a a R λλλλλ=∈ 112233a b a b a b a b ⋅=++② 空间向量平行与垂直条件112233//,,()a b a b a b a b a b R λλλλλ⇔=⇔===∈r r r r1122330a b a b a b a b a b ⊥⇔⋅=++=③ 空间向量夹角公式r r④ 空间向量长度公式若111(,,)A x y z ,222(,,)B x y z ,则212121(,,)AB x x y y z z =---u u u r即:一个向量在直角坐标系中的坐标等于表示这个向量的有向线段的终点的坐标减去起点的坐标。

高考必考题—运用空间向量解决空间角(含解析)

高考必考题—运用空间向量解决空间角(含解析)

运用空间向量解决空间角一、题型选讲题型一 、异面直线所成的角以及研究异面直线所成的角首先要注意交的范围,然后转化为有直线的方向向量的夹角。

例1、【2018年高考江苏卷】如图,在正三棱柱ABC −A 1B 1C 1中,AB =AA 1=2,点P ,Q 分别为A 1B 1,BC 的中点.(1)求异面直线BP 与AC 1所成角的余弦值; (2)求直线CC 1与平面AQC 1所成角的正弦值.例2、(2019南京学情调研) 如图,在正四棱柱ABCDA 1B 1C 1D 1中,已知底面ABCD 的边长AB =3,侧棱AA 1=2,E 是棱CC 1的中点,点F 满足AF →=2FB →.(1) 求异面直线FE 和DB 1所成角的余弦值; (2) 记二面角EB 1FA 的大小为θ,求|cos θ|.题型二、直线与平面所成的角直线与平面所成的角是通过研究直线的方向向量和平面的法向量的所成的角,因此,要特别注意所求的角与已求的角之间的关系。

例3、【2020年高考浙江】如图,在三棱台ABC—DEF中,平面ACFD⊥平面ABC,∠ACB=∠ACD=45°,DC =2BC.(Ⅰ)证明:EF⊥DB;(Ⅱ)求直线DF与平面DBC所成角的正弦值.例4、【2020年高考全国Ⅱ卷理数】如图,已知三棱柱ABC-A1B1C1的底面是正三角形,侧面BB1C1C是矩形,M,N分别为BC,B1C1的中点,P为AM上一点,过B1C1和P的平面交AB于E,交AC于F.(1)证明:AA1∥MN,且平面A1AMN⊥平面EB1C1F;(2)设O为△A1B1C1的中心,若AO∥平面EB1C1F,且AO=AB,求直线B1E与平面A1AMN所成角的正弦值.题型三、平面与平面所成的角利用平面的法向量求二面角的大小时,当求出两半平面α,β的法向量n1,n2时,要根据观察判断向量在图形中的方向,从而确定二面角与向量n1,n2的夹角是相等还是互补,这是利用向量求二面角的难点、易错点例5、【2019年高考全国Ⅱ卷理数】如图,长方体ABCD–A1B1C1D1的底面ABCD是正方形,点E在棱AA1上,BE⊥EC1.(1)证明:BE⊥平面EB1C1;(2)若AE=A1E,求二面角B–EC–C1的正弦值.例6、【2019年高考全国Ⅲ卷理数】图1是由矩形ADEB,Rt△ABC和菱形BFGC组成的一个平面图形,其中AB=1,BE=BF=2,∠FBC=60°,将其沿AB,BC折起使得BE与BF重合,连结DG,如图2.(1)证明:图2中的A,C,G,D四点共面,且平面ABC⊥平面BCGE;(2)求图2中的二面角B−CG−A的大小.例7、(2020届山东省潍坊市高三上期中)如图,在棱长均为2的三棱柱111ABC A B C -中,平面1ACB ⊥平面11A ABB ,11AB A B =,O 为1AB 与1A B 的交点.(1)求证:1AB CO ⊥;(2)求平面11ACC A 与平面ABC 所成锐二面角的余弦值.二、达标训练1、【2019年高考天津卷理数】如图,AE ⊥平面ABCD ,,CF AE AD BC ∥∥,,AD AB ⊥1,2AB AD AE BC ====.(1)求证:BF ∥平面ADE ;(2)求直线CE 与平面BDE 所成角的正弦值; (3)若二面角E BD F --的余弦值为13,求线段CF 的长.2、【2019年高考浙江卷】如图,已知三棱柱111ABC A B C -,平面11A ACC ⊥平面ABC ,90ABC ∠=︒,1130,,,BAC A A AC AC E F ∠=︒==分别是AC ,A 1B 1的中点. (1)证明:EF BC ⊥;(2)求直线EF 与平面A 1BC 所成角的余弦值.3、【2018年高考全国Ⅰ卷理数】如图,四边形ABCD 为正方形,,E F 分别为,AD BC 的中点,以DF 为折痕把DFC △折起,使点C 到达点P 的位置,且PF BF ⊥. (1)证明:平面PEF ⊥平面ABFD ; (2)求DP 与平面ABFD 所成角的正弦值.4、(2020届山东省九校高三上学期联考)已知四棱柱1111ABCD A B C D -的底面为菱形,12AB AA ==,3BAD π∠=,ACBD O =,AO ⊥平面1A BD ,11A B A D =.(1)证明:1//B C 平面1A BD ; (2)求钝二面角1B AA D --的余弦值.5、(2020届山东省潍坊市高三上期末)在底面为正方形的四棱锥P ABCD -中,平面PAD ⊥平面,,,ABCD PA PD E F =分别为棱PC 和AB 的中点.(1)求证://EF 平面PAD ;(2)若直线PC 与AB ,求平面PAD 与平面PBC 所成锐二面角的大小.6、(2019南京、盐城一模)如图,四棱锥PABCD中,底面ABCD是矩形,PA⊥平面ABCD,AD=1,PA =AB=2,点E是棱PB的中点.(1) 求异面直线EC与PD所成角的余弦值;(2) 求二面角BECD的余弦值.一、题型选讲题型一 、异面直线所成的角以及研究异面直线所成的角首先要注意交的范围,然后转化为有直线的方向向量的夹角。

人教A版高中数学选修2-1课件【29】用向量方法求空间角(二)

人教A版高中数学选修2-1课件【29】用向量方法求空间角(二)

解析: 设 CB=1, 则 A(2,0,0) , B1(0,2,1), C1(0,2,0), B(0,0,1), → → BC1=(0,2,-1),AB1=(-2,2,1). → → BC AB1 3 5 1· → → cos〈BC1,AB1〉= = =5. → → 5×3 |BC1|· |AB1|
a· b 解析:cos〈a,b〉=|a|· |b|= |1,-2,1· 2,-2,0| |2+4| 3 = . 2 2 2 2 2= 6· 8 2 1 +2 +1 · 2 +-2
答案:D
2.如图,在空间直角坐标系中有直三棱柱 ABCA1B1C1,CA =CC1=2CB,BC1 与直线 AB1 夹角的余弦值为( 5 5 2 5 3 A. 5 B. 3 C. 5 D.5 )
解析:如图,以 DA、DC、DD1 分别为 x 轴、y 轴、z 轴建立 空间直角坐标系,设正方体的棱长为 1,则 A(1,0,0),B(1,1,0), → C1(0,1,1),易证AC1是平面 A1BD 的一个法向量.
→ → AC1=(-1,1,1),BC1=(-1,0,1). 1+1 6 → → cos〈AC1,BC1〉= = . 3× 2 3 6 ∴BC1 与平面 A1BD 所成角的正弦值为 3 .
答案:A
4. 正方体 ABCDA1B1C1D1 中, BB1 与平面 ACD1 所成角的余 弦值为( )
2 3 2 6 A. B. C. D. 3 3 3 3
解析:建系如图,设正方体棱长为 1,D(0,0,0),B1(1,1,1), → B(1,1,0),则BB1=(0,0,1).
∵B1D⊥平面 ACD1, → ∴DB1=(1,1,1)为面 ACD1 的法向量. 设 BB1 与面 ACD1 所成的角为 θ, → → |BB1· DB1| 1 3 则 sinθ= = =3, → → 3 |BB1||B1D| 6 ∴cosθ= 3 .

人教A版高中数学选修2-1课件【28】用向量方法求空间角(一)

人教A版高中数学选修2-1课件【28】用向量方法求空间角(一)

y=0, 得 x+z=0,
取 x=1,则 z=-1,
→ -2 BD · n 1 → ∵cos〈BD,n〉= = =-2, → 8· 2 |BD|· |n| 1 → ∴sinθ=|cos〈BD,n〉|=2. 又 0° ≤θ≤90° , ∴θ=30° .
12. 如图,矩形 ABCD 和梯形 BEFC 所在平面互相垂直,BE∥ CF,∠BCF=∠CEF=90° ,AD= 3,EF=2. (1)求证:AE∥平面 DCF; (2)当 AB 的长为何值时,二面角 AEFC 的大小为 60° ?
解析:∵l 的方向向量与平面的法向量的夹角为 120° .∴它们 所在直线的夹角为 60° , 则直线 l 与平面 α 所成的角为 90° -60° =30° .
答案:C
2.若平面 α 的法向量为 μ,直线 l 的方向向量为 v,直线 l 与平面 α 的夹角为 θ,则下列关系式成立的是( μ·v A.cosθ= |μ|· |v| μ·v C.sinθ=|μ|· |v| |μ·v| B.cosθ= |μ|· |v| |μ·v| D.sinθ=|μ|· |v| )
答案:D
二、填空题:每小题 5 分,共 15 分. 7.如图,在正方体 ABCDA1B1C1D1 中,M 是 C1C 的中点, O 是底面 ABCD 的中点,P 是 A1B1 上的任意点,则直线 BM 与 OP 所成的角为__________.
解析: 建立如图所示的空间直角坐标系, 设正方体棱长为 2, 则 O(1,1,0),P(2,x,2),B(2,2,0),M(0,2,1), → OP=(1,x-1,2), → BM=(-2,0,1). → → 所以OP· BM=0, π 所以直线 BM 与 OP 所成角为2.
第三章

向量法求空间的距离和角

向量法求空间的距离和角

所以异面直线BD与D1A间的距离为
3 。 3
(2) A1 B1 = (0,1, 0), 设n = ( x, y, z )是平面A1DB的一 个法向量,因为DA1 = (1, 0,1), DB = (1,1, 0), ì ì x +z = 0 nDA1 = 0 镲 由眄 即 取x = - 1, 镲 î x+y =0 î nDB = 0 | nA1 B1 | 1 2 于是n = (-1,1,1, ),且 = = 。 2 |n| 2 2 所以点B1到平面A1 BD的距离为 。 2
例1:如图1所示: 三棱柱ABC - A1 B1C1中,CA=CB, AB = AA1, ? BAA1 60o, ( 1)求证:AB^ A1C (2)若平面ABC ^ 平面AA1 B1 B, AB =CB,求直线A1C与平面BB1C1C 所成角的正弦值。
C C1
B A A1
B1
图1
C
C1
O
B A1
Z
解:由(1)知OC ^ AB,OA1 ^ AB, 又平面ABC ^ 平面AA1 B1 B,交线 为AB,所以OC ^ 平面AA1 B1 B, 故OA、OA1、OC两两相互垂直。 建立如图所示的空间直角坐标系 A
O
C
C1
B A1
B1 图1-2
X o - xyz 设AB = 2,由题设知A(1, 0, 0)、B(- 1, 0, 0)、C (0, 0, 3)、A1 (0, 3, 0), 则BC = (1, 0, 3)、 BB1 = AA1 = (- 1, 3, 0)、 A1C = (0, - 3, 3). 设n = ( x, y, z )是平面BBCC的法向量,则 ì x + 3z = 0 ì nBC = 0 镲 即 可取n = ( 3,1, -1), 眄 镲 î nBB1 = 0 î - x + 3y = 0 nA1C 10 故 cos < n, A1C >= =. 5 | n | ×| A1C |

高考数学一轮复习向量法求空间角

高考数学一轮复习向量法求空间角
∵PB⊥平面 ABC,以 B 为坐标原点,―B→A ,―B→C , ―B→P 为 x,y,z 轴正方向建立空间直角坐标系.
可知 B(0,0,0),C(0,2,0),M(1,1,0).因为 BM= 2, MN= 6,
所以 BN= MN2-BM2= 6-2=2, 所以 PB=4,则 P(0,0,4).
设||― ―BB→ →QA ||=λ,且 0<λ<1,则 Q(2λ,0,0), 可知―PM→=(1,1,-4),―C→Q =(2λ,-2,0), 所以―PM→·―C→Q =1×2λ+1×(-2)+(-4)×0=2λ-2, |―PM→|= 12+12+-42=3 2,|―C→Q |= 2λ2+-22= 4λ2+4 因为异面直线 PM 与 CQ 所成的角的余弦值为 3344,
n 1·n 2
|n 1·n 2|
则 cos θ=|cos〈n 1,n 2〉|=___|n_1_||_n_2_|__=_教材经典小题的回顾拓展
1.(人教 B 版选择性必修①P36·T3 改编)已知直线 l1 的方向向量 s1=
(1,0,1)与直线 l2 的方向向量 s2=(-1,2,-2),则 l1 和 l2 夹角的余
在 Rt△BED 中,当 EF 的长度最小时,EF⊥BD,EF=DEB·DBE= 23. 又 DE⊥AC,BE⊥AC,所以 EA,EB,ED 两两垂直,以 E 为坐标 原点,EA,EB,ED 所在的直线分别为 x,y, z 轴建立如图所示空间直角坐标系 E-xyz,则 A(1,0,0),B(0, 3,0),D(0,0,1),C(-1,0,0), ―A→B =(-1, 3,0), ―D→B =(0, 3,-1).
()
A.41或 4
1 B.2
C.31
D.14
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

姓 名 年级 性 别 学 校 学 科 教师上课日期上课时间课题17向量法求空间角角的分类 向量求法 范围两异面直线l 1与l 2所成的角θ 设l 1与l 2的方向向量为a ,b ,则cos θ=___________=_______________ (0,π2]直线l 与平面α所成的角θ设l 的方向向量为a ,平面α的法向量为n ,则sin θ=___________=________[0,π2]二面角α-l-β的平面角θ 设平面α,β的法向量为n 1,n 2,则|cos θ|=___________=|n 1·n 2||n 1|·|n 2|[0,π]类型一 异面直线所成的角例1、如图,在三棱锥V -ABC 中,顶点C 在空间直角坐标系的原点处,顶点A ,B ,V 分别在x 轴、y 轴、z 轴上,D 是线段AB 的中点,且AC =BC =2,∠VDC =θ. 当θ=π3时,求异面直线AC 与VD 所成角的余弦值【自主解答】 由于AC =BC =2,D 是AB 的中点,所以C (0,0,0),A (2,0,0),B (0,2,0),D (1,1,0)当θ=π3时,在Rt △VCD 中,CD =2,∴V (0,0,6),∴AC →=(-2,0,0),VD →=(1,1,-6),∴cos 〈AC →,VD →〉=AC →·VD →|AC →||VD →|=-22×22=-24. ∴异面直线AC 与VD 所成角的余弦值为24.1.几何法求异面直线的夹角时,需要通过作平行线将异面直线的夹角转化为平面角,再解三角形来求解,过程相当复杂;用向量法求异面直线的夹角,可以避免复杂的几何作图和论证过程只需对相应向量运算即可. 2.由于两异面直线夹角θ的范围是(0,π2],而两向量夹角α的范围是[0,π],故应有cos θ=|cos α|,求解时要特别注意.变式1、在长方体ABCD -A 1B 1C 1D 1中,已知DA =DC =4,DD 1=3,求异面直线A 1B 与B 1C 所成角的余弦值.【解】 以D 为坐标原点,分别以DA ,DC ,DD 1所在直线为x 轴、y 轴、z 轴,建立空间直角坐标系,如图,则A 1(4,0,3),B (4,4,0),B 1(4,4,3),C (0,4,0),得A 1B →=(0,4,-3),B 1C →=(-4,0,-3).设A 1B →与B 1C →的夹角为θ,则cos θ=A 1B →·B 1C →|A 1B →||B 1C →|=925,故A 1B →与B 1C →的夹角的余弦值为925, 即异面直线A 1B 与B 1C 所成角的余弦值为925.类型二 求线面角例2、三棱锥P -ABC 中,P A ⊥平面ABC ,AB ⊥AC ,P A =AC =12AB ,N 为AB 上一点,AB =4AN ,M ,S 分别为PB ,BC 的中点. (1)证明:CM ⊥SN ; (2)求SN 与平面CMN 所成角的大小.【自主解答】 设P A =1,以A 为原点,射线AB ,AC ,AP 分别为x ,y ,z 轴正向建立空间直角坐标系(如图).则P (0,0,1),C (0,1,0),B (2,0,0),又AN =14AB ,M 、S 分别为PB 、BC 的中点,∴N (12,0,0),M (1,0,12),S (1,12,0),(1)CM →=(1,-1,12),SN →=(-12,-12,0),∴CM →·SN →=(1,-1,12)·(-12,-12,0)=0,因此CM ⊥SN .(2)NC →=(-12,1,0),设a =(x ,y ,z )为平面CMN 的一个法向量,∴CM →·a =0,NC →·a =0.则⎩⎨⎧x -y +12z =0,-12x +y =0.∴⎩⎪⎨⎪⎧x =2y ,z =-2y .取y =1,则得a =(2,1,-2). 因为cos a ,SN →=-1-123×22=-22.∴〈a ,SN →〉=34π.所以SN 与平面CMN 所成角为34π-π2=π4.1.题中直线的方向向量SN →与平面的法向量a 的夹角并不是所求线面角θ,它们的关系sin θ=|cos 〈SN →,a 〉|.2.若直线l 与平面α的夹角为θ,利用法向量计算θ的步骤如下:变式、正方体ABCD -A 1B 1C 1D 1中,E 是C 1C 的中点,求BE 与平面B 1BDD 1所成角的余弦值.【解】 如图,建立空间直角坐标系,设正方体的棱长为2,则B (2,2,0),B 1(2,2,2),E (0,2,1),BD →=(-2,-2,0),BB 1→=(0,0,2),BE →=(-2,0,1).AC →=(-2,2,0)即平面B 1BDD 1的一个法向量,设n =(-1,1,0). cos 〈n ,BE →〉=n ·BE →|n ||BE →|=105. 设BE 与平面B 1BD 所成角为θ,cos θ=sin 〈n ,BE →〉=155, 即BE 与平面B 1BD 所成角的余弦值为155. 类型三 求二面角例3、若正方形ACDE 所在的平面与平面ABC 垂直,M 是CE 和AD 的交点,AC ⊥BC ,且AC =BC ,求二面角A -EB -C 的大小.【自主解答】 ∵四边形ACDE 是正方形,∴EA ⊥AC . 又∵平面ACDE ⊥平面ABC ,∴EA ⊥平面ABC .以点A 为坐标原点,以过A 点平行于BC 的直线为x 轴,分别以直线AC ,AE 为y 轴、z 轴,建立如图所示的空间直角坐标系Axyz .设EA =AC =BC =2,则A (0,0,0),B (2,2,0),C (0,2,0),E (0,0,2). ∵M 是正方形ACDE 的对角线的交点,∴M (0,1,1).设平面EAB 的法向量为n =(x ,y ,z ),则n ⊥AE →且n ⊥AB →,从而有n ·AE →=0且n ·AB →=0.又∵AE →=(0,0,2),AB →=(2,2,0),∴⎩⎪⎨⎪⎧(x ,y ,z )·(0,0,2)=0,(x ,y ,z )·(2,2,0)=0,即⎩⎪⎨⎪⎧z =0,x +y =0.取y =-1,则x =1,则n =(1,-1,0).又∵AM →为平面EBC 的一个法向量,且AM →=(0,1,1),∴cos 〈n ,AM →〉=n ·AM →|n ||AM →|=-12. 设二面角A -EB -C 的平面角为θ,则cos θ=12,即θ=60°. 故二面角A -EB -C 为60°.用向量法求二面角的大小,可以避免作出二面角的平面角这一难点,转化为计算两半平面法向量的夹角问题,具体求解步骤如下:(1)建立空间直角坐标系;(2)分别求出二面角的两个半平面所在平面的法向量; (3)求两个法向量的夹角;(4)判断所求二面角的平面角是锐角还是钝角; (5)确定二面角的大小.变式、已知正三棱柱ABC -A 1B 1C 1的各条棱长均为a ,D 是侧棱CC 1的中点,求平面AB 1D 与平面ABC 所成二面角(锐角)的大小.【解】 以B 为原点,过点B 与BC 垂直的直线为x 轴,BC 所在的直线为y 轴,BB 1所在直线为z 轴,建立如图所示的空间直角坐标系,则B (0,0,0),C (0,a,0),B 1(0,0,a ),C 1(0,a ,a ),A (-32a ,a 2,0),A 1(-32a ,a 2,a ),D (0,a ,a 2). 故AB 1→=(32a ,-a 2,a ),B 1D →=(0,a ,-a2).设平面AB 1D 的法向量为n =(x ,y ,z ), 则n ·AB 1→=0,n ·B 1D →=0,即⎩⎨⎧32ax -a 2y +az =0,ay -a2z =0.得x =-3y ,z =2y . 取y =1,则n =(-3,1,2).∵平面ABC 的法向量是AA 1→=(0,0,a ),∴二面角θ的余弦值为cos θ=AA 1→·n |AA 1→||n |=22. ∴θ=π4. ∴平面AB 1D 与平面ABC 所成二面角(锐角)的大小为π4.对所求角与向量夹角的关系不理解致误例4、正方体ABCD —A 1B 1C 1D 1中,求二面角A -BD 1-C 的大小.【正解】 以D 为坐标原点建立如图所示的空间直角坐标系,设正方体的棱长为1,则D (0,0,0),A 1(1,0,1),C 1(0,1,1). 由题意知DA 1→=(1,0,1)是平面ABD 1的一个法向量, DC 1→=(0,1,1)是平面BCD 1的一个法向量. 所以cos 〈DA 1→,DC 1→〉=DC 1→·DA 1→|DC 1→|·|DA 1→|=12,所以〈DA 1→,DC 1→〉=60°. 所以二面角A -BD 1-C 的大小为120°.练习:1.若异面直线l 1的方向向量与l 2的方向向量的夹角为150°,则l 1与l 2所成的角为( )A .30°B .150°C .30°或150°D .以上均不对【解析】 l 1与l 2所成的角与其方向向量的夹角相等或互补,且异面直线所成角的范围为(0,π2].应选A.2.已知向量m ,n 分别是直线l 与平面α的方向向量、法向量,若cos 〈m ,n 〉=-32,则l 与α所成的角为( ) A .30°B .60°C .150°D .120°解析】 设l 与α所成的角为θ,则sin θ=|cos 〈m ,n 〉|=32, ∴θ=60°,应选B. 3.已知平面α的法向量u =(1,0,-1),平面β的法向量v =(0,-1,1),则平面α与β所成的二面角的大小为________.【解析】 cos 〈u ,v 〉=-12·2=-12,∴〈u ,v 〉=23π,而所成的二面角可锐可钝,故也可以是π3.4.如图3-2-22直三棱柱ABC -A 1B 1C 1中,∠ACB =90°,AC =BC =1,CC 1=2,求直线A 1B 与平面BB 1C 1C 所成角的正弦值.【解】 以CA ,CB ,CC 1所在直线分别为x 轴,y 轴,z 轴建立空间直角坐标系,则B (0,1,0),C 1(0,0,2),A 1(1,0,2).则A 1B →=(-1,1,-2),平面BB 1C 1C 的法向量n =(1,0,0).设直线A 1B 与平面BB 1C 1C 所成角为θ,A 1B →与n 的夹角为φ,则cos φ=A 1B →·n |A 1B →||n |=-66,∴sin θ=|cos φ|=66. ∴直线A 1B 与平面BB 1C 1C 所成角的正弦值为66.。

相关文档
最新文档