2013武汉市初三数学元月调考复习5
武汉市2013九年级元月调考数学答案及试卷分析

1. 题型结构:比往年有变化,这个是各校提前都知道了的,选填题结构有12+4变成10+6,从结构上说,因为抽出两道选择题变成填空题,这样看上去会给人感觉略微加大试卷的整体难度,但从本次考试来看,选填题并不难,还给人很简单平稳的感觉,选择压轴题第10题及填空压轴题16题大多数同学都熟悉,这样对大多数孩子来说,都能在选填题上拿到不错的分数,心里自然比以往要踏实;2. 难易程度:从整张试卷来看,前面比较平缓,直到第22题第一问略新,考查的是一个基本结论,很新颖;第24题第一问没有按照常理出牌,很独特,用反证法会非常简单,但学生往往不容易想到,因为也是第一问,如果不能及时做来,也会影响后续答题,毕竟在第一问;第25题命题非常好,既有新颖度,有梯度,也有难度,不论对中考生还是竞赛生,都是有挑战,得满分不容易;3. 新题多少:第2题,第22题,第24题,第25题都较为新颖,尤其是第2题和第25题,命题非常好;4. 和平时练习对比变化情况:因为各校平时的练习和模拟都是朝向往年的元月调考试卷,故每年新卷出来后都给人耳目一新的感觉,尤其是关键题如22题、24题和25题,今年也不例外,但这三个题都包含了两个圆,且24题和25题命题又都包含了正三角形,如果所蕴含的知识点广度再大一点就好了;另外第24题两题的第一问不符合常理,学生可能会出现不适应的情况,但第二问却又简单了起来,第三问容易讨论不全而失分。
5. 和课本联系:除上面分析的几个有区分度的题,其他题基本上都是课本上出现的问题,较为新颖的如第2题,第23题等,让学生感觉到很有亲切感,说明课本的重要性。
6. 由题型变化看2013年四月调考及中考的新动向:(1)四月调考选填题的结构应该会按照本次考试的结构出题,但难度现在不明朗;(2)解答题如第22、24题第一问的难度略大,第二问却并不大;(5)第24题略微引入了动点,四月调考有可能出现,也有可能仅仅是本次命题的需要,后续不考;(6)从第25题来看,加大了代数题的分量;(7)从本次试卷看,试卷整体前易后难,客观题(即选填题)较为平稳,先易后难。
湖北省武汉市江夏区第一中学2023-2024学年九年级(上)期末数学试卷(元月调考)(含答案)

2023-2024学年湖北省武汉市江夏一中九年级(上)期末数学试卷(元月调考)一、选择题(共10小题,每小题3分,共30分)下列各题中有且只有一个正确答案,请在答题卡上将正确答案的标号涂黑.1.(3分)抛掷一枚质地均匀的硬币,落地后正面朝上,这个事件是( )A.必然事件B.不可能事件C.随机事件D.确定性事件2.(3分)下列图形是中心对称图形的是( )A.B.C.D.3.(3分)⊙O的半径是5cm,圆心O到直线a的距离为8cm,直线a与⊙O的公共点个数是( )A.0B.1C.2D.1或24.(3分)解一元二次方程x2﹣6x﹣4=0,配方后得到(x﹣3)2=p,则p的值是( )A.13B.9C.5D.45.(3分)下列一元二次方程有两个互为倒数的实数根的是( )A.2x2﹣3x+1=0B.x2﹣x+1=0C.x2+x﹣1=0D.x2﹣3x+1=06.(3分)已知点A(x1,y1),B(x2,y2),C(x3,y3)在抛物线y=x2+2x﹣3上.当x1<﹣3,﹣1<x2<0,0<x3<1时,y1,y2,y3三者之间的大小关系是( )A.y1<y2<y3B.y2<y3<y1C.y3<y1<y2D.y2<y1<y3 7.(3分)下表给出了二次函数y=ax2+bx+c的自变量x与函数值y的部分对应值:x…1 1.1 1.2 1.3 1.4…y…﹣1﹣0.67﹣0.290.140.62…那么关于x的方程ax2+bx+c=0的一个根的近似值可能是( )A.1.07B.1.17C.1.27D.1.378.(3分)甲口袋中装有2张卡片,它们分别写有汉字“数”、“学”;乙、丙口袋中各装有3张卡片,它们分别写有汉字“数”、“学”、“美”.从这三个口袋中各随机取出1张卡片,取出的3张卡片恰好有“数”、“学”、“美”三个字的概率是( )A.B.C.D.9.(3分)如图,在△ABC中,∠BAC=64°,将△ABC绕顶点A顺时针旋转,得到△ADE.若点D恰好落在边BC上,且AE∥BC,则旋转角的大小是( )A.51°B.52°C.53°D.54°10.(3分)如图,从一张圆形纸片上剪出一个小圆形和一个扇形分别作为圆锥的底面和侧面,其中小圆的直径是大圆的半径.下列剪法恰好能配成一个圆锥的是( )A.B.C.D.二、填空题(共6小题,每小题3分,共18分)下列各题不需要写出解答过程,请将结果直接填写在答题卡指定的位置.11.(3分)写出一个两根是互为相反数的一元二次方程 .12.(3分)如图,阴影部分是分别以正方形ABCD的顶点和中心为圆心,以正方形边长的一半为半径作弧形成的封闭图形.在正方形ABCD上做随机投针试验,针头落在阴影部分区域内的概率是 .13.(3分)某款“不倒翁”(图1)的主视图是图2,PA,PB分别与所在圆相切于点A,B.若该圆半径是18cm,∠P=50°,则的长是 cm.14.(3分)《九章算术》第三章“衰分”介绍了比例分配问题,“衰分”是按比例递减分配的意思,通常称递减的比例为“衰分比”.例如:已知A,B,C三人分配奖金的衰分比为10%,若A分得奖金1000元,则B,C所分得奖金分别为900元和810元.某科研所三位技术人员甲、乙、丙攻关成功,共获得奖金175万元,甲、乙、丙按照一定的“衰分比”分配奖金,若甲分得奖金100万元,则“衰分比”是 .15.(3分)已知抛物线y=ax2+bx+c(a>0)与x轴交于点(m,0),(2,0),其中0<m<1.下列结论:①bc>0;②2b+3c<0;③不等式的解集为0<x<2;④若关于x的方程a(x﹣m)(x﹣2)=﹣1有实数根,则b2﹣4ac≥4a.其中正确的是 .(填写序号)16.(3分)如图是某游乐场一个直径为50m的圆形摩天轮,最高点距离地面55m,其旋转一周需要12分钟.圆周上座舱P距离地面50m处,逆时针旋转5分钟后,距离地面的高度是 m(结果根据“四舍五入”法精确到0.1).(参考数据:≈1.732)三、解答题(共8小题,共72分)17.(8分)关于x的一元二次方程x2+bx﹣12=0有一个根是x=2,求b的值及方程的另一个根.18.(8分)如图,在△ABC中,D是BC的中点.(1)画出△ABD关于点D对称的图形;(2)若AB=6,AD=4,AC=10,求证:∠BAD=90°.19.(8分)一个不透明的布袋中装有红、白两种颜色的袜子各一双,它们除颜色外其余都相同.(1)从布袋中随机摸出一只袜子,直接写出颜色是白色的概率;(2)用列表或画树状图法,求从布袋中随机一次摸出两只袜子恰好是同色的概率.20.(8分)如图,A,B,C,D是⊙O上四点,AC=AB.(1)如图(1),∠BAC=60°,BD是直径,BD交AC于点E.若BD=d,先用含字母d的式子直接表示CD和DE的长,再比较CD+DE与BE之间的大小;(2)如图(2),过点A作AE⊥BD,垂足为E.若CD=3,DE=1,求BE的长.21.(8分)用无刻度的直尺完成下列画图.(1)如图(1),△ACD的三个顶点在⊙O上,AC=AD,∠CAD=36°,F是AC的中点.先分别画出CD,AD的中点G,H,再画⊙O的内接正五边形ABCDE;(2)如图(2),正五边形ABCDE五个顶点在⊙O上,过点A画⊙O的切线AP.22.(10分)某一抛物线形隧道,一侧建有垂直于地面的隔离墙,其横截面如图所示,并建立平面直角坐标系.已知抛物线经过(0,3),,三点.(1)求抛物线的解析式(不考虑自变量的取值范围);(2)有一辆高5m,顶部宽4m的工程车要通过该隧道,该车能否正常通过?并说明理由;(3)现准备在隧道上A处安装一个直角形钢架BAC,对隧道进行维修.B,C两点分别在隔离墙和地面上,且AB与隔离墙垂直,AC与地面垂直,求钢架BAC的最大长度.23.(10分)在四边形ABCD中,AD∥BC,E是AB上一动点(不与点B重合),连接CE,DE.(1)如图(1),AB=BC,∠ABC=∠DCE=60°,求证:AD=BE.(2)如图(2),CD=ED,∠ABC=∠DCE=45°.①通过特例可以猜想一般结论.请你画出一个符合条件的特殊图形,猜想AD与BE的数量关系;②在一般情形下,证明你的猜想.24.(12分)如图(1),抛物线L1:y=x2﹣6x+c与x轴交于A,B两点,且AB=4.将抛物线L1向左平移a(a>0)个单位得到抛物线L2,C是抛物线L2与y轴的交点.(1)求c的值;(2)过点C作射线CD∥x轴,交抛物线L1于点D,E两点,点D在点E的左侧.若DE =2CD,直接写出a的值;(3)如图(2),若C是抛物线L2的顶点,直线y=mx与抛物线L2交于F,G两点,直线y=nx分别交直线CF,CG于点M,N.若OM=ON,试探究m与n的数量关系.参考答案与试题解析一、选择题(共10小题,每小题3分,共30分)下列各题中有且只有一个正确答案,请在答题卡上将正确答案的标号涂黑.1.(3分)抛掷一枚质地均匀的硬币,落地后正面朝上,这个事件是( )A.必然事件B.不可能事件C.随机事件D.确定性事件【解答】解:硬币落地后可能正面朝上,也可能反面朝上,这个事件是随机事件,故选:C.2.(3分)下列图形是中心对称图形的是( )A.B.C.D.【解答】解:选项A、B、C均不能找到一个点,使图形绕某一点旋转180°后与原来的图形重合,所以不是中心对称图形;选项D能找到一个点,使图形绕某一点旋转180°后与原来的图形重合,所以是中心对称图形;故选:D.3.(3分)⊙O的半径是5cm,圆心O到直线a的距离为8cm,直线a与⊙O的公共点个数是( )A.0B.1C.2D.1或2【解答】解:∵⊙O的半径为5cm,点O到直线a的距离为8cm,5<8,∴⊙O与直线a的位置关系是相离,直线a与⊙O的公共点个数是0个,故选:A.4.(3分)解一元二次方程x2﹣6x﹣4=0,配方后得到(x﹣3)2=p,则p的值是( )A.13B.9C.5D.4【解答】解:∵x2﹣6x﹣4=0,∴x2﹣6x=4,则x2﹣6x+9=4+9,即(x﹣3)2=13,∴p=13,故选:A.5.(3分)下列一元二次方程有两个互为倒数的实数根的是( )A.2x2﹣3x+1=0B.x2﹣x+1=0C.x2+x﹣1=0D.x2﹣3x+1=0【解答】解:A、∵在2x2﹣3x+1=0中,Δ=(﹣3)2﹣4×2×1=1>0,∴该方程有两个不相等的实数根,∵=,∴该方程的两个实数根不是互为倒数;故选项A不合题意;B、在方程x2﹣x+1=0中,Δ=(﹣1)2﹣4×1×1=﹣3<0,故选项B不合题意;∴该方程有两个相等的实数根;C、∵在方程x2+x﹣1=0中,Δ=12﹣4×1×(﹣1)=5>0,∴该方程有两个不相等的实数根,∵=﹣1,∴该方程的两个实数根不是互为倒数;故选项C不合题意;D、∵在方程x2﹣3x+1=0中,Δ=(﹣3)2﹣4×1×1=5>0,∴该方程有两个不相等的实数根,∵=1,∴该方程的两个实数根是互为倒数;故选项D符合题意;故选:D.6.(3分)已知点A(x1,y1),B(x2,y2),C(x3,y3)在抛物线y=x2+2x﹣3上.当x1<﹣3,﹣1<x2<0,0<x3<1时,y1,y2,y3三者之间的大小关系是( )A.y1<y2<y3B.y2<y3<y1C.y3<y1<y2D.y2<y1<y3【解答】解:∵抛物线y=x2+2x﹣3=(x+1)2﹣4,∴抛物线开口向上,对称轴x=﹣1,顶点坐标为(﹣1,﹣4),当y=0时,(x+1)2﹣4=0,解得x=1或x=﹣3,∴抛物线与x轴的两个交点坐标为:(1,0),(﹣3,0),∴x1<﹣3,﹣1<x2<0,0<x3<1,∴y2<y3<y1,故选:B.7.(3分)下表给出了二次函数y=ax2+bx+c的自变量x与函数值y的部分对应值:x…1 1.1 1.2 1.3 1.4…y…﹣1﹣0.67﹣0.290.140.62…那么关于x的方程ax2+bx+c=0的一个根的近似值可能是( )A.1.07B.1.17C.1.27D.1.37【解答】解:∵x=1.2时,y=ax2+bx+c=﹣0.29;x=1.3时,y=ax2+bx+c=0.14;∴抛物线y=ax2+bx+c与x轴的一个交点在(1.2,0)和点(1.3,0)之间,且更靠近点(1.3,0),∴方程ax2+bx+c=0有一个根约为1.27.故选:C.8.(3分)甲口袋中装有2张卡片,它们分别写有汉字“数”、“学”;乙、丙口袋中各装有3张卡片,它们分别写有汉字“数”、“学”、“美”.从这三个口袋中各随机取出1张卡片,取出的3张卡片恰好有“数”、“学”、“美”三个字的概率是( )A.B.C.D.【解答】解:画树状图如下:共有18种等可能的结果,其中取出的3张卡片恰好有“数”、“学”、“美”三个字的结果有:(数,学,美),(数,美,学),(学,数,美),(学,美,数),共4种,∴取出的3张卡片恰好有“数”、“学”、“美”三个字的概率为=.故选:C.9.(3分)如图,在△ABC中,∠BAC=64°,将△ABC绕顶点A顺时针旋转,得到△ADE.若点D恰好落在边BC上,且AE∥BC,则旋转角的大小是( )A.51°B.52°C.53°D.54°【解答】解:∵将△ABC绕顶点A顺时针旋转,得到△ADE.∴AB=AD,∠BAC=∠DAE=64°,旋转角为∠BAD,∴∠ADB=∠ABD,∵AE∥BC,∴∠BDA=∠DAE=64°,∴∠BAD=180°﹣64°﹣64°=52°.故选:B.10.(3分)如图,从一张圆形纸片上剪出一个小圆形和一个扇形分别作为圆锥的底面和侧面,其中小圆的直径是大圆的半径.下列剪法恰好能配成一个圆锥的是( )A.B.C.D.【解答】解:设大圆的半径为R,则小圆的半径都为R,根据圆锥的底面圆的周长等于扇形弧长,只要图形中两者相等即可配成一个圆锥体,∴圆锥的底面圆的周长等于2πR=πR,扇形弧长为:=πR,∴n=180°,∴扇形圆心角等于180°,故只有D选项符合题意.故选:D.二、填空题(共6小题,每小题3分,共18分)下列各题不需要写出解答过程,请将结果直接填写在答题卡指定的位置.11.(3分)写出一个两根是互为相反数的一元二次方程 x2﹣1=0 .【解答】解:∵两根互为相反数的一元二次方程的一次系数为0,∴满足条件的一元二次方程为x2﹣1=0.故答案为x2﹣1=0.12.(3分)如图,阴影部分是分别以正方形ABCD的顶点和中心为圆心,以正方形边长的一半为半径作弧形成的封闭图形.在正方形ABCD上做随机投针试验,针头落在阴影部分区域内的概率是 .【解答】解:如图,令正方形的边长为2a,则阴影部分的面积为2××π•a2+2(a2﹣×π•a2)=πa2+2a2﹣πa2=2a2,所以针头落在阴影部分区域内的概率是=.故答案为:.13.(3分)某款“不倒翁”(图1)的主视图是图2,PA,PB分别与所在圆相切于点A,B.若该圆半径是18cm,∠P=50°,则的长是 23π cm.【解答】解:如图,设圆心为O,连接AO、BO,∵PA,PB分别与所在圆相切于点A,B,∴∠OAP=∠OBP=90°,∵∠P=50°,∴∠AOB=130°,∴优弧对应的圆心角为360°﹣130°=230°,∴优弧的长是:,故答案为:23π.14.(3分)《九章算术》第三章“衰分”介绍了比例分配问题,“衰分”是按比例递减分配的意思,通常称递减的比例为“衰分比”.例如:已知A,B,C三人分配奖金的衰分比为10%,若A分得奖金1000元,则B,C所分得奖金分别为900元和810元.某科研所三位技术人员甲、乙、丙攻关成功,共获得奖金175万元,甲、乙、丙按照一定的“衰分比”分配奖金,若甲分得奖金100万元,则“衰分比”是 50% .【解答】解:设“衰分比”是a.乙分配的奖金:100(1﹣a);丙分配的奖金:100(1﹣a)(1﹣a)∴100+100(1﹣a)+100(1﹣a)(1﹣a)=175,a=0.5或a=2.5(不符合题意,舍去),故答案为:50%.15.(3分)已知抛物线y=ax2+bx+c(a>0)与x轴交于点(m,0),(2,0),其中0<m<1.下列结论:①bc>0;②2b+3c<0;③不等式的解集为0<x<2;④若关于x的方程a(x﹣m)(x﹣2)=﹣1有实数根,则b2﹣4ac≥4a.其中正确的是 ②③④ .(填写序号)【解答】解:如图,∵a>0,抛物线与x轴交于点(m,0),(2,0),∴抛物线的对称轴在y的右侧,∴a、b异号,∴b<0,∴抛物线与y轴的交点在y轴的正半轴,∵c>0,∴bc<0,所以①错误;把(2,0)代入y=ax2+bx+c得4a+2b+c=0,∴a=,∵x=1时,y<0,∴a+b+c<0,∴+b+c<0,即2b+3c<0,所以②正确;∵抛物线与y轴的交点坐标为(0,c),直线y=﹣x+c经过点(0,c),(2,0),∴抛物线y=ax2+bx+c与直线y=﹣x+c相交于点(0,c),(2,0),∵0<x<2时,ax2+bx+c<﹣x+c,∴不等式ax2+bx+c<﹣x+c的解集为0<x<2,所以③正确;∵抛物线y=ax2+bx+c(a>0)与x轴交于点(m,0),(2,0),∴抛物线解析式可设为y=a(x﹣m)(x﹣2),当直线y=﹣1与抛物线y=a(x﹣m)(x﹣2)有交点时,关于x的方程a(x﹣m)(x﹣2)=﹣1有实数根,∴抛物线的顶点在直线y=﹣1的下方或在直线y=﹣1上,即≤﹣1,而a>0,∴b2﹣4ac≥4a,所以④正确.故答案为:②③④.16.(3分)如图是某游乐场一个直径为50m的圆形摩天轮,最高点距离地面55m,其旋转一周需要12分钟.圆周上座舱P距离地面50m处,逆时针旋转5分钟后,距离地面的高度是 21.2 m(结果根据“四舍五入”法精确到0.1).(参考数据:≈1.732)【解答】解:如图,设⊙O为摩天轮,MN为地面,AB为它的直径,且AB⊥MN于点C,由题意得:AB=50m,AC=55m,则BC=5m,OC=30m.圆周上座舱P距离地面50m处,逆时针旋转5分钟后旋转到点P′处.∵摩天轮旋转1周需要12分钟,∴每分钟旋转360°÷12=30°,∴5分钟转过150°,∴∠POP′=150°.连接OP,过点P作PE⊥MN于点E,则PE=50m,延长P′O交PE于点F,则∠POF =30°,过点O作OG⊥PE于点G,过点P作PD⊥AB于点D,过点P′作P′K⊥AB 于点K,P′H⊥MN于点H,∵OG⊥PE,AB⊥MN,PE⊥MN,∴四边形OCEG为矩形,∴EG=OC=30m,∴PG=PE﹣GE=50﹣0=20m.同理:四边形ODPG为矩形,∴OD=PG=20m,∴PD=OG==15m.过点F作FQ⊥OP于点Q,则FQ=OF,设FQ=k,则OF=2k,OQ=k,PQ=25﹣k,∵∠PQF=∠PGO=90°,∠FPQ=∠OPG,∴△PQF∽△PGO,∴,,∴,∴k=.∴OF=2k=.∴,∴PF=,∴FG=PG﹣PF=20﹣=,∵P′K⊥AB,OG⊥PE,AB∥PE,∴∠OP′K=∠FOG,∵∠P′KO=∠OGF=90°,∴△P′OK∽△OFG,∴,∴,∴OK=≈9.82m,∴CK=OC﹣OK=21.18≈21.2m.∵P′K⊥AB,P′H⊥MN,AB⊥MN于点C,∴四边形P′HCK为矩形,∴P′H=CK=21.2m,∴座舱P距离地面的高度是21.2m,故答案为:21.2.三、解答题(共8小题,共72分)17.(8分)关于x的一元二次方程x2+bx﹣12=0有一个根是x=2,求b的值及方程的另一个根.【解答】解:设方程的另一个根为t,根据根与系数的关系得2+t=﹣b,2t=﹣12,解得t=﹣6,b=4,即b的值为4,方程的另一个根为﹣6.18.(8分)如图,在△ABC中,D是BC的中点.(1)画出△ABD关于点D对称的图形;(2)若AB=6,AD=4,AC=10,求证:∠BAD=90°.【解答】(1)解:如图,△A'CD即为所求.(2)证明:∵△ABD与△A'CD关于点D对称,∴△ABD≌△A'CD,∴A'C=AB=6,A'D=AD=4,∠CA'D=∠BAD,∴AA'=8,∵AC=10,∴AC2=AA'2+A'C2,∴∠CA'D=90°,∴∠BAD=90°.19.(8分)一个不透明的布袋中装有红、白两种颜色的袜子各一双,它们除颜色外其余都相同.(1)从布袋中随机摸出一只袜子,直接写出颜色是白色的概率;(2)用列表或画树状图法,求从布袋中随机一次摸出两只袜子恰好是同色的概率.【解答】解:(1)由题意得,从布袋中随机摸出一只袜子,颜色是白色的概率是=.(2)列表如下:红红白白红(红,红)(红,白)(红,白)红(红,红)(红,白)(红,白)白(白,红)(白,红)(白,白)白(白,红)(白,红)(白,白)共有12种等可能的结果,其中从布袋中随机一次摸出两只袜子恰好是同色的结果有:(红,红),(红,红),(白,白),(白,白),共4种,∴从布袋中随机一次摸出两只袜子恰好是同色的概率为=.20.(8分)如图,A,B,C,D是⊙O上四点,AC=AB.(1)如图(1),∠BAC=60°,BD是直径,BD交AC于点E.若BD=d,先用含字母d的式子直接表示CD和DE的长,再比较CD+DE与BE之间的大小;(2)如图(2),过点A作AE⊥BD,垂足为E.若CD=3,DE=1,求BE的长.【解答】解:(1)∵∠BAC=60°,BD是直径,∴∠D=∠BAC=60°,∠BCD=90°,在Rt△BCD中,∠D=60°,BD=d,∴cos∠D=,sin∠D=,∴CD=BD•cos∠D=d•cos60°=,BC=BD•sin∠D=d•sin60°=,∵∠BAC=60°,AC=AB,∴△ABC为等边三角形,∴∠ACB=60°,∴∠CEB=180°﹣(∠ACB﹣∠CBD)=180°﹣(60°+30°)=90°,在Rt△BCE中,∠CBD=30°,BC=,∴cos∠CBD=,∴BE=BC•cos∠CBD=•cos30°=,∴DE=BD﹣BE=d﹣=,∴CD+DE=+=,∴CD+DE=BE;(2)过点A作AF⊥CD交CD的延长线于F,连接AD,如图所示:∴∠ABD=∠ACD,即∠ABE=∠ACF,∵AE⊥BD,AF⊥CD,∴∠AEB=∠F=90°,在△ABE和△ACF中,,∴△ABE≌△ACF(AAS),∴AE=AF,BD=CF,在Rt△ADE和Rt△ADF中,,∴Rt△ADE≌Rt△ADF(HL),∴DE=DF,∵CD=3,DE=1,∴CF=CD+DF=CD+DE=3+1=4,∴BE=CF=4.21.(8分)用无刻度的直尺完成下列画图.(1)如图(1),△ACD的三个顶点在⊙O上,AC=AD,∠CAD=36°,F是AC的中点.先分别画出CD,AD的中点G,H,再画⊙O的内接正五边形ABCDE;(2)如图(2),正五边形ABCDE五个顶点在⊙O上,过点A画⊙O的切线AP.【解答】解:(1)连接AO并延长交CD于G,连接DF交AG于K,连接CK并延长交AD于H,连接OF并延长交⊙O于B,连接并延长OH交⊙O于E,如图:点G即为CD中点,点H即为AD中点,五边形ABCDE即为⊙O的内接正五边形;理由:由圆和等腰三角形的对称性可知G为CD中点;∵F是AC中点,∴K为△ABC重心,∴H为AD中点;∵AC=AD,∠CAD=36°,∴∠ACD=∠ADC=72°,=,=72°,∵F为AC中点,H为AD中点;∴====72°,∴====,∴CD=AB=BC=AE=DE,∴五边形ABCDE即为⊙O的内接正五边形;(2)延长BA,DE交于M,连接OM交AE于N,连接BN,CE并延长交于P,过A,P 作直线AP,如图:直线AP即为所求;理由:由圆和正五边形的对称性可知,N为AE的中点,∵正五边形每个内角为108°,∴∠ABC=∠BCD=108°=∠CDE,∴∠ECD=(180°﹣108°)÷2=36°,∴∠BCE=72°,∴∠ABC+∠BCE=180°,∴AB∥CE,∴∠BAN=∠NEP=108°,∠ABN=∠EPN,∴△ABN≌△EPN(AAS),∴AB=PE,∴AE=AB=PE,∴∠EAP=∠EPA=(180°﹣108°)÷2=36°,∵∠OAB=∠OAE=108°÷2=54°,∴∠OAE+∠EAP=90°,∴OA⊥AP,∵OA是⊙O半径,∴直线AP是⊙O的切线.22.(10分)某一抛物线形隧道,一侧建有垂直于地面的隔离墙,其横截面如图所示,并建立平面直角坐标系.已知抛物线经过(0,3),,三点.(1)求抛物线的解析式(不考虑自变量的取值范围);(2)有一辆高5m,顶部宽4m的工程车要通过该隧道,该车能否正常通过?并说明理由;(3)现准备在隧道上A处安装一个直角形钢架BAC,对隧道进行维修.B,C两点分别在隔离墙和地面上,且AB与隔离墙垂直,AC与地面垂直,求钢架BAC的最大长度.【解答】解:(1)由题意,设抛物线的解析式为y=ax2+bx+c,∴.∴.∴抛物线的解析式为y=﹣x2+2x+3.(2)工程车不能正常通过.理由如下:∵工程车高5m,∴令y=5,即5=﹣x2+2x+3.∴x=3±.∴纵坐标为5时,两点的距离为3+﹣(3﹣)=2≈3.46<4.故高5m,顶部宽4m的工程车不能正常通过.(3)由题意,如图,设A(m,﹣m2+2m+3).当OB=3时,令y=3=﹣m2+2m+3,∴m=0或m=6.∴B(0,﹣m2+2m+3).∵B在墙面上,∴m≥6.由AB+AC=m﹣m2+2m+3=﹣m2+3m+3=﹣(m﹣)2+,又当m>时,(AB+AC)的值随m的增大而减小,∴当m=6时,(AB+AC)取最大值,最大值为9.∴钢架BAC的最大长度为9m.23.(10分)在四边形ABCD中,AD∥BC,E是AB上一动点(不与点B重合),连接CE,DE.(1)如图(1),AB=BC,∠ABC=∠DCE=60°,求证:AD=BE.(2)如图(2),CD=ED,∠ABC=∠DCE=45°.①通过特例可以猜想一般结论.请你画出一个符合条件的特殊图形,猜想AD与BE的数量关系;②在一般情形下,证明你的猜想.【解答】(1)证明:连接AC,∵AB=BC,∠ABC=60°,∴△ABC是等边三角形,∴BC=AC,∠ACB=60°,∵∠DCE=60°,∴∠BCE=∠ACD,∵AD∥BC,∴∠CAD=∠ACB=60°,∴∠CAD=∠ABC,∴△BCE≌△ACD(ASA),∴AD=BE;(2)①解:猜想:BE=AD,证明:连接AC,当AB⊥AC时,如图,∵∠ABC=45°,∴△ABC是等腰直角三角形,∴BC=AC,∴∠ACB=45°,∵∠DCE=45°,∴∠BCE=∠ACD,∵AD∥BC,∴∠CAD=∠ACB=45°,∴∠CAD=∠ABC,∴△BCE∽△ACD,∴,∴BE=AD;②证明:过点D作DF⊥AD,交BA的延长线于F,∵AD∥BC,∠ABC=∠DCE=45°.∴∠FAD=∠ABC=45°,∠CEB+∠BCE=45°.∴∠F=∠FAD=45°,∴∠ABC=∠F=45°,AD=FD,∵CD=ED,∠DCE=45°.∴∠CED=45°.∴∠CDE=90°,∠CEB+FED=135°,∴CE=ED,∠BCE=∠FED,∴△BCE∽△FED,∴,∴BE=FD,∵AD=FD,∴BE=AD.24.(12分)如图(1),抛物线L1:y=x2﹣6x+c与x轴交于A,B两点,且AB=4.将抛物线L1向左平移a(a>0)个单位得到抛物线L2,C是抛物线L2与y轴的交点.(1)求c的值;(2)过点C作射线CD∥x轴,交抛物线L1于点D,E两点,点D在点E的左侧.若DE =2CD,直接写出a的值;(3)如图(2),若C是抛物线L2的顶点,直线y=mx与抛物线L2交于F,G两点,直线y=nx分别交直线CF,CG于点M,N.若OM=ON,试探究m与n的数量关系.【解答】解:(1)当y=0时,x2﹣6x+c=0,∴x A+x B=6,x A•x B=c,∴AB==4,解得c=5;(2)∵c=5,∴抛物线L1的解析式为y=x2﹣6x+5,∵将抛物线L1向左平移a(a>0)个单位得到抛物线L2,∴抛物线L2的解析式为y=(x﹣3+a)2﹣4,∴C(0,a2﹣6a+5),∵CD∥x轴,∴D(3﹣,a2﹣6a+5),E(3+,a2﹣6a+5),∴DE=2,CD=3﹣,∵DE=2CD,∴2=6﹣2,解得a=或a=;(3)∵C是抛物线L2的顶点,∴3﹣a=0,解得a=3,∴抛物线L2的解析式为y=x2﹣4,设F(x F,﹣4),G(x G,﹣4),当x2﹣4=mx时,x2﹣mx﹣4=0,∴x F+x G=m,直线CF的解析式为y=x F x﹣4,直线CG的解析式为y=x G x﹣4,当x F x﹣4=nx时,M(,),当x G x﹣4=nx时,N(,),∵OM=ON,∴x F+x G=2n,∴m=2n.。
3-近四年武汉市元月调考数学试题集合

第5题图2014-2015学年武汉市部分学校九年级元月调考数 学 试 卷武汉市教育科学研究院命制 2015.1.28亲爱的同学,在你答题前,请认真阅读下面以及“答题卡”上的注意事项:1.本试卷由第I 卷(选择题)和第II 卷(非选择题)两部分组成,全卷共6面,三大题,满分120分,考试用时120分钟。
2.答题前,请将你的姓名、准考证号填写在“答题卡”相应位置,并在“答题卡”背面左上角填写姓名和座位号。
3.答第I 卷(选择题)时,选择出每小题答案后,用2B 铅笔把“答题卡”上对应题目睥答案标号涂黑。
如需改动3,用橡皮擦干净后,再选涂其他答案,不得答在“试卷”上。
4.第II 卷(非选择题)用0.5毫米黑色笔迹签字笔书写在“答题卡”上,答在第I 、II 卷的试卷上无效。
预祝你取得优异成绩!第I 卷(选择题 共30分)一、选择题(共10小题,每小题3分,共30分)下列各题中均有四个备选答案,其中有且只有一个正确,请在答卷上将正确答案的代号涂黑。
1.方程25410x x --=的二次项系数和一次项系数分别为A .5和4B .5和-4C .5和-1D .5和12.桌上倒扣着背面相同的5张扑克牌,其中3张黑桃,2张红桃。
从中随机抽取一张,则 A .能够事先确定抽取的扑克牌的花色 B .抽到黑桃的可能性更大 C .抽到黑桃和抽到红桃的可能性一样大 D .抽到红桃的可能性更大3.抛物线212y x =向下平移一个单位得到的抛物线 A .21(1)2y x =+ B .21(1)2y x =- C .2112y x =+ D .2112y x =-4.用频率估计概率,可以发现,抛掷硬币:“正面朝上”的概率为0.5,是指A .连接掷2次,结果一定是“正面朝上”和“反面朝上”各1次B .连续抛掷100次,结果一定是“正面朝上”和“反面朝上”各50次C .抛掷2n 次硬币,恰好有n 次“正面朝上”D .抛掷n 次,当n 越来越大时,正面朝上的频率会越来越稳定于0.55.如图,在⊙O 中,弦AB 、AC 互相垂直,D 、E 分别为AB 、AC 的中点,则四边形OEAD 为 A .正方形 B .菱形 C .矩形 D .直角梯形 6.在平面直角坐标系中,点A (-4,1)关于原点的对称点的坐标为 A .(4,1) B .(4,-1) C .(-4,-1) D .(-1,4) 7.圆的直径为13cm ,如果圆心与直线的距离是d ,则A .当d=8cm 时,直线与圆相交B .当d =4.5cm 时,直线与圆相离C .当d =6.5cm 时,直线与圆相切D .当d =13cm 时,直线与圆相切 8.用配方法解方程21090x x ++=,下列变形正确的是A .2(5)16x += B .2(10)91x += C .2(5)34x -= D .2(10)109x += 9.如图,在平面直角坐标系中,抛物线25y ax bx =++经过A (2,5),B (-1,2)两点,若点C 在该抛物线上,则C 点的坐标可能是 A .(-2,0) B .(0.5,6.5) C .(3,2) D .(2,2)10.如图,在⊙O 中,弦AD 等于半径,B 为优弧»AD 上的一动点,等腰△ABC 的底边BC 所在的直线经过点D ,若⊙O 的半径等于1,则OC 的长不可能为A .23B 31C .2D 31第II 卷(非选择题 共90分)二、填空题(共6小题,每小题3分,共18分)下列各题不需要写出解答过程,请将结果直接填写在答卷指定的位置。
2010年、2012年、2012年、2013年武汉市九年级数学元月调考试卷

2009-2010学年度武汉市部分学校九年级调研测试数学试题武汉市教育科学研究院命制 2010.1.26. 一、选择题(每小题3分,共36分)1、要使式子32+a 在实数范围内有意义,字母a 的取值必须满足( ) A. a ≥0. B. a ≥-23. C. a ≠-23. D. a ≤-23. 2.下列计算① 53⨯=15;②1031003=; ③2723=32;④ 16=4.其中错误的是( )A . ① B. ② C. ③ D. ④3.在一元二次方程x 2-4x-1=0中,二次项系数和一次项系数分别是( ) A.1 , 4. B.1,-4. C. 1, -1. D. x 2,4x.4.某校九个班进行迎新春大合唱比赛,用抽签的方式确定出场顺序。
签筒中有9根形状、大小完全相同的纸签,上面分别标有出场的序号1,2,3,…,9.下列事件中是必然事件的是( )A. 某班抽到的序号小于6.B. 某班抽到的序号为0.C. 某班抽到的序号为7.D. 某班抽到的序号大于0.5.在一个口袋中有3个完全相同的小球,把它们分别标号为1,2,3,随机地摸取一个小球然后放回,再随机地摸出一个小球。
则两次取的小球的标号相同的概率为( ) A.31. B. 61 C. 21. D. 91 6.方程x 2-5x-6=0的两根之和为( )A. -6.B. 5C. -5.D. 1.7.下列图案是部分汽车的标志,其中是中心对称图形的是( )A. B. C.D.8.如图,在⊙O 中,弦BE 与CD 相交于点F ,CB,ED 的延长线相交于点A , 若∠A=30°,∠CFE=70°,则∠CDE=( )A. 20°B. 40°.C. 50°.D. 60°9.2009年,甲型H1N1病毒蔓延全球,抗病毒的药物需求量大增。
某制药厂连续两个月加大投入,提高生产量,其中九月份生产35万箱,十一月份生产51万箱。
武汉市2011-2012元月调考数学模拟题五

元月调考模拟题五一、选择题(共12小题,每小题3分,共36分)1、一元二次方程22x x =的根为( ). (A )0或2 (B )±2 (C )0或-2 (D )22、下列事件中必然事件的个数( ).①如果a 、b 都是实数,那么a b b a +=+;②从一副扑克牌中任意抽出一张,得到“黑桃”; ③有水分种子发芽; ④某电话在一分钟内接到至少15次呼叫. (A )1 (B )2 (C )3 (D )4 3、下列算式中, 其中一定成立的是( ) .①1)1(22+=+a a ; ②a a a =;③)0(≥=ab b aab ; ④11)1)(1(-+=-+x x x x ;(A )①② (B )②③ (C )③④ (D )① 4、函数x y -=3中自变量x 的取值范围是( ). (A )x ≥3 (B )x ≤3 (C )x ≠3 (D )x >35、把大小和形状一模一样的6张卡片分成两组,每组3张,分别标上数字1,2,3,将这两组卡分别放入两盒子中搅匀,再从中各随机抽取一张,取出的两张卡片数字之和为偶数的概率为( ). (A )12(B )49(C )59(D )386、若正三角形的周长为6,则这个正三角形的边心距为( ). (A )3(B )3(C )33(D )2337、下列图形中,是.中心对称图形的是( ).(A ) (B ) (C ) (D ) 8、工程上常用钢珠来测量零件上小孔的直径.假设钢珠的直径 是12mm ,测得钢珠顶端离零件表面的距离为9mm ,如右图所示, 则这个小孔的直径AB 的长度是( ).(A)6mm (B)33mm (C)63mm (D)8mm9、元旦期间,一个小组有若干人,新年互送贺卡一张,已知全组共送贺卡132张,则这个小组 每人各送出 ( ) 张贺卡.(A)11 (B)12 (C)13 (D)14 10、如图,AB 是⊙O 的直径,C 、D 是⊙O 上的两点,若∠AOC=116°,则∠D 的度数为( ). (A)64° (B) 58° (C)32° (D) 29° 11.对于一元二次方程20ax bx c ++=,下列说话:①若a b c ==,那么方程没有实数根;②若b a c =+,则方程必有一根为-1;③若方程有两个不等的实数根,则方程20x bx c ++=也有两个不等的实数根.其中正确的是( )(A)① (B)①② (B)①③ (D)②③12.如图,钝角△ABC 内接于⊙O ,∠ABC 的平分线交⊙O 于D ,BE 切⊙O 于点B ,DE ⊥BE 于E ,直线OD 交BC 于F ,下列结论:①OB+OF=DE;②BC=2BE;③∠ADO=∠CBO;④∠EDF=∠ABC+∠ACB;其中正确的有( ) (A)①②③④ (B)①②④ (C)②③④ (D)①②③二、填空题(共4小题,每小题3分,共12分) 13、已知一元二次方程290x mx ++=可以配方成()20x n +=的形式,则m = .14、要为一幅长29cm ,宽22cm 的照片配一个镜框,要求镜框的四条边宽度相等,且镜框所占面积为照片所占面积的四分之一,设镜框边的宽为x cm ,那么x 满足方程是 .15、小洋用彩色纸制做了一个圆锥型的生日帽,其底面半径为6cm ,母线长为12cm ,不考虑接缝,那么这个生日帽的侧面积为 cm 2.BA 9mmO D CBAA CBOFE DyxO CB A OEC B A16、在平面直角坐标系中,O 为原点,等腰梯形OBCD 的底边OB 在x 轴上,已知B (4,0),CD =2,∠DOB =60°,将梯形OBCD 绕点O 顺时针旋转90°,则旋转过程中线段DC 所扫过的图形的面积 .三、解答题(共9小题,共72分) 17、(本题6分)解方程:21x x -=.18、(本题6分)化简:31462294x x xx+-,并将x=8代入化简结果进行计算.19、(本题6分)△ABC 内接于⊙O ,D 为 AB 上一点,连DA,DC,DB.若∠ADE=∠ADC,判断△ABC 的形状,给出你的证明. 20、(本题7分)如图,平面直角坐标系中,Rt △ABC,∠C=90°,∠CAB=45°,点C (-4,2),先将△ABC 向右平移m 个单位到△111A B C ,且△ABC 与△111A B C 关于y 轴对称,使再将△111A B C 绕点1B 顺时针旋转90°,得到对应△212A B C .(1)请在图中画出△111A B C 和△212A B C ;(2)填空:m= ;点1C 的坐标为__________, 点2C 的坐标为__________.(3)经过这两次图象变换,求出C 点经过的路径长. 21、(本题7分)沪市经过一段时间的“低迷”后近期“反弹”,某日A 股以每股81元成交,以后两个交易日连续“上扬”,达到每股100元,照这样“牛市”第四个交易日能否突破110元/每股的关口?22、(本题8分)在Rt △ABC 中,∠B = 90°,∠A 的平分线交BC 于点O ,E 为AB 上一点,OE = OC ,以O 为圆心,OB 长为半径作⊙O .(1)求证:AC 是⊙O 的切线;(2)若AC=10,AB=6,求BE 的长.xODCByO E DC B A图 1B'A'DC B A B'A'图 2D CB AB'A'图 4DC B A图 5B'A'D C B A 23、(本题10分)甲、乙做一个“配色”的游戏,如图是两个可以自由转动的转盘,每个转盘被分成面积相等的几个扇形,并涂上图中所示的颜色.同时转动两个转盘,如果转盘A 转出红色,转盘B 转出蓝色,或者转盘A 转出了蓝色,转盘B 转出了红色,则红色和蓝色在一起配成紫色,这种情况下乙获胜;同样,蓝色和黄色在一起配成绿色,这种情况下甲获胜;在其它情况下,则甲、乙不分胜负. (1)利用列表或画树状图的方法表示此游戏所有可能出现的结果; 并用概率的知识说明此游戏的规则,对甲、乙公平吗?(2)你能设计并提供一种公平的游戏规则吗?请说出你的想法.24、(本题10分)△ABC 中,AB =AC.将△ABC 绕C 点旋转至△A ′B ′C ,连BB ′, 以AB 、BB ′为邻边作平行四边形ABB ′D ,连A ′D.⑴旋转后B 、C 、A ′在一条直线上.①如图1,若∠BAC =60°,则∠ADA ′=__________;②如图2,若∠BAC =90°,则∠ADA ′=__________;请你任选①或者②中的结论给予证明.⑵如图3,旋转后B 、C 、A ′在一条直线上.若∠BAC =α,则∠ADA ′=__________(用含α的式子表示);⑶分别将图1与图2中的△A ′B ′C 继续旋转至图4、图5,使B 、C 、A ′不在一条直线上,连AA ′,则图4中,△ADA ′ 的形状是__________;图5中,△ADA ′的形状是__________. 请你任选其中一个结论证明.图 3B'A'DC B A 转盘B 转盘A黄蓝红红蓝黄红25、(本题12分)如图直线y=kx-4k(k>0)交x轴于A,交y轴于B,且tan∠OAB=1,(1)求k值;(2)直线y=mx+4分别交OA、AB于P、Q两点,交y轴于S,连SA,若一点随机投入A B S∆中落在A P S∆和四边形OBQP的概率相等,求m的值;(3)如图,以OA为半径作⊙O,交x轴负半轴于C,D为⊙O上一点,连结BD、AD,AM平分∠DAC交BD于M,MN⊥OA于N,则①O C M NB D+为定值,②B D M NO C-为定值,请选择正确的结论证明并求此定值.xO NMDCBAyxOBAy。
2013年九年级元月调考数学模拟试卷(三)

2013年九年级元月调考数学模拟试卷(三)编辑人:袁几 考试时间:120分钟 一、选择题:(共12小题,每小题3分,共36分) 1.要使式子2x 在实数范围内有意义,x 的取值范围是( ) . A. x>2. B.x≥2 C.x>-2 D. x ≥-2.2.下列事件中,属于必然事件的是( ) A 。
某同学进行投篮练习,投篮一次会入篮筐; B .某同学进行投篮练习,球到最高点后会下落; C .2012年元旦这一天的天气一定是晴天; D .某同学认为元月调考的数学分数会超过100分3.将一元二次方程2x 2-=1-3x 化成一般形式后,一次项系数和常数项分别为( ) A.-3x;1 B 。
3x;-1:C .3;-1 D. 2;-14。
如图,多边形ABCDEFGH 为⊙O 的内接正八边形,图中箭头正好指向点A ,当箭头绕着点O 逆时针旋转270°时,箭头应正好指向( ) A.点G B 。
点E C .点D D 点C5.如图;△ABC 内接于⊙O,P 为⊙O 上一点,且∠APC=∠BPC,则△ABC 的形状为( )A 。
等腰三角形 B.等边三角形C .任意三角形D.△ABC 的形状由P 点的位置决定6.下列计算:①32×42=122;②122÷42=32;③14256-=-1,正确的有( )A 。
1个B .2个 c .3个 D .o 个7。
两圆半径分别为lcm 、3cm ,圆心距是4cm ,则两圆的位置关系是(.) A 。
相交 B .相离 c.相切. D .外切 8.方程x 2=x 的根的情况为( )A.有两个不相等的实数根 B 。
有两个互为相反数的实数根 C .只有一个实数根 D.没有实数根9.观察下列数,3,22,15,26,…则第6介数是.( )A.35B.47C.230 D 。
4310.如图,,在⊙0中,P为弧BAC的中点,PD⊥CD交⊙0于A,若AC=AD=1,AB的长为()A. 2.5B. 3C. 3.5D. 411.某区为了发展教育事业,加强对教育经费的投入,2009年投入3000万元,并且每年以相同的增长率增加经费,预计从2009到2011年一共投入11970万元;设平均每年经费投入的增长率为x,,则可列方程( )A. 3000(1+x)2=11970;B.3000 (l+x)+3000 (l+x)2=11970;C. 3000+3000 (l+x) +3000(l+x)2=ll970;D.3000+3000(l+x)2=1197012。
武汉市历届元月调考试题分类
武汉市历届元月调考试题分类专题一:数与式1.a 的取值必须满足A.0a ≠B.a ≥2C.a ≠2D.a ≤24.下列函数中,自变量x 的取值范围是x ≥3的函数是(A )3-=x y (B )x y -=3(C )31-=x y (D )xy -=314.要使式子1x +有意义,x 的取值范围是( ). (A )x ≥-2 (B )x ≠-1 (C )x ≥-2且x ≠-1 (D )x ≥-12.下列运算不正确的是4=5-110= D.(218=1.化简9的结果是 (A )3 (B )-3 (C )±3 (D )93.下列等式成立的是( ).(A (B(C )=(D )215.观察下列各式的规律:①③.若则a =___________________. 13.计算下面几个式子,它们的结果呈现出一定的规律:1999+⨯、1999999+⨯、1999999999+⨯、1999999999999+⨯.用你发现的规律直接写出式子9999991999999个个个n n n +⨯的结果是 .13观察你计算的结果,用= .18.先化简,再求值:3x =. 18.一个三角形的三边长分别为55x 、x 2021、xx 5445. (1)求它的周长(要求结果化简);(2)请你给一个适当的x 值,使它的周长为整数,并求出此时三角形周长的值.武汉市历届元月调考试题分类专题二:方程与不等式3.如果2是方程20x c -=的一个根,那么c 的值是A.4B.-4C.2D.-23.一元二次方程0)3(=+x x 的根为(A )0 (B )3 (C )0或3 (D )0或-35.如果x =3是一元二次方程ax 2=c 的一个根,那么该方程另一根是(A )3 (B )-3 (C )0 (D )11.一元二次方程20x x -=的根为( ).(A )0或1 (B )±1 (C )0或-1 (D )11. 一元二次方程x 2=x 的根是(A) x =1. (B) x =0. (C) x =±1. (D) x 1=0, x 2=1.3.下列方程中,没有实数根的是(A) x 2-x +1=0. (B)3x 2-2x -4=0.(C) x 2-3x =0. (D) x 2+2x +1=0.9.2008年10月29日,央行宣布,从10月30日起下调金融机构人民币存款基准利率.其中一年期存款基准利率由现行的3.87%下调至3.60%.11月26日,央行宣布,从11月27日,一年期存款基准利率由现行的 3.60%下调至2.52%.短短一个月,连续两次降息.设平均每次存款基准利率下调的百分率为x ,根据以上信息可列方程A.3.87% 2.52%2x -=B.()23.871 2.52x -=C.()23.87%1% 1.52%x -=D.()22.52%1 3.87%x +=16.为了让国人分享“神七”升空的骄傲,中央电视台在神七发射期间与“问问”网站联合举办“神七我问问”的活动,网友可以自由地提出问题,解答问题,对问题的解答发表评论。
武汉市九年级2013-2014年数学元调模拟卷
一.选择题(共10小题) 1.若式子在实数范围内有意义,则x 的取值范围是( )2.如图,△ABC 内接于⊙O ,∠A=50°,则∠OBC 的度数为( )BCBC5.下列二次根式是最简二次根式的是( )BC6.袋子中装有4个黑球和2个白球,这些球的形状、大小、质地等完全相同,在看不到球的条件下,随机地从袋子中摸出三个球,下列事件是必然事件的是() 7.若5k+20<0,则关于x 的一元二次方程x +4x ﹣k=0的根的情况是( )8.如图,在长为100米,宽为80米的矩形场地上修建两条宽度相等且互相垂直的道路,剩余部分进行绿化,要使绿化面积为7644米2,则道路的宽应为多少米?设道路的宽为x 米,则可列方程为( )9.已知实数a ,b 分别满足a 2﹣6a+4=0,b 2﹣6b+4=0,且a ≠b ,则的值是( )10.小敏在作⊙O 的内接正五边形时,先做了如下几个步骤:(1)作⊙O 的两条互相垂直的直径,再作OA 的垂直平分线交OA 于点M ,如图1;(2)以M为圆心,BM长为半径作圆弧,交CA于点D,连结BD,如图2.若⊙O的半径为1,则由以上作图得到的关于正五边形边长BD的等式是()OD=二.填空题(共6小题)11.计算:=_________.12.如图所示,某幼儿园有一道长为16米的墙,计划用32米长的围栏靠墙围成一个面积为120平方米的矩形草坪ABCD.该矩形草坪BC边的长是_________米.13.如图,OC是⊙O的半径,AB是弦,且OC⊥AB,点P在⊙O上,∠APC=26°,则∠BOC=_________度.14.如图,在平面直角坐标系中,边长为6的正六边形ABCDEF的对称中心与原点O重合,点A在x轴上,点B在反比例函数位于第一象限的图象上,则k的值为_________.15.已知扇形的面积为2π,半径为3,则该扇形的弧长为_________(结果保留π).16.在5瓶饮料中,有2瓶已过了保质期,从这5瓶饮料中任取2瓶,取到的两瓶恰好都是已过保质期饮料的概率为_________(结果用分数表示).三.解答题(共9小题)17.解方程:x(x﹣2)+x﹣2=0.18.长城公司为希望小学捐赠甲、乙两种品牌的体育器材,甲品牌有A、B、C三种型号,乙品牌有D、E两种型号,现要从甲、乙两种品牌的器材中各选购一种型号进行捐赠.(1)写出所有的选购方案(用列表法或树状图);(2)如果在上述选购方案中,每种方案被选中的可能性相同,那么A型器材被选中的概率是多少?19.如图,已知OA、OB是⊙O的两条半径,C、D为OA、OB上的两点,且AC=BD.求证:AD=BC.20.已知关于x的一元二次方程x2﹣(2k+1)x+k2+2k=0有两个实数根x1,x2.(1)求实数k的取值范围;(2)是否存在实数k使得≥0成立?若存在,请求出k的值;若不存在,请说明理由.21.如图,方格纸中每个小正方形的边长都是1个单位长度,△ABC在平面直角坐标系中的位置如图所示.(1)将△ABC向上平移3个单位后,得到△A1B1C1,请画出△A1B1C1,并直接写出点A1的坐标.(2)将△ABC绕点O顺时针旋转90°,请画出旋转后的△A2B2C2,并求点B所经过的路径长(结果保留x)22.已知,如图1,△ABC中,BA=BC,D是平面内不与A、B、C重合的任意一点,∠ABC=∠DBE,BD=BE.(1)求证:△ABD≌△CBE;(2)如图2,当点D是△ABC的外接圆圆心时,请判断四边形BDCE的形状,并证明你的结论.23.山西特产专卖店销售核桃,其进价为每千克40元,按每千克60元出售,平均每天可售出100千克,后来经过市场调查发现,单价每降低2元,则平均每天的销售可增加20千克,若该专卖店销售这种核桃要想平均每天获利2240元,请回答:(1)每千克核桃应降价多少元?(2)在平均每天获利不变的情况下,为尽可能让利于顾客,赢得市场,该店应按原售价的几折出售?24.在△ABC中,AB=AC,∠BAC=α(0°<α<60°),将线段BC绕点B逆时针旋转60°得到线段BD.(1)如图1,直接写出∠ABD的大小(用含α的式子表示);(2)如图2,∠BCE=150°,∠ABE=60°,判断△ABE的形状并加以证明;(3)在(2)的条件下,连接DE,若∠DEC=45°,求α的值.25.正方形ABCD的四个顶点都在⊙O上,E是⊙O上的一点.(1)如图①,若点E在上,F是DE上的一点,DF=BE.求证:△ADF≌△ABE;(2)在(1)的条件下,小明还发现线段DE、BE、AE之间满足等量关系:DE﹣BE=AE.请你说明理由;(3)如图②,若点E在上.写出线段DE、BE、AE之间的等量关系.(不必证明)答案如下:1---10 CABCC AACAC11、﹣12、1213、5214、15、116、10x1=2,x2=﹣1.17、18、略19、略时,原方程有两个实数根.使得∴≥,使得≥21、略∵100+.24、解:∴∠ABC=∠ACB=(180°﹣∠A)=90°﹣α,∵∠ABD=∠ABC﹣∠DBC,∠DBC=60°,即∠ABD=30°﹣α;(2)△ABE是等边三角形,证明:连接AD,CD,ED,∵线段BC绕B逆时针旋转60°得到线段BD,则BC=BD,∠DBC=60°,∵∠ABE=60°,∴∠ABD=60°﹣∠DBE=∠EBC=30°﹣α,且△BCD为等边三角形,在△ABD与△ACD中∴△ABD≌△ACD,∴∠BAD=∠CAD=∠BAC=α,∵∠BCE=150°,∴∠BEC=180°﹣(30°﹣α)﹣150°=α=∠BAD,在△ABD和△EBC中∴△ABD≌△EBC,∴AB=BE,∴△ABE是等边三角形;(3)∵∠BCD=60°,∠BCE=150°,∴∠DCE=150°﹣60°=90°,∵∠DEC=45°,∴△DEC为等腰直角三角形,∴DC=CE=BC,∵∠BCE=150°,∴∠EBC=(180°﹣150°)=15°,∵∠EBC=30°﹣α=15°,∴α=30°.25、解:(1)在正方形ABCD中,AB=AD(1分)∵∠1和∠2都对,∴∠1=∠2,(3分)在△ADF和△ABE中,,∴△ADF≌△ABE(SAS);(4分)(2)由(1)有△ADF≌△ABE,∴AF=AE,∠3=∠4.(5分)在正方形ABCD中,∠BAD=90°.∴∠BAF+∠3=90°.∴∠BAF+∠4=90°.∴∠EAF=90°.(6分)∴△EAF是等腰直角三角形.∴EF2=AE2+AF2.∴EF2=2AE2.(7分)∴EF=AE.(8分)即DE﹣DF=AE.∴DE﹣BE=AE.(9分)(3)BE﹣DE=AE.理由如下:(12分)在BE上取点F,使BF=DE,连接AF.易证△ADE≌△ABF,∴AF=AE,∠DAE=∠BAF.(5分)在正方形ABCD中,∠BAD=90°.∴∠BAF+∠DAF=90°.∴∠DAE+∠DAF=90°.∴∠EAF=90°.(6分)∴△EAF是等腰直角三角形.∴EF2=AE2+AF2.∴EF2=2AE2.(7分)∴EF=AE.(8分)即BE﹣BF=AE.∴BE﹣DE=AE.(9分)。
2013年九年级元月调考数学模拟试卷(五)
DC 2013年九年级元月调考数学模拟试卷(五)编辑人:袁几考试时间:120分钟祝考试顺利!一、选择题(每小题3分,共36分)1.二次根式x21+有意义时,x的取值范围是( )A.x≥21B.x≤-21c.x≥-21D.x≤212.下列计算正确的是( )A.68+=8+6 B.)9()16(-⨯-=16-³9-3. 一元二次方程2x=2x的根为()A.x=2 B x=0 C x=±2 D.1x=0,2x=24.已知一元二次方程22x+5x-1=O的两根为()A.25B -25C21D.-215.下列图形中,由原图经旋转不能得到的图形是( )6.下列图形中,绕着它的中心旋转60°后,能够与原图形完全重合.,则这个图形是( )A.等边三角形 B.正方形 C.圆 D.菱形7.下列事件中,必然事件是( )A.抛掷两枚硬币,同时正面朝上 B.哈尔滨六月飞雪c.若xy>0,则x>O,y>0 D.今天星期二,明天是星期三8.如图,圆心角∠AOB=80°,则∠ACB的度数为( )A.80°B.40°C.60°D.45°9.已知⊙1O与⊙2O的圆心距1O2O=6cm,且两圆的半径满足一元二次方程2x-6x+8=0.则两圆的位置关系为( )A.外切 B.内切 C.外离 D.相交20092008200719018036343228200920082007OBAP10.一个小组有若干人,每人互送贺卡一张,全组共送贺卡72张,则这个小组有( ) . A .12人 B.18人 C.9人 D.10人1 1.近四年来我市经济发展驶入快车道,某小型综合超市近四年的销售也取得较大突 破,如图1反映的是该小型综合超市2006—2009年每年的投资额统计图,图2反映的是该 超市2006—2009年每年的利润统计图(利润率=投资额利润³100%),观察图1、图2提供的信息.下列说法:①该超市2009年获得的利润最多达64万元;②该超市2007年获得的利润最多;③该超市计划2010年获得的利润与2009年持平,利润率不低于近四年的最高值, 那么该超市2010年投资额约为178万元,其中正确的结论有( )A .①② B.①③ C.②③ D.C②③12.如图,AB 为半圆O 的直径,OC ⊥ AB 交⊙O 于C,P 为BC 延长线上一动点,D 为 AP 中点,DE ⊥PA ,交半径OC 于E ,连CD .下列结论:①PE ⊥AE ;②DC=DE;③∠OEA=∠A PB :④PC+2CE 为定值.其中正确结论的个数为( ) A.l 个 B.2个 C.3个 D.4个 二、填空题(每小题3分,共12分)13.观察322=232,833=383,1544=4154,…,根据以上规律,若a b 9=9ab,z 则a+b=________ 14.已知关于z 的一元二次方程a 2x -5x+1=0有两个不相等的实数根,则a 围是_____.15.如图,在等边三角形ABC 中,AC=9,点D 在AC 上,且AO=3,连OP 将线段OP 绕点D 逆时针旋转60°得到线段OD ,要使点D 恰好落在BC AP 的长为____.16.在平面直角坐标系中,A 点坐标(一2,1),以A 为圆心,r 为半径作⊙A ,恰好与坐标轴有三个交点,则r=______三、解答题(共72分) 17.(6分)解方程2x +x-l=0.18.(6分)先化简:再求值. 55x +21x 20-45x x54,其中x=3119.(6分)均匀的正四面体的各面标有1,2,3,4四个数字,连续掷两次,求与地面接触的数字之和为4的概率,小刚和小颖分别给出了下述两种不同的解答:小刚的解法:两数字之和共有2,3,4,5,6,7,8,这7种不同的结果,因此所求的概率为71, 小颖的解法:连续掷两次正四面体,共有16种可能的结果,其中数字之和为4的情况有 (1,3),(2,2),(3,1)3种,因此数字之和为4的概率为163,请问哪一种解法正确?为什么?20.(7分)已知△ABC 在平面直角坐标系中的位置如图所示. ①分别写出图中点A 和点C 坐标;②画出△A BC 绕点C 按顺时针方向旋转90°后的△A′B ′C ,并写出点A ′的坐标; ③求点A 旋转到点A ′所经过的路线长.(结果保留 ).2 1.(7分)在一个口袋中有n 个小球,其中两个是白球,其余为红球,这些球的形状、大小、质地等完全相同,从袋中随机取出一个小球,是红球的概率为53, (1)求n 的值;(2)把这n 个球中的两个标号为1,其余分别标号为2,3,……,n-1, 随机取出一个小球后不放回,再随机地取出一个小球,求第二次取出的小球标号大于第一次取出的小球标号的概率.B 22.(8分)如图,在△ABC 中,AB=AC ,以AB 为直径的⊙O 与BC 交于D ,与边AC 交于E , 过D 作DF ⊥AC 于F.(1)求证:DF 为⊙O 的切线; (2)若DE=25,AB=25,求AE 的长.23.(10分)学校有一块长14米,宽10米的矩形空地,准备将其规划,设计图案如图,阴影应为绿化区(四块绿化区为全等的矩形),空白区为路面,,且四周出口一样宽广且宽度不小于2米,不大于5米,路面造价为每平方米200元,绿化区为每平方米150元,设绿化区的长边长为x 米.(1)用x 表示绿化区短边的长为_______米,x 的取值范围为_______. (2)学校计划投资25000元用于此项工程建设,问能否按要求完成此项工程任务,若能,求绿化区的长边长.24.(10分)如图,四边形ABCD 为正方形,△BEF 为等腰直角三角形(∠BFE=900,点B 、E 、F ,按逆时针排列),点P 为DE 的中点,连PC ,PF (1)如图①,点E 在BC 上,则线段PC 、PF 的数量关系为_______,位置关系为_____(不 证明).(2)如图②,将△BEF 绕点B 顺时针旋转a(O<a<450),则线段PC ,PF 有何数量关系和位置关系?请写出你的结论,并证明.D(3)如图③,△AEF 为等腰直角三角形,且∠A EF=90°,△AEF 绕点A 逆时针旋转过程中,能使点F 落在BC 上,且AB 平分EF ,直接写出AE 的值是________.25.(12分)如图直角坐标系中,以M (3,0)为圆心的⊙M 交x 轴负半轴于A ,交x 轴正半轴于B,交y 轴于C,D(1)若C 点坐标为 (0,4),求点A 坐标(2)在(1)的条件下,在⊙M 上,是否存在点P ,使∠CPM=45°,若存在,求出满足条件的点P(3)过C 作⊙M 的切线CE ,过A 作AN ⊥CE 于F,交⊙M 于N ,当⊙M 的半径大小发生变化时.AN 的长度是否变化?若变化,求变化范围,若不变,证明并求值.2013年九年级元月调考数学模拟试卷(五)参考答案一、选择题1.C2.C3.D4.B5.A6.C7.D8.B9.A 10.C 11.B 12.D 二、填空题 13. 89 14a<425且a ≠0 1 5. 6 16.2或5 三,解答题 17.解x=251±- 18.解:原式=23x 5,当x=31时,原式=211519.解:小刚的解法是错误的,小颖的解法是正确的.因为连续掷两次正四面体,与地面接触的数字组成两数字之和有16种可能结果,且每种情况发生的可能性相同,而出现和为4的情况共有3种,因此数字之和的概率为163,而小刚的错误在于没有考虑到事件发生的等可能性.20.解:(1)A(0,4),C(3,1) (2)图略,A ′ (6,4) (3)lAA ′=223π21.解:(1)由题意n n 2-=53∴n=5. (2)当n-5时,这5个球的两个标号为1,其余标号分别为2,3,4,两次取球的小球标号 出现的所有可能的结果如下图. 由上图知,n 个求概率p=209.22.(1)连AD, OD.可得∠BAD=∠CAD=∠ADO,'.OD//AC ∵DF ⊥AC ∴OD ⊥DF ,∴DF 为⊙o 切线.(2)连BE 交OD 于G . 则BG=EG ,四边形DGEF 为矩形. 由DE=BD=CD=25,∴ AD=22BD AB -=5 ,由S ∆ACD=21CD ²AD=21AC ²DF .∴DF=1.∴EG=DF=1=21BE,∴BE=2 ∴AE=22BE AB -=2323.解:(1) x-2 29≤x≤6.(2) 150³4x (x-2) +200[14³l0-4x (x-2) ]=250002x -2x-15=0 1x =-3(舍),2x =5.24.解:(1) PC=PF, PC ⊥PF.(2)延长FP 至G 使PG=PF ,连DC.GC 、FC. DB ,延长EF 交BD 于N. 由∆PDG ≌∆PEF,∴DG=EF=BF.∠PEF= ∠PDG,∴EN// DG,∴∠BNE=∠BDG=450+∠CDG=900-∠NBF=900- (450-∠FBC) ∴∠FBC=∠GDC ∴△BFC ≌△DGC,∴FC=CG, ∠BCF=∠DCG.∴∠FCG= ∠BCD=900. ∴△FCG 为等腰Rt△,∵PF=PG ,∴ PC ⊥PF, PF=PC. (3)33 25.(1)A(-2, 0) (2) P 1 (7, 3), P 2 (-1, -3). (3)答:AN 的长不变为6.连CM,作MH ⊥AN 于H ,则AH=NH ,证△AMH≌△MC O, ∴AH=M0=3. ∴AN=2AH=6.。
2013年武汉市九年级数学元月调考模拟试题
2013年武汉市九年级数学元月调考模拟试题一一.选择题(共12小题,每小题3分,共36分)A.x>1 B.x≥1 C.x<1 D.x≤12.下列计算正确的是()A+=0 C=9 D﹣33.已知关于x 的方程x²-kx -6=0的一个根为x=3,则实数k的值为()A.1 B.1-C.2 D.2-4.已知两圆的半径分别为3和5,圆心距为4,则这两圆的位置关系是( )A.内切B.外切C.相交D.外离5.下面事件:①掷一枚硬币,着地时正面向上;②在标准大气压下,水加热到100℃会沸腾;③买一张福利彩票,开奖后会中奖;④明天会下雨.其中,必然事件有()A.1个B.2个C.3个D.4个6.小明外出游玩,带上棕色、蓝色、淡黄色3件上衣和蓝色、白色2条长裤,他任意拿出1件上衣和1条长裤正好是棕色上衣和蓝色长裤的概率是()A.12B.15C.16D.197.下列图案既是轴对称图形,又是中心对称图形的是()A.B.C. D.8.如图,AB是⊙O的直径,C,D为圆上两点,∠AOC =130°,则∠D等于()A.25°B.30°C.35°D.50°ODCB AOC′CA′ADEO DC BA8题图11题图12题图14题图9.某市2008年国内生产总值(GDP)比2007年增长了12%,由于受到国际金融危机的影响,预计今年比2008年增长7%,若这两年GDP年平均增长率为x%,则x%满足的关系是()A.12%+7%=x%B.(1+12%)(1+7%)=2(1+x%)C.12%+7%=2x%D.(1+12%)(1+7%)=(1+x%)²10.关于x的一元二次方程ax2+bx+c=0(a≠0)。
下列论断:⑴若a-b+c=0,则它有一根为﹣1;⑵若它有一根为﹣c,则一定有ac-b=﹣1;⑶若b=a+2c,则它一定有两个不相等的实数根;其中正确的是()A.0个B.1个C.2个D.3个11.如图,AC是汽车挡风玻璃前的刮雨刷.如果AO=65㎝,CO=15㎝,当刮雨刷AC绕点O旋转90°时,则刮雨刷AC扫过的面积为()A.25πcm2B.1000πcm2C.25cm2D.1000cm212. 如图,PA 、PB 切⊙O 于A 、B ,PO 及其延长线分别交⊙O 于C 、D ,AE 为⊙O 的直径,连结AB 、AC ,下列结论:① CB = D E ;②∠ABP =∠DOE ;③AC 平分∠PAB ;④∠CAB =∠BAE ;其中正确的有( )A .①②③B .①②③④C .①②④D .②③④二.填空题(共4小题,每小题3分,共12分)13. 若圆内接正三角形的边长为2,则圆的半径为______;14. 如图, Rt △ABC 绕O 点旋转90°得Rt △BDE ,其中∠ACB =∠E = 90°,AC =3,DE =5, 则OC的长为______;15. 观察并分析下列数据,寻找规律:03,﹣2,﹣3,……,那么第10个数据应是______;第n 个数据是______;16. 一个小组有若干人,新年互送贺年卡一张,已知全组共互送贺年卡72张,则这个小组的人数为______;三.解答题(共9小题,共72分) 17. (本题6分)解方程:x 2+4x -2=018. (本题6a 值代入化简结果进行计算;19. (本题6分)如图,已知△ABC ,图中的每个小正方形的边长为1;⑴AC 的长等于______,⑵先将△ABC 向右平移2个单位得到△A B C ''',在图中画出△A B C ''',并写出A 点的对应点A '的坐标是______;⑶再将△ABC 绕点C 按逆时针方向旋转90°后得到△A 1B 1C 1,在图中画出△A 1B 1C 1,并写出A 点对应点A 1的坐标是______。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
E E B 讲 义 31027
例1.下列命题: ①若b=2a+
2
1
c,则一元二次方程a 2x +bx+c=O 必有一根为-2; ②若ac<0, 则方程 c 2x +bx+a=O 有两个不等实数根; ③若2b -4ac=0, 则方程 c 2x +bx+a=O 有两个相等实数根;
其中正确的个数是( )
A.O 个
B.l 个
C.2个 D 。
3 个
例2.如图,在Rt△ABC 中,∠ B=90°,E 为AB 上一点,∠ C=∠BEO ,O 是BC 上一点,以D 为圆心,OB 长为半径作⊙O ,,AC 是⊙O ,的切线.
(1)求证:OE=OC ;
(2)若BE=4,BC=8,求OE 的长.
例3.如图,△ABC 内接于⊙O ,其外角平分线AD 交⊙O 于DM ⊥AC 于M ,下列结论: ①DB=DC ;②AC-AB=2AM ;③AC+AB=2CM ;④S
ABD
∆=2
S
CDB
∆其中正确的有( )
A .只有④②
B .只有①②③
C .只有③④
D .①②③④
D
B
D B
D B
例4.如图,等边三角形ABC 和等边三角形DEC ,CE 和AC 重合,CE=
2
3
AB, (1)求证:AD=BE ;
(2)若CE 绕点C 顺时针旋转30度,连BD 交AC 于点G ,取AB 的中点F 连FG ,求证:BE=2FG ; (3)在(2)的条件下AB=2,则AG= ______.(直接写出结果)
例5.如图,⊙M 交x 轴于B 、C 两点,交y 轴于A ,点M 的纵坐标为2.,B (-33,O ),C (3,O ).
(1)求⊙M 的半径; .
(2)若CE ⊥AB 于H,交y 轴于F ,求证:EH=FH. (3)在(2)的条件下求AF 的长.
例6.在△ABC 中,AB=AC ,BC=14,M 为BC 的中点,∠KMW=∠ABC=α,MK 和MW 分别交AB 和AC 于Q 、P,MH ⊥PQ 于H. (1)如图①,a=60°,则BQ·CP= ,MH= .
(2) 如图②,0°<α<90°,求BQ ·CP 和MH 的值(可用含α的代数式表示).
(3)如图③,若∠KMW=2∠ABC=2α,M 是BC 上一点,BM : MC=1 : 3,其他条件不变。
求MQ : MP 的值,
M H
P Q K W C
B A ② M P
Q K W C
B A ③ M
H
P Q
K
W C
B A ①
例7.已知,在Rt △ABC 中,∠ACB=90°,点D 在斜边AB 上,点M 在直线AC 上,点N 在
直线BC 上,且∠MDN=90°。
(1)如图①,若AC=BC ,点D 为AB 的中点,求证:DM=DN ;
(2)如图②,若
,32,34==BD AD BC AC 求
DN
DM
的值。
(3)如图③,已知点D 为AB 的中点,点M 在AC 上,点N 在CB 的延长线上,过点M
作MG ⊥AB 于点G,过点N 作NH ⊥AB 于点H ,试问:线段GH 与线段AB 之间是否存在某种确定的数量关系?写出你的结论并证明。
M
N D C B
A H
G M
N
D
C
B A
练习: 1.函数y=2+x 中,自变量x 的取值范围是( ) A.x>-2 B .x ≥-2 C .x≠-2 D.x≤-2
2.下列运算正确的是( )
A .3+2 =5
B .3×2=6
C . 2)13(-=3-1 D.2
2
35- =5-3 3.已知关于x 的方程2x -kx-6=0的一个根为3,则实数k 的值为( ) A 。
1 B.-1 C.2 D .—2
4.两圆的圆心距为3,两圆半径分别是方程2x -4x+3=0的两个根,则两圆的位置关系
是( )
A 。
相交 B.外离C.内含 D ,外切
5.下列图形中.既是轴对称图形又是中心对称图形的是( )
6.⊙O 是正方形ABCD 的外接圆,点P 在⊙O 上,则∠APB=( )
A.30°
B.45°
C.55°
D.60°
7.武汉市2010年国内生产总值(GDP)比2009年增长了12%,由于受到国际金融危机的 影响,预计今年比2010年增长7%,若这两年GDP 年平均增长率为x ﹪,则x%满足的关系是( ) A.12%+7﹪=x% B.(1+12%)(1+7%)=2(1+x%)
C.12%+7%=2·x%
D.(1+12%)(1+7%)=(1+x%)2
8.如图,在△ABC 中,AB=AC,AB=8,BC=12,分别以AB 、AC 为直径作半圆,则图中阴影部分的面积是( ) A.64π -127 B.16π-32 , C.16π-247 D.16π -127
9.如图,在平面直角坐标系中,∠AB0=90°,将直角 △A OB 绕D 点顺时针旋转,使点B 落在x 轴上的点B 1处, 点A 落在A
1处,若B 点的坐标为(516,5
12),则点A 1 的坐标是___
10.已知
a
n
=
2
)
1(1
n (n=1,2,3,…),记b 1=2(1-1a ),b 2=2(1-1a )(1-2a ),…,n b = 2(1-1a )(1-2a )…(1-n a ),则通过计算推测出n b 的表达式n b =___________(用含n 的式子表示)
11.庆“元旦”,市工会组织篮球比赛,赛制为单循环形式(每两队之间都赛一场),共进行了45场比赛,这次有___________队参加比赛.
12.解方程:2x -2x-l=0.
13.化简:
3
2x 9+6
4x -2x x
1,并将自己所喜欢的z 值代入化简结果进行计算.
14.如图,在边长为1的小正方形组成的网格中,△ABC 的顶点均在格点上,以直线BC 为对称轴作△ABC 的轴对称图形,得到△A 1BC ,再将△A 1BC 绕着点B 逆时针旋转90°,得到△A 2BC 1 ,请依此画出△A 1BC ,、△A 2BC 1 .
15.(7分)有一块长30m 、宽20m 的矩形田地,准备修筑同样宽的三条直路(如下左图),把田地分成四块,种植不同品种的蔬菜,并且种植蔬菜的面积为基地面积的3
1
.求道路的宽度.。