系统稳定性意义以及稳定性的几种定义

合集下载

过程控制思考题(填空简答)

过程控制思考题(填空简答)

1、列举4种以上热工参数答:温度、压力、流量、液位、成分、物性2、单回路控制系统方框图(构成)3、工业生产对过程控制的要求(简答)答:安全性:确保生产过程中人身与设备安全,保护或减少生产过程对环境的影响。

稳定性:具有抑制外部干扰、保持生产过程长期稳定运行的能力。

经济性:实现效益最大化或成本最小化。

4、过程控制系统的组成 (广义和常规定义)答: 广义对象:检测元件、变送器、执行器和被控对象5.控变量/受控变量/过程变量(Controlled Variable - CV , Process Variable - PV )、设定值/给定值 (Setpoint - SP, Setpoint Value - SV )、操纵变量/操作变(ManipulatedVariable, MV)扰动/扰动变量 (DisturbanceVariable ,DV)控制器G c (s )执行器G v (s)控制通道G p (s)测量变送G m (s )设定值y sp 偏差 e +_控制变量u 操纵变量q 被控变量y 测量值y m 扰动 D 干扰通道G D (s )++被控对象测量/测量信号 (Measurement )控制/控制信号/控制变量(Control Variable )6、干扰和扰动的概念答:干扰(扰动):除操纵变量以外,作用于对象并能引起被控变量变化的因素,称为干扰或扰动。

7、过程控制系统按结构如何分类(画出结构图)答:反馈控制系统前馈控制系统前馈-反馈控制系统7、按设定值如何分类答:定值控制系统:设定值固定不变或在规定的小范围内变化随动控制系统:设定值随时间任意变化程序控制系统:设定值按预定的时间程序变化,也称为顺序控制系统8、过程控制单项性能指标有哪些?分别表征什么特性(会算)答:最大偏差和超调量(准确性指标)、衰减比(稳定性指标)、余差(准确性指标)、过渡时间(快速性指标)、振荡周期或频率(快速性指标)9、数学模型要素答:输出量和输入量10、有自衡过程和无自衡过程(含传递函数)答:当原来处于平衡状态的过程出现干扰时,其输出量在无人或无控制装置的干预下,能够自动恢复到原来或新的平衡状态,则称该过程具有自衡特性,否则,该过程则被认为无自衡特性。

生态系统中的物种多样性与稳定性

生态系统中的物种多样性与稳定性

生态系统中的物种多样性与稳定性生态系统是一个极其复杂的综合体系,包括生物、物理、化学等方面。

其中,物种多样性和稳定性是生态系统最基本、最重要的因素之一。

物种多样性是指生态系统中生物物种的数量和种类,而稳定性则是指生态系统中各种生物和环境要素之间的平衡和相互作用是否稳定。

本文将从多个角度探讨生态系统中的物种多样性和稳定性,并深度探讨两者之间的相互关系。

物种多样性的作用生态系统中,物种多样性的作用主要体现在以下几个方面:1. 生态服务的提供物种多样性是生态系统中各种生物的总和,它们可以在生态系统中提供各种各样的服务,比如土壤形成、空气净化、水资源再生等生态服务,使得生态系统能够持续地提供各种生态服务。

2. 改善环境质量物种多样性对环境的改善具有极其重要的意义。

多样的植被和动物能够改善大气和水质,还能改善土壤结构以及增加土壤的肥力。

这些功能不仅能提高生态环境的质量,也能为人类提供更好的生活条件。

3. 生态系统的稳定性物种多样性影响着一系列的生态过程,从而影响整个生态系统的稳定性。

例如,植物对于土地的保护作用就非常重要,它们能够防止水土流失,减轻地表水的污染、促进土壤的稳定等,有助于维持整个生态系统的稳定。

物种多样性和稳定性的相互关系在生态系统中,物种多样性和稳定性之间存在着密切的相互关系。

1. 物种多样性对生态系统稳定性的影响物种多样性能够降低生态系统的风险,增加生态系统的弹性,从而维持生态系统的稳定。

例如,生态系统中有多种不同的植物,如果某一种植物在生态系统中消失了,那么其它植物能够在某种程度上代替其作用,维持整个生态系统的平衡。

2. 生态系统稳定性对物种多样性的影响生态系统中的稳定性对物种多样性的生长和繁殖有着很大的影响。

稳定性高的生态系统对物种生长和繁殖的调节能力强,从而为生态系统中的物种多样性提供了更有利的生存环境。

3. 物种多样性和稳定性的相互作用物种多样性和稳定性之间不是简单的单向关系,而是相互作用的。

生态系统的稳定性与物种多样性

生态系统的稳定性与物种多样性

生态系统的稳定性与物种多样性生态系统是由自然界中所有生物和非生物要素相互作用形成的生态整体,这个生态整体包括森林、湖泊、海洋、平原、沙漠和山地等生态系统。

这些生态系统之所以能够存在,取决于它们之间的相互作用和互相依存的生物群落。

物种多样性是维持生态系统的基石,它是指一个生态系统中包含的不同物种的数量和变化。

生态系统的稳定性和物种多样性之间存在着非常紧密的联系。

在下面的文章中,我将从不同的角度来探讨生态系统的稳定性和物种多样性之间的关系。

物种多样性对生态系统的稳定性影响生态系统的稳定性是指一个生态系统能够在一定的环境变化下保持存在的能力。

在一个生态系统中,任何一个生物种群的数量和行为都会影响到其他生物种群的数量和行为。

物种多样性对生态系统的稳定性影响巨大。

研究表明,物种多样性越高的生态系统,其稳定性更强。

这是因为,在一个物种多样性高的生态系统中,各个生物种群之间的相互作用更加复杂,生物种群之间的资源利用更加分散,而生物种群之间的相互作用和依赖关系则更加紧密。

因此,当生态系统中出现环境变化时,更多的生物种群能够适应新的环境并维持生态系统的稳定性。

物种多样性减少对生态系统的影响物种多样性的减少会导致生态系统的不稳定性,这是因为物种的紧密联系。

当一个生物种群数量减少时,它对其他生物种群的影响也会随之减少或改变。

因此,生态系统中的其他生物种群也会受到影响。

一旦一个物种从一个生态系统中消失,系中的生态平衡就会被打破,导致其他生物种群数量和行为的变化,从而影响到整个生态系统的稳定性。

例如,当森林中一种主要的食肉动物数量下降时,它的天敌数量可能会增加,这就可能导致食肉动物进一步减少。

结果,食肉动物可能会继续减少到一个不可逆转的程度,这就可能会威胁到整个森林生态系统的稳定性。

生态系统中物种的互补作用生态系统中的不同物种之间存在着互补作用。

这种作用可以帮助维持生态系统的稳定性。

例如,植物在进行光合作用时会吸收二氧化碳,同时释放氧气,从而维持了整个生态系统的氧气平衡。

生态学的基本原理和应用

生态学的基本原理和应用

生态学的基本原理和应用生态学是一门涉及生物体与环境关系的学科,主要研究生物与环境相互作用的规律。

其基本原理是物种演替、群落互惠互利与生态系统稳定性。

一、物种演替物种演替是指一个区域内的物种组成演变的过程,其中大小与数量的变化、以及物种间相互关系的演变都是物种演替的主要表现形式。

物种演替有自然演替和人为干扰的人工演替两种形式。

自然演替分为先锋植物和回归植物两个阶段。

先锋植物先在裸露的地面上生长,能适应恶劣的环境。

随着时间推移,环境因素逐渐改善,先锋植物会死去,回归植物逐渐成为新的主导型生物。

因此,物种演替规律会被环境变化所影响。

二、群落互惠互利群落是指在一个区域内相互依存生长且资源互相利用的动植物社群。

丰富的物种组成是群落最显著的特征。

通过群落内部相互竞争而获得生长空间和资源的种类,称为竞争种。

相互合作而获得生长空间和资源的种类,称为共生种。

群落内每一个种类都有其特有的生长模式,每一个群落也有自己的特有空间结构,此空间结构会影响到群落内部的“食物链”,也会影响到群落内……每一种生物的与生俱来的对环境的适应性,成为群落内发展的先决条件。

三、生态系统稳定性生态系统稳定性是指生态系统对外环境变化的适应和恢复能力。

对稳定性研究集中于生物多样性、能量流和物质循环三个方面。

生态系统的稳健性与其生物多样性相关。

种类丰富的群落有保障生态系统平衡稳定的作用,因为每个物种的存在都对生态平衡做出了贡献。

能量流与物质循环是维持生态系统平衡稳定的两个关键因素,因为它们保证了系统中物质的流动和循环。

四、生态学的应用生态学的研究对于人类的生存和发展具有重要意义。

对孕育生命的水、空气、土壤的保护和治理工作始终牢牢把握着生态学这一基本原理和方法。

生态学方法可以用于自然资源的开发与利用,餐饮业的垃圾处理和环境治理之中。

同时,生态学还与城市规划、林业、畜牧业等领域有深入的联系。

生态学的研究虽然不需要过多地关注政治问题,但是其研究成果和应用对于国家和社会的经济发展和环境治理具有很大的帮助。

环境生态学复习提纲

环境生态学复习提纲

第一章绪论1、环境问题的定义:环境问题,是指人类为其自身生存和发展,在利用和改造自然界的过程中,对自然环境破坏或污染所产生的危害人类生存的各种不利的反馈效应。

一是不合理地开发和利用资源而对自然环境的破坏以及由此产生的各种生态效应,即生态破坏问题;二是因工农业生产活动和人类生活所排放的废弃物造成的污染,即环境污染问题。

2、环境问题产生的根源:经济超速增长的结果、人口的快速增长的结果、科学技术发展的结果、人对自然贪欲的结果。

3、环境生态学定义:研究人为干扰下,生态系统内在的变化机制、规律和对人类的反效应,寻求受损生态系统恢复、重建和保护对策的科学。

4、环境生态学的研究内容:人为干扰下生态系统内在变化机制和规律研究、生态系统受损程度及危害性的判断研究、各类生态系统的功能和保护措施的研究、解决环境问题的生态学对策研究。

第二章生物与环境1、生物种的概念:物种是由内在因素(特殊、遗传、生理、生态及行为)联系起来的个体的集合,是自然界中的一个基本进化单位和功能单位。

2、种的性状分类:基因型:种的遗传本质,生物性状表现必须具备的内在因素。

表型:与环境结合后实际表现出的可见性状。

3、生物的进化由遗传变异和自然选择共同作用,形成了生物与环境间的协同发展。

4、生物的协同进化主要是由于生物个体的进化过程是在其环境的选择压力下进行的,而环境不仅包括非生物因素,也包括其他生物。

5、生物协同进化的四种情况:昆虫与植物之间的协同进化、大型食草动物与植物的协同进化、互惠共生物种间的协同进化、协同适应系统6、生物多样性概念:生物多样性也就是“生物种的多样化和变异性以及物种生境的生态复杂性”。

它包括动物、植物和微生物的所有种及其组成的群落和生态系统。

7、生物多样性一般有四个水平:遗传多样性、物种多样性、生态系统多样性、景观多样性8、遗传多样性:又称为基因多样性,指广泛存在于生物体内、物种内以及物种间的基因多样性。

任何一个特定个体的物种都保持着并占有大量的遗传类型。

模糊控制系统的稳定性与鲁棒性设计

模糊控制系统的稳定性与鲁棒性设计

模糊控制系统的稳定性与鲁棒性设计模糊控制系统是一种基于模糊逻辑原理的控制方法,它能够应对一些复杂、非线性且具有不确定性的系统。

然而,为了确保模糊控制系统的有效性和稳定性,在设计过程中需要考虑其稳定性与鲁棒性。

本文将介绍模糊控制系统的稳定性与鲁棒性设计的相关原理和方法。

一、稳定性分析稳定性是衡量控制系统是否能够始终保持预定状态的重要指标。

对于模糊控制系统而言,稳定性可以通过分析其输出的响应曲线来判断。

一种常用的方法是利用模糊控制系统的输入输出关系进行稳定性分析。

在模糊控制系统中,输入是基于模糊规则的模糊集,输出是经过模糊综合运算得到的模糊集。

通过将输入集合和输出集合表示为隶属函数的形式,可以构建输入输出关系。

稳定性分析可以通过计算系统的稳定方程和判断系统的极点来实现。

稳定方程可以通过线性化系统的非线性部分并进行分析得到。

通过分析系统的极点,可以判断系统的稳定性。

二、鲁棒性设计鲁棒性是指控制系统对于外部扰动、系统参数变化以及测量噪声等干扰的抵抗能力。

在模糊控制系统中,通过设计合适的控制规则和调整模糊集合的形状来提高系统的鲁棒性。

一种常用的方法是通过增加保守规则来提高鲁棒性。

保守规则是一种对于不确定性情况下的应对策略,它可以使系统对于参数变化和噪声的干扰产生抑制作用。

通过引入保守规则,可以使系统在不稳定情况下仍能保持良好的控制性能。

另一种方法是通过优化模糊控制器的参数来提高系统的鲁棒性。

传统的优化方法可以通过最小化误差评价函数来确定最优参数。

然而,在面对不确定性情况时,可以引入鲁棒优化方法来提高系统的鲁棒性。

三、实例分析对于模糊控制系统的稳定性与鲁棒性设计,下面以用于车辆自动驾驶的模糊控制系统为例进行分析。

在车辆自动驾驶系统中,由于道路条件、车辆状态等因素的不确定性,模糊控制系统需要具备较高的稳定性和鲁棒性。

通过对车辆运动模型进行建模,可以得到模糊控制系统的输入输出关系。

在稳定性分析中,可以通过线性化车辆运动模型并分析其稳定方程来判断系统的稳定性。

景观生态学资料整理

景观生态学资料整理

一,名词解释3. 边缘效应边缘效应最初是指群落交错区物种丰富度增加的现象.目前,景观生态学上,边缘效应是指斑块边缘与内部生境方面的差异以及边缘种与内部种分布上的差异.5. 景观连接度景观连接度是测量景观生态过程和生态功能的一个指标,它是对景观空间结构单元之间连通性的生物学度量,包括结构连接度与功能连接度两个方面.6. 景观对比度景观对比度是指邻近的不同景观单元之间的相异程度.如果相邻景观要素间差异甚大,过渡带窄而清晰,就可以认为是高对比度的景观,反之,则为低对比度景观.7. 景观边界景观边界是在特定时空尺度下相对均质的景观之间所存在的异质性过渡区域.8. 生态交错带或生态过渡带生态过渡带是指相邻生态系统之间的过渡区.生态过渡带包含较大尺度上不同景观类型之间边界地带.9. 景观多样性与景观异质性景观异质性和景观多样性是是景观的两个重要属性.景观多样性主要描述斑块性质的多样化,景观异质性则是斑块空间镶嵌的复杂性,或景观结构空间布局的非随机性和非均匀性.10. 景观的破碎化景观破碎化是将一个生境或土地类型分成小块生境或小块地的过程或现象,广义上包括穿孔,分割,破碎化,缩小和消失等包括5种景观变化过程. 11. 生态流生态流是景观中毗邻生态系统间动物,植物,生物量,水和矿质养分的流动或运动,它是景观功能的主要部分.12. 生态系统服务功能生态系统服务功能是指生态系统与生态过程所生产的物质及其所维持的良好生活环境对人类的服务性能,或由生态系统与生态过程所形成的人类赖以生存的自然环境条件与效用.包括服务,功能,产品三个方面.13.文化景观经营景观和人工景观等附带有人类文化或文明痕迹或属性的景观称为文化景观.如城市景观,农业景观.自然景观的稳定成分-土壤得到人为改变的景观.如果园,农田.由人类活动而产生的景观称为人工景观.如城市景观.14. 自然景观没有或很少受到人为干扰影响的景观称为自然景观.15. 地理信息系统地理信息系统是在计算机支持下,对空间数据进行采集,存储,检索,运算,显示和分析的管理系统.空间数据包括空间位置,属性特征和时态特征3个部分.16. 景观生态规划景观生态规划是以一种多学科知识为基础,运用生态原理和系统分析技术,为科学地利用土地,保证人,植物和动物及其赖于生存的资源都有适宜生存或存在空间的土地利用规划.景观生态规划是在景观规划和生态规划的基础上发展起来的.17. 生态规划生态规划一般是指按照生态学原理,对某地区的社会,经济,技术和生态环境进行全面的综合规划,以便充分有效地利用各种自然资源条件,促进生态系统的良性循环,使社会经济持续稳定健康地发展.18. 网络与网络结点景观中许多廊道可以互相连接形成网络.网络中的两条或两条以上的廊道交叉点,称为结点.结点通常可起到中继点的作用,可对某些生态流起着控制作用,也可作为临时的贮存地.19. 景观格局景观空间格局一般指大小和形状不一的斑块在空间上的配置.20.生态系统稳定性生态系统稳定性主要包含两方面的含义:一是系统保持现有状态的能力,即抗干扰能力;二是系统受到干扰后恢复该状态的倾向,即受到干扰后的恢复能力.二,简答题1. 景观形成的主要决定因素有哪些地貌和气候条件;干扰因素.2. 简述景观的基本特征.景观是不同类型生态系统组成的聚合体;生态系统之间存在各种生态流或物质再分配;景观的形成受气候,地貌特征的影响;景观的特征与一定的干扰集合相对应.3. 简述斑块大小与形状的生态学意义.斑块大小的生态学意义主要表现在物种-面积关系上.斑块形状的生态学意义主要表现在边缘效应,斑块内缘比上.4. 何谓内缘比它有何生态学意义内缘比是指斑块内部和边缘带的面积之比,它与斑块形状,斑块大小有关.内缘比表示了内部生境与边缘生境的相对比率,也表示了边缘物种与内部物种所适应的相对空间大小,表明了斑块的边缘效应影响的相对范围.5. 对某一景观空间要素,如何判断其为斑块,廊道或基质相对面积,连接度,动态控制程度.6. 简述景观边界的主要功能.通道或廊道作用,过滤或屏障作用, 源的功能,汇的作用,生境的作用.7. 简述景观多样性\景观异质性的涵义及其生态意义.景观多样性主要描述斑块性质的多样化,景观异质性则是斑块空间镶嵌的复杂性,或景观结构空间布局的非随机性和非均匀性.景观异质性和多样性决定了景观空间格局复杂性,对景观中的各种过程产生一定影响.8. 简述景观破碎化的狭义上和广义上的含义.狭义上: 破碎化是将一个生境或土地类型分成小块生境或小块地.广义上: 破碎化包括穿孔,分割,破碎化,缩小和消失.9. 从生态流的角度,指出景观中的关键点可能有哪些具有重要内容或源地效应的部位(如大面积的自然植被),或者不寻常的地物;变化较多的区域,特别是生态敏感区,以及那些一旦受到干扰就长时期难以恢复的区域;各种形式的流交汇的地方.10. 简述景观或生态系统稳定性的含义.生态系统稳定性主要包含两方面的含义:一是系统保持现有状态的能力,即抗干扰能力;二是系统受到干扰后恢复该状态的倾向,即受到干扰后的恢复能力.景观稳定性与生态系统稳定性的含义基本相同.11. 影响景观动态的因素有哪些景观变化的驱动力主要是自然干扰与人为活动干扰.干扰频率,干扰强度和范围以及景观的恢复速率,景观的大小或空间范围等对景观动态变化有重要影响作用.12. 简述自然景观,经营景观与人工景观各有何特点自然景观:没有明显的人类影响,或人类的干扰没有改变自然性质的景观.经营景观:景观中非稳定成分—植被被改造,人类可以收获的林地和草地.人工景观: 由人类活动而新产生的景观称为人工景观13. 简述景观生态适宜性分析的含义与意义以景观生态类型为评价单元;选择有代表性的生态因子;从景观的独特性,景观的多样性,景观的功效性,景观的宜人性或景观的美学价值人手;分析某一景观类型内在的资源质量以及与相邻景观类型的关系,确定景观类型对某一用途的适宜性和限制性.14. 简述因子叠加法和数学组合法在适宜性分析过程中的特点.因子叠加法:先根据规划目的选择各因素(或因素分级),并以同样比例尺用不同颜色表示在图上,成为单因素图层(overlays).然后把单因素图层用叠加技术进行叠加,就可得到各级综合图.由单因素图层叠加产生的各级综合图逐步揭示出具有不同生态意义的景观单元类型.数学组合法的特点是:把景观特性对不同的人类活动的各种适宜性等级改为数量值,并赋予因素不同的权重.重计算机在规划中的运用,着眼于整体系统化和局部自动化.15. 度量廊道特点的主要指标有哪些试述其含义.廊道及网络的度量指标主要有连接度,环度,曲度,间断.连接度是廊道与廊道网络内所有结点的连接程度,也称网络连接度.环度是指连接网络中现有结点的环路存在程度.曲度即廊道的弯曲程度.间断是指连续分布的廊道出现的空隙或裂口.16. 景观生态系统服务功能的价值评估有什么意义(1) 提醒人们重视产生这些服务功能的自然资本存量;(2) 反映生态系统和自然资本的价值,为决策者提供一个背景值;⑶对建设项目的环境影响评价提供依据;(4) 为选择比较不同的园林规划方案或为优化规划方案提供一个重要参考依据.17. 为什么说叠加分析是地理信息系统方法中一个重要的功能点:叠加分析实际上是将几个数据图层进行叠加,产生新的数据图层的操作过程,新的数据图层综合了原来两个或多个图层所具有的属性.18. 如何评价已建成的自然风景区的生态系统服务功能价值费用支出法.以人们到自然风景区支出费用来表示其经济价值.生产成本法中的影子工程法.指自然风景区生态系统破坏后,用人工建造一个工程来代替原来的环境功能所需的花费.19. 如何评价公共绿地的生态系统服务功能价值替代市场价格法.可以用"影子价格"来表达公共绿地生态服务功能的经济价值.模拟市场技术,通过问卷调查,以居民支付意愿和净支付意愿来表达公共绿地生态服务功能的经济价值.20. 该如何判断景观的稀有性不同寻常的自然美和美学价值,罕见的自然现象;代表地球演化主要阶段的突出事件或有意义的地貌或自然地理特征;对生物多样性就地保护具有重要和最有意义的自然生境.某种景观被破坏后可能恢复的难度.恢复时间(年,世纪)愈长则愈为稀有.21. 景观生态规划与景观规划和生态规划有什么关系景观生态规划是以一种多学科知识为基础,运用生态原理和系统分析技术,为科学利用土地,保证人,植物和动物及其赖于生存的资源都有适宜生存或存在空间的土地利用规划.生态规划一般是指按照生态学原理,对某地区的社会,经济,技术和生态环境进行全面的综合规划,以便充分有效地利用各种自然资源条件,促进生态系统的良性循环,使社会经济持续稳定健康地发展.生态规划的雏形是土地利用规划.景观规划可以讲就是土地利用规划,公园,自然风景区,城市和居住区的规划都属于景观规划的范畴.景观生态规划是在景观规划和生态规划的基础上发展起来的.22. 简述文化与景观的关系.景观有自然景观和文化景观之分.农业景观,乡村景观和城市景观都是不同程度的文化景观.文化影响景观,人们根据自己对环境的感知,认识,美学准则,信念等文化背景来建造各种景观.例如,各国的园林景观设计充分反映出不同文化传统的影响.景观反映文化.如陕北的窑洞,福建土楼,广西竹楼等,这些伴随着农耕文化的发展而展现的村寨和住宅,反映着顺应自然,因地制宜的生态内涵.景观也影响着文化.如中国传统农耕文化特征与中国的自然环境特点密切相关.23. 从水流,养分流的角度,论述沿河植被与河流的关系.河水滋润植被;通过遮阴,枯枝落叶输入影响河水理化性质;防止河岸冲刷;过滤缓冲作用.24. 在设计城市郊区道路林带宽度时,从景观生态学的角度应该考虑哪些问题边缘效应物种多样性随林带宽度的变化25. 为什么说景观格局与过程分析对景观生态规划有重要的意义不同的景观具有明显不同的景观空间格局, 而景观空间格局是决定景观生态流的性质,方向和速率的主要因素,同时景观格局本身也是景观生态流的产物,即由景观生态流所控制的景观再生产过程的产物.因此,景观的结构和功能,格局与过程之间的联系与反馈始终是景观生态规划中的重要课题.成功的规划与设计在于我们对规划区景观的理解程度,因为景观生态规划的中心任务是通过组合或引入新的景观要素而调整或构建新的景观结构,以增加景观异质性和稳定性,而对景观格局和生态过程的分析有助于做到这一点.三,论述题1. 谈谈你对"景观"概念的理解及其在园林规划中的指导意义.景观美学上的涵义,地理学上的涵义,生态学上的涵义.第一种是美学上的涵义,与风景同义.第二种是地理学上的理解,将景观作为地球表面气候,土壤,地貌,生物各种成分的综合体.第三种涵义是景观生态学的理解,将景观视为空间上不同生态系统的聚合.景观的这三方面的涵义有历史上的联系.对于园林规划设计工作者而言,首先应注意景观的美学价值,地理景观的特征;其次,要重视景观格局形成的生态原因,科学深入地认识规划区的生态特征.在园林规划设计中,不仅要注意观赏上的美学要求,也要充分考虑到景观结构在生态学上的合理性.2.以城市林地为例,谈谈你对景观多重价值的认识在规划城市林地景观时,该如何处理其自然价值的多重性问题城市林地景观多重价值: 生态价值;经济价值;景观价值.根据规划目标,环境特点:选择发展方向.3.试述景观的斑块-廊道-基质模型与网络-结点模型.斑块-廊道-基质模型是构成景观空间结构的一个基本模式,也是描述景观空间异质性的一个基本模式.斑块的定义;一般用斑块性质,斑块数目,斑块大小,斑块形状等指标描述,斑块大小,斑块形状的生态学意义.廊道的定义:廊道的类型,廊道的连接度,环度,曲度,间断等度量.廊道的主要功能.基质:景观中面积最大,连接性最好的景观要素类型.景观中许多廊道可以互相连接形成网络,网络中的两条或两条以上的廊道交叉点,称为结点.结点通常可起到中继点的作用,可对某些生态流起着控制作用,也可作为临时的贮存地.许多景观具有网络分布.网络把不同生态系统相互连接起来,是景观中常见的一种结构.网络的重要性:物质或物种移动通道,对周围基质和斑块群落的影响作用;网络的结构特征:结点,格局,网眼大小,连通性,环度.4. 土壤侵蚀量主要决定于哪些因素在园林规划与建设时要注意哪些问题可采取哪些措施土壤侵蚀量:降水强度;土壤可侵蚀性;坡长;坡度;植被盖度.注意问题:地形,土地利用方式,植被覆盖采取措施:通过栽植植物,增加植被盖度,减少土壤侵蚀.5. 试述农村景观建设中沿河植被在影响河流水质方面的作用农村面源污染,化肥,农药;农田化肥,农药,通过径流,向河流流动;河流水体污染.沿河植被带的拦截吸收作用,对生态流的阻断或减缓.6. 试述干扰对景观异质性,景观破碎化的影响作用.:景观变化的驱动力主要是自然干扰与人为活动干扰.干扰频率,干扰强度和范围以及景观的恢复速率,景观的大小或空间范围等对景观动态变化有重要影响作用.干扰频率,干扰强度和范围以及景观的恢复速率,景观的大小或空间范围等对景观异质性有重要影响作用.景观破碎化把穿孔,分割,破碎化,缩小和消失这5个过程全包括在内.分割和破碎化的生态效应既可以类似,也可以不同,这主要依赖于分割廊道是否是物种运动或所考虑的过程的障碍.缩小在景观转化中很普遍,它意味着研究对象(如斑块)规模的减小,如林地的一部分被用于耕种或建房屋,那么残余的林地就会缩小.7. 以河流沿岸植被带为例,谈谈你对生态过渡带(ecotone)特点的认识.河流沿岸植被带:水生生态系统到陆生生态系统的过渡带;性质或特征:不稳定,生态脆弱性,受洪水影响,受上部植被或土地利用性质影响;功能:过滤或屏障作用,:生态廊道及生境作用,两栖动物或河流沿岸植物的迁移或栖息地;源,汇作用,拦截吸收上部物质流动,向河流输出.景观生态学的研究对象和内容可概括为三个基本方面:①景观结构,即景观组成单元的类型,多样性及其空间关系;②景观功能,即景观结构与生态学过程的相互作用,或景观结构单元之间的相互作用;③景观动态,即指景观在结构和功能方面随时间推移发生的变化。

第四章 生态系统的演替

第四章  生态系统的演替

环境稳定假设:生物多样性低的环境一般比较恶劣,并且 环境稳定假设 预测性低。稳定的气候可容许生物体进化成适应范围更窄的种, 而恶劣条件下形成宽的适应范围,在自然选择上有利。 环境异质性假设:物理环境愈复杂,异质性愈强,植物和 环境异质性假设 动物群落也越复杂。不同景观的交界处种的多样性指数高。 岛屿”与多样性的关系:岛屿指真正海洋中的,也指处 “岛屿”与多样性的关系 于周围生境中的特殊生境,以及被其他植被包围的植被。 多样性和稳定性:稳定性可有不同层次的内涵:种群、群 落或生态系统
2、生物地球化学循环变化
Ⅰ、矿物营养的输入与输出基本处于平衡 Ⅱ、中期生物量积累时期,输出的基本营养少于输入,在生 物量积累中有合成过程 Ⅲ、净生物量下降,营养物质的积累速度减慢 Ⅳ、先锋演替阶段,灌木,阔叶树种阶段,营养周转超过后 期 Ⅴ、生物地球化学循环在成熟群落可能限于直接的营养循环 ,树木—落叶层-树木
二、群落的形成
第一阶段: 开敞的群落——先锋植物群落 第二阶段:郁闭混合群落,表现为个别植丛郁闭和混合斑状 结构。 第三阶段:相对密闭群落,群落结构已有分化,所有植物种 类均匀混合,能适应与长期生长在该地区的植物占优势
三、群落的发育时期
发育初期:群落建群种的良好发育是主要标志。由于建 群种的动态能力,引起了其他植物种类的生长与个体数量上 的变化。因此,种类成分不稳定,结构未定型,特有的植物 环境正在形成,特点不突出。
振幅:生态系统保持稳定所限定的面积。 振幅
循环稳定性:生态系统状态连续发生一系列变化后又返回 循环稳定性 原有状态的特性。 轨道稳定性:生态系统干扰后成为多种新的状态,但最后 轨道稳定性 仍能达到同一状态。
用这些表达方式分析某一生态系统可能出现矛盾,因此稳定 性的上述各种概念更适用于演替的不同方面。 阈值:生态系统具有自我调节的功能,但复杂的生态系统 阈值 内部调节能力有限,超过限度,系统受破坏,此称为阈值。 全球生态系统的平衡破坏:人类对自然资源不合理开发; 污染 林隙(gap,又译为林冠空隙或林窗)这一概念首先由英国 林隙 生态学家A.S.Watt于1947年提出,它主要是指森林群落中老龄 树自然死亡或受干扰导致树木的死亡,从而在林冠造成空隙的 现象。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

系统稳定性意义以及稳定性的几种定义之勘阻及广创作

一、引言: 研究系统的稳定性之前,我们首先要对系统的概念有初步的认识。 在数字信号处理的理论中,人们把能加工、变换数字信号的实体称作系统。由于处理数字信号的系统是在指定的时刻或时序对信号进行加工运算,所以这种系统被看作是离散时间的,也可以用基于时间的语言、表格、公式、波形等四种方法来描述。从抽象的意义来说,系统和信号都可以看作是序列。但是,系统是加工信号的机构,这点与信号是分歧的。人们研究系统还要设计系统,利用系统加工信号、服务人类,系统还需要其它方法进一步描述。描述系统的方法还有符号、单位脉冲响应、差分方程和图形。 电路系统的稳定性是电路系统的一个重要问题,稳定是控制系统提出的基本要求,也包管电路工作的基本条件;不稳定系统不具备调节能力,也不克不及正常工作,稳定性是系统自身性之一,系统是否稳定与激励信号的情况无关。对于线性系统来说可以用几点分布来判断,也可以用劳斯稳定性判据分析。对于非线性系统的分析则比较复杂,劳斯稳定性判据和奈奎斯特稳定性判据受到一定的局限性。 二、稳定性定义: 1、是指系统受到扰动作用偏离平衡状态后,当扰动消失,系统经过自身调节能否以一定的准确度恢复到原平衡状态的性能。若当扰动消失后,系统能逐渐恢复到原来的平衡状态,则称系统是稳定的,否则称系统为不稳定。

稳定性又分为绝对稳定性和相对稳定性。 绝对稳定性。如果控制系统没有受到任何扰动,同时也没有输入信号的作用,系统的输出量坚持在某一状态上,则控制系统处于平衡状态。 (1)如果线性系统在初始条件的作用下,其输出量最终返回它的平衡状态,那么这种系统是稳定的。 (2)如果线性系统的输出量呈现持续不竭的等幅振荡过程,则称其为临界稳定。(临界稳定状态按李雅普洛夫的定义属于稳定的状态,但由于系统参数变更等原因,实际上等幅振荡不克不及维持,系统总会由于某些因素导致不稳定。因此从工程应用的角度来看,临界稳定属于不稳定系统,或称工程意义上的不稳定。) (3)如果系统在初始条件作用下,其输出量无限制地偏离其平衡状态,这称系统是不稳定的。 实际上,物理系统的输出量只能增大到一定范围,此后或者受到机械制动装置的限制,或者系统遭到破坏,也可以当输出量超出一定数值后,系统酿成非线性的,从而使线性微分方程不再适用。因此,绝对稳定性是系统能够正常工作的前提。 相对稳定性。除了绝对稳定性外,还需要考虑系统的相对稳定性,即稳定系统的稳定程度。因为物理控制系统包含一些储能元件,所以当输入量作用于系统时,系统的输出量不克不及立即跟随输入量的变更,而是在系统到达稳态之前,它的瞬态响应经常表示为阻尼振荡过程。在稳态时,如果系统的输出量与输入量不克不及完全吻合,则称系统具有稳态误差。 2、一个系统对任意有界的输入,其零状态响应也是有界的,则该系统称为有界输入有界输出稳定系统。即设Mt,My为正实常数,如果系统对于所有的激励|f(t)<=Mt,其零状态响应为|y(t)|<=My则系统是稳定的。对于不稳定系统来说,不克不及断言其输出幅值为有界。 3、线性系统在初始条件为零时,输入理想单位脉冲函数δ(t),这时系统的输入称为单位脉冲响应。若线性系统的单位脉冲响应函数随时间趋于零,则系统稳定。若趋于无穷,则系统不稳定。若趋于常数或者等幅振荡,这时趋于临界稳定状态。 一般反馈系统如图,此时系统的传递函数为,系统的特征方程为1+G(s)H(s)=0,如果特征根落在[s]复平面的左半部分,系统就是稳定的。 证明:系统输入理想单位脉冲函数δ(t),它的Laplace变换函数等于1,所以系统输出的Laplace变换为

,式中,si(i=1,2,...,n)为系统特征方程的根,也就是系统的闭环极点。设n个特征根彼此不等,并将上式分解成部分分式之和的形

式,即,式中,ci(i=1,2,…,n)待定系数,其值可由Laplace变换方法确定。 对上式进行Laplace反变换,得到系统的脉冲响应函数为

。可以看出,要满足条件,只有当系统的特征根全部具有负实部方能实现。 因此,系统稳定的充要条件:系统的特征方程根必须全部具有负实部。反之,若特征根中有一个以上具有正式部时,则系统必为不稳定。或者说系统稳定的充分需要条件为:系统传递函数的极点全部位于[s]复平面的左半部。若有部分闭环极点位于虚轴上,而其余极点全部在[s]平面左半部时,便会出现临界稳定状态。 三、稳定性分析: 【本文仅分析线性时不变(LTI)电路的稳定性。判断一个系统是否稳定可以从时域或复频域两方面进行讨论。本文分歧错误含受控源电路的稳定性进行分析】 例1:对因果系统,只要判断H(s)的极点,即A(s)=0的根(称为系统特征根)是否都在左半平面上,即可判定系统是否稳定,不必知道极点的确切值。

某线性时不变电路的网络函数为,当输入为单位阶跃函数e(f)时,电路零状态响应的象函数为

用留数法解得。 考虑到0.0002<<1,取上式的拉普拉斯逆变换,。上式中的前两项是衰减函数,第三项,当t较小时,可忽略不计,但是当t较大时,这个正指数项超出其他两项并随着的增长而不竭增大,则电路不稳定。实际的电路系统不会完全是线性的,这样,很大的信号将使设备工作在非线性部分,不但使系统不克不及正常工作,有时还会发生损坏和危险。 简单电路分析: 作出运算电路图如图2,其网络函数为 令分母,其根即为该网络函数的极点。 解得 当电路参数变更时,上式会有四种形式及相应的电路变更: 当时,Pl,2如上式,是两个不相等的负实根,响应的自由分量由两个衰减的指数函数组成,属于过阻尼振荡。

②当时,,此时有两个相等的负实根,属于临界阻尼振荡。

③当时,上式可写为:,是实部为负的两个共轭复根, 响应的自由分量是一个衰减的正弦函数,属于欠阻尼振荡。 ④当Rp=∞时,为两个共轭虚数根,响应为等幅振荡。 以上前三种形式其网络函数的极点均在s平面的左半平面,第四种形式其网络函数的极点在虚轴上,电路均是稳定的。可见四种形式所对应的网络函数的极点仅与电路的结构及参数有关,而与激励无关。 由网络函数H(s)的极点分布可以很方便地得出LTI电路是否稳定的结论。 (1)当H(s)的所有极点全部位于s平面的左半平面,不包含虚轴,则电路是稳定的。 (2)当日(s)在s平面的虚轴上有一阶极点,其余所有极点全部位 于s平面的左半平面,则电路是临界稳定的。 (3)当H(s)含有s右半平面的极点或虚轴上有二阶或二阶以上 的极点时,电路是不稳定的。 四、连续因果系统稳定性判断准则—罗斯-霍尔维兹准则: 所有的根均在左半平面的多项式称为霍尔维兹多项式。 需要条件—简单方法 一实系数多项式A(s)=ansn+…+a0=0的所有根位于左半开平面的需要条件是: (1)所有系数都必须非0,即不缺项; (2)系数的符号相同。 例1 A(s)=s3+4s2-3s+2 符号相异,不稳定 例2 A(s)=3s3+s2+2 , a1=0,不稳定 例3 A(s)=3s3+s2+2s+8 需进一步判断,非充分条件。 (二)罗斯列表 将多项式A(s)的系数排列为如下阵列—罗斯阵列 第1行 an an-2 an-4 … 第2行 an-1 an-3 an-5 … 第3行 cn-1 cn-3 cn-5 … 它由第1,2行,按下列规则计算得到:

...... 第4行由2,3行同样方法得到。一直排到第n+1行。 罗斯准则指出:若第一列元素具有相同的符号,则A(s)=0所有的根均在左半开平面。若第一列元素出现符号改变,则符号改变的总次数就是右半平面根的个数。 举例: 例1 A(s)=2s4+s3+12s2+8s+2 罗斯阵列: 2 12 2 1 8 0

2 8.5 0 2 第1列元素符号改变2次,因此,有2个根位于右半平面。 注意:在排罗斯阵列时,可能遇到一些特殊情况,如第一列的某个元素为0或某一行元素全为0,这时可断言:该多项式不是霍尔维兹多项式。 例2:低通滤波器的稳定性。如图4所示为低通滤波器,放大器是理想的,为使系统稳定,应满足什么条件? 分析:画出运算电路图,如图5 对节点列出KCL方程 (2)

又根据放大器部分电路,-j知, (3)

由(3)得出代入(2)式, 整理得: 则网络函数为 由劳思一赫维茨判据,系统稳定的条件是(3一K)>0,即K<3。 五、稳定性的意义: 稳定性是系统的的一种固有特性,它只取决于系统内部的结构和参数,而和初始条件和外部作用的大小无关。 稳定性是控制系统重要的性能指标之一,是系统正常工作的首要条件。 以一些工程实例来举例说明系统稳定性的意义: (1)开关电源系统不稳定现象分析 开关电源中,其核心是Dc—Dc变换器,Dc—Dc变换电路能够促使直流电压实现大范围的升、降,而且实现的效率较高、比较容易控制,因此其在工业控制和电力传输等领域中应用广泛。可是,DC-DC变换电路也可能存在一定的偏差,如谐波振荡误差

相关文档
最新文档