材料设计与热力学相图计算

材料设计与热力学相图计算
材料设计与热力学相图计算

哈尔滨工业大学材料热力学论文——相图计算及其在材料设计中的应用

指导老师:郑明毅

学生:孙永根

学号:11S109048

相图计算及其在材料设计中的应用

摘要

本文首先介绍了材料设计所遇到的困难以及CALPHAD技术的出现及应用。CALPHAD 技术综合利用计算热力学、动力学模拟及实验数据规范评估来优化材料的成分、相(含亚稳相)组成、组织结构及加工处理过程,进而改善材料性能,是二十世纪八十年代出现了计算材料学这一新学科的重要组成部分。

本文分别简要介绍了计算相图(CALPHAD技术)在ZA52-xY镁合金的合金设计及建立Mg-Ca-Ce三元体系热力学系统中的应用,凸显了CALPHAD技术在计算多元体系相图中的优势。

1 材料设计与热力学相图计算

1.1 材料设计的途径及CALPHAD技术

在以往的材料开发上,通常采用“试错法”来实现,即材料开发人员通过大量的实验和经验来选择材料的成分、稳定工艺参数。这样即消耗了大量的人力和物力,又不利于系统地探讨材料改性的机理。

材料科学研究面临的突出问题可以归结到两个方面:(1)由于研究对象的复杂性,现有理论模型无法突破局限性,对一些错综复杂问题的处理难以令人满意;(2)虽然新的实验技术、仪器和设备不断涌现,在一定范围内为实验研究提供了新的途径,但大都极为昂贵。材料制备中一个不容忽视的问题是:我们对具有一定组织和性能的多组元或多相材料的成分缺乏可预见性。相图常常作为确定材料制各工艺路线(包括成分配比、合成和处理)的唯一依据。但是,对于多元、多相新兴材料,绝大多数情况下只能找到其构成元素间的二元相图,而三元和三元以上的多元相图非常有限。因此,对多组元合金制备时成分的确定相当缺乏理论指导,而试验尝试的方法盲目性较大,又非常耗时耗力。

由上述可见,传统的材料研究方法存在不少局限性。对于新材料研制,单纯依靠理论研究和实验尝试都不能保证科学性和高效性。

随着近一个世纪合金理论的积累和几十年来计算机技术的迅速发展,20世纪60年代相计算(PHACOMP)技术在Ni基高温合金成分设计上的成功应用揭开了合金设计的序幕。虽然那仍是一种依赖于经验的相平衡成分计算,至少让材料学家体会到相平衡信息对于合金设计是多么的重要;70年代出现的CALPHAD技术已经是在追求利用普遍适应性的热力学模型获得多元体系中所有物相(包括亚稳相)的特征函数,再通过严格的热力学理论,得到多元体系的所有物相的热力学性质,使材料设计由经验设计向科学设计转变。

CALPHAD技术综合利用计算热力学、动力学模拟及实验数据规范评估来优化材料的成分、相(含亚稳相)组成、组织结构及加工处理过程,进而改善材料性能,是二十世纪八十年代出现了计算材料学这一新学科的重要组成部分。CALPHAD技术利用实验测定的相平衡信息和热化学数据,对相关研究体系进行严格的热力学优化,获得体系中包括亚稳相在内所有物相的热力学特征函数(通常为Gibbs自由焓),虽然它仍依赖于由实验获得低元体系的数据参数,但可以说,多元体系的所有热化学性质尤其是相转变驱动力、相转变所需克服的势垒及亚稳相关系的获得过程已经达到了真正意义上的理性阶段。人们对实验测定相关系在新材料研发特别是材料设计上的重要性是有足够认识的,但只有在通过CALPHAD技术来获得所有热化学性质之后,相图测定和相平衡研究才真正成为了材料设计的一部分。

目前,材料设计领域富有挑战性的课题就是如何在不同层次一材料的成分设计、显微结构、性能和制备工艺之间搭桥,从而达到从材料微观结构到宏观性能的预测和设计。

1.2CALPHAD技术(相图计算)的必要性及热力学相图的应用

相图表示在一定温度、压力、成分等参量为坐标的相空间中,处于热力学平衡状态的物质系统中平衡相间关系的图形,又称为平衡图、组成图或状态图。最为常见的相图是T-X,还有T、P、X、G、H、S、Cp等热力学量的属性相图。相图内的每一点都反映一定的条件下,某一成分的材料在平衡状态下的相组成及平衡属性。相图的突出优点是整体性和直观性,它能准确地说明各相所存在的范围和相变发生的条件。相图所研究的性质是描述状态的热力学强度量,它可以是熔点、沸点、蒸汽压、比热等。材料科学是一门综合性的科学,材料设计更是离不开相关学科。相图的获取过程也是现代科学技术的集成。实验测定相图离不开x 射线、电镜、扩散偶技术的发展,计算相图得益于统计物理、量子理论和计算科学等学科的长足进步。相图作为信息库,收集整理各学科的数据,并总结规律性的结论,从而大大提高材料设计的起点。

迄今为止,合金相图通常是通过实验方法得到的,常用测定相图的方法有:1)静态法;

2)动态法:包括热分析、差热分析、热量法、高温显微镜与高温x射线测量技术;3)电化学测量、蒸汽压测量等方法。

但是单纯依靠实验去获得合金相图有相当的局限性,实验方法的困难在于:1)原料的纯度;2)实验设备与试验的精确度;3)各研究体系本身的相变特征和人为的主观因素。在原子扩散困难的低温范围内,很难达到相平衡,因而单靠实验结果绘制出的相图是不够精确的。另一方面,当温度超过1400℃以上时,某些实验装置和测试器械如铂铑热电偶及石英管等已不能可靠地使用,温度的控制与炉气的调整也比较困难,这时对于测得数据的精度也有影响。再者,实验通常是以50℃为间隔的,然后再将各实验点连接起来,对于实验达不到的区域,只能用外推或内延法解决,所以相图上各线条的准确性也受到一定程度的影响。用这些实验来测量相图是一个花费很多时间、耗费大量人力物力的过程,尤其是在测定多元系统时更为明显,对菜些高温相图更是难以测定。同时,实际物质体系的相转变过程,很多情况下是依据其亚稳定状态存在或依亚稳定状态转变的,实验测定的平衡相图无法预报亚稳定态。所以从理论上计算相图是非常有必要的。

应用相图就是为了解决实际问题,包括解释已有的实验现象,并预测未知领域的情况。在材料工程中有重要意义,可表现在以下几个方面:

(1)将相图和合金体系中各相的热力学参数作为重要依据来研制、开发新材料。

(2)利用相图制订材料生产和处理工艺。

(3)利用相图分析平衡态的组织和推断非平衡态可能的组织变化。

(4)利用相图与性能关系预测材料性能.。

(5)利用相图进行材料生产过程中的故障分析

所以用理论的方法,利用已有的热力学数据通过理论的数学或物理模型来发展计算相图显得尤为重要。通过计算相图可以节省大量的人力物力,避免了周期长、人为误差较大,研制方式耗时耗材的缺点。

2 相图计算在材料设计与制备中的应用

2.1ZA52-xY 镁合金的相图热力学计算与合金成分设计

图1是用Pandat相平衡热力学计算软件计算的固定Zn的质量百分含量为5%,Al的质量百分含量为2%,Y的质量百分含量为0% ~ 10% 的ZA52-xY四元合金系的垂直截面图。从图中

可以看出,该系合金富镁区的垂直截面由2个两相区、3个三相区和1个四相区组成。通过热力学计算软件的计算结果分析,可知相图中的C15代表多种Mg-Al-Y 相的混合,PH1 代表多种Mg-Al-Y相的混合。同时,随着温度的降低,Y元素在α-Mg固溶体中的溶解度有很大幅度的下,并且经过时效处理后从α-Mg 固溶体中连续析出高温稳定的Al-Y 相,可以通过A-l Y 相的析出来提高该合金的性能。文中通过计算相图,在三相区和四相区之间选取合金成分,因此,设计了3种Y含量不同的ZA52-xY 合金,Y的质量百分含量分别为0% ,0.5%和1.0%,进而研究Y元素对ZA52合金显微组织和力学性能的影响。

图1 ZA52-xY 镁合金系的垂直截面相图

2.2应用CALPHAD技术和第一性原理建立Mg-Ca-Ce三元体系热力学系统

Ca和Ce是应用于镁合金中的两个重要的合金元素。它们有助于改进镁合金在较高温度下的抗蠕变性能和强度。通过了解Ca和Ce对镁合金相稳定性的影响,从而可以建立一个完整的Mg-Ca-Ce体系的热力学系统。

在由三个组元组成的二元系统和三元系统中目前只建立了Ca-Mg和Ce-Mg体系,同时Ce-Mg体系并不让人满意。特别需要指出的是,化合物Ce-Mg的生成焓并不能与试验值吻合良好,而且预测和实验所得的fcc到bcc阶段的溶解度变化也有巨大的差异。现在并没有Ca-Ce 热力学描述系统。现在的工作利用CALPHAD方法结合可用的实验数据和第一性原理计算方法可以建立Ca-Ce二元体系热力学系统。Ce-Mg二元相热力学系统通过CALPHAD方法加入一些附加的实验数据也可以得到改进。通过集合CA-Ce体系和Ce-Mg体系及目前实验可以获得的Ca-Mg体系的相关数据我们可以获得Mg-Ca-Ce三元系统的热力学描述。

体心立方的Ca-Ce固溶体的混合焓可以通过密度泛函理论计算获得。建立在有序结构基础上的第一性原理不能有效的应用于无序固溶阶段。目前,这种无序结构可以通过SQS进行模拟。SQS的概念首先被Zunger等人提出,为的是解决面心立方的问题。江等人和Shin等人

应用SQS的方法分别建立了体心立方和密排立方结构。现在我们建立了采用16原子SQS模型来模拟Ce的摩尔分数分别为0.25、0.50和0.75三种组成的Ca-Ce体心立方固溶体方案。

我们采用GGA和应用于VASP的PAW技术。为了获得GGA相互作用能,我们使用了GGA-PW91参数化。使用可中断的390电子伏特恒定能量。由于体心立方的结构失稳其警报体积是不能确定的。Monkhorst-Pack方案与Brillouin-zone方案被结合使用。选用18×18×18 k-point的纯Ca和Ce、8×8×6 k-point的Ca0.25Ce0.75和Ca0.75Ce0.25体心立方结构和6×6×10k-point的Ca0.50Ce0.50三种方案。设置k-point大约每个相互作用的原子间为5000 k-point。对于Ca一般显四价,而对于Ce其价态比较复杂。此外,对于bcc方案要不要考虑磁的贡献进行了很多的实验,结果表明考虑磁的贡献是必要的。结合实验数据利用SQS法计算的体心立方的能量如表1所示,考虑磁贡献的混合焓如图2所示。

表1 体心立方混合焓

图2 298K下Ca-Ce体系高浓度Ce的体心立方结构的混合焓比较试验数据获得的Ca-Ce体系计算相图如图3,比较以前的相图和实验数据可得Ca-Mg

体系的生成焓(图4)。

图3 Ca-Ce体系计算相图

图4 Ca-Mg体系的生成焓

通过测试高压条件下不同Ce含量的Ce-Mg合金系,并将结果与以前的相图比较,结合实

验数据利用第一性原理和相图计算获得Ce-Mg体系完整的热力学计算相图(图5)。由实验数据可以得到Ca-Mg计算相图(图6)。图7显示了综合计算所得液固凝固时的Mg-Ca-Ce三元体系成分液相线相图。

图5 Ce-Mg热力学计算相图

图6 Ca-Mg热力学计算相图

图7 Mg-Ca-Ce三元体系成分液相线相图

3 结论

通过对计算相图相关文献的了解,充分体会到CALPHAD技术在建立多元体系热力学相图过程中的重要性。查阅一些较超前的文章后也深刻地意识到计算相图在计算材料科学尤其是材料(合金等)设计中的巨大发展潜力。

参考文献:

1.Hui Zhang et al , Thermodynamic modeling of Mg–Ca–Ce system by combining

first-principles and CALPHAD method , Journal of Alloys and Compounds 463 (2008) 294–301

2.In-Ho Jung, Jina Kim , Thermodynamic modeling of the Mg–Ge–Si, Mg–Ge–Sn, Mg–Pb–Si

and Mg–Pb–Sn systems , Journal of Alloys and Compounds 494 (2010) 137–147

3.Dae Hoon Kang, In-Ho Jung , Critical thermodynamic evaluation and optimization of the

Ag–Zr, Cu–Zr and Ag–Cu–Zr systems and its applications to amorphous Cu–Zr–Ag alloys , Intermetallics 18 (2010) 815–833

4.李建平等,ZA52-xY合金相图计算及在合金设计中的应用,《西安工业大学学报》,2009

(2) 134-137

材料科学基础相图习题DOC

1.下图为一匀晶相图,试根据相图确定: (1) w B =0.40的合金开始凝固出来的固相成分为多少? (2)若开始凝固出来的固体成分为w B =0.60,合金的成分为多少? (3)成分为w B =0.70的合金最后凝固时的液体成分为多少? (4)若合金成分为w B =0.50,凝固到某温度时液相成分w B =0.40,固相成分为w B =0.80,此时液相和固相的相对量各为多少? 2.Mg —Ni 系的一个共晶反应为: 0.23520.546g g i M L M N 纯+(570℃) 设w Ni 1=C 1为亚共晶合金,w Ni 2=C 2为过共晶合金,这两种合金中的先共晶相的质量分数相等,但C 1合金中的α总量为C 2台金中α总量的2.5倍,试计算C 1和C 2的成分。 3.根据A-B 二元相图 (1) 写出图中的液相线、固相线、α和β相的溶解度曲线、所有的两相区及三相恒温转变线; (2) 平衡凝固时,计算A-25B(weight%)合金(y ’y 线)凝固后粗晶β相在铸锭中的相对含量; (3) 画出上述合金的冷却曲线及室温组织示意图。

4.根据如图所示的二元共晶相图 (1)分析合金I,II的结晶过程,并画出冷却曲线; (2)说明室温下合金I,II的相和组织是什么,并计算出相和组织组成物的相对含量? (3)如果希望得到共晶组织加上5%的 初的合金,求该合金的成分。 (4)合金I,II在快冷不平衡状态下结晶,组织有何不同? 5.指出下列相图中的错误: 6. 试述二组元固溶体相的吉布斯(Gibbs)自由能-成分曲线的特点? (a) (b) (c) (d)

相图在材料学科中的应用综述

材料热力学作业 姓名:魏海莲 学号:s2******* 班级:材研6班

相图在材料学科中的应用 相图是在给定条件下达到相平衡时热力学变量的图示。相图被誉为材料设计的指导书,冶金工作者的地图,热力学数据的源泉,其重要性已被冶金、材料、化工、地质工作者广为认同。一个多世纪以来,经过一代又一代相图学家的努力,已经积累了大量的相图资料,特别是近二十年来,随着相图计算技术的不断发展,有关相图的资料迅速增加,为材料设计提供了重要依据。以下是相关相图的几点应用。 (一)铁碳合金相图的几点应用 铁碳合金相图反映了铁碳合金的成分、温度、组织三者之间的关系。利用铁碳相图可以制定各种热加工及热处理工艺的加热温度,还可以通过它分析钢铁材料的性能,它是研究钢铁的重要理论基础。实际生产中使用的铁碳合金的含碳量不超过5%,因而常用的铁碳相图只是Fe—C合金相图的一部分,即Fe—Fe3C相图。研究铁碳合金只需深入研究Fe与Fe3C相图部分就可满足生产上的要求。下图是简化的Fe—Fe3C相图。 图1 简化的Fe—Fe3C相图 1.估算碳钢和铸铁铸造熔化加热温度 在铸造工艺中,首先要把合金加热融化,即要加热达到相图上的液态区间

(“L”区),因此可以根据相图上的液相线(“ACD”线)确定碳钢和铸铁的浇注温度,为制定铸造工艺提供基础数据。由铁碳相图可知,共晶成分的合金(4.3%C)结晶温度最低,其凝固温度间隔最小(为零),故流动性好,体积收缩小,易获得组织致密的铸件;此外,越接近共晶成分的合金,其液相线与固相线(“ACD”与“AECF”线)间距离越小,即结晶温度范围越小,从而合金的流动性好,有利于浇注,也就是越接近共晶成分的合金其铸造性越好,所以在铸造生产中,接近于共晶成分的铸铁得到较广泛的应用。 2.估算碳钢锻造加热温度 锻造是利用材料的塑性变形来成型的一种工艺,锻造加热的目的也正是为了提高材料的塑性变形。由铁碳相图可知,含碳量小于2.11%的铁碳合金在较高温度下可得到单相奥氏体,即AESG区间,利用奥氏体的塑性好、变形抗力小,碳钢锻造时易于成形。利用铁碳合金相图可以确定碳钢锻造时的加热温度,一般始锻温度控制在固相线(AE线)以下100~200℃,以利于充分地塑性变形;温度过高,不仅使材料严重氧化,甚至会发生晶界熔化。终锻温度,对亚共析钢,一般应稍高于GS线,即控制在奥氏体区内:终锻温度过高,奥氏体在变形终了后的冷却中晶粒还会长大;而终锻温度过低,则由于铁素体呈带状组织,使钢的机械性能产生方向性,从而降低钢的韧性。对于过共析钢,则选择在ES线与PSK线之间的温度范围,目的是利用变形时的机械作用击碎网状的Fe3CⅡ,一般为800~850℃。 3.估算热处理加热温度 热处理工艺与铁碳合金相图有着更为直接的关系。根据对工件材料性能要求的不同,各种不同热处理方法的加热温度都是参考铁碳合金相图制定的。在钢的热处理工艺中要应用到相图的左下角部分,如图2所示。在Fe—Fe3C相图上,碳钢在平衡条件下加热和冷却的相变线有:PSK线——共析转变线(A1线);GS线——同素异构转变线(A3线);ES线——固溶线(A cm线),它们是平衡条件下钢发生组织转变的三条温度线,称为临界点。利用A1、A3、A cm线可以确定共析钢、亚共析钢、过共析钢的完全奥氏体化温度,为制定热处理工艺提供理论数据。由于实际生产中,加热和冷却都有一定的速度,因而钢的结晶或熔化均滞后于A1、A3,和A cm,通常把实际加热时的临界点记为Ac1、Ac2、Ac3,实际冷却时的临界

《材料科学基础》总复习(完整版)

《材料科学基础》上半学期容重点 第一章固体材料的结构基础知识 键合类型(离子健、共价健、金属健、分子健力、混合健)及其特点;键合的本质及其与材料性能的关系,重点说明离子晶体的结合能的概念; 晶体的特性(5个); 晶体的结构特征(空间格子构造)、晶体的分类; 晶体的晶向和晶面指数(米勒指数)的确定和表示、十四种布拉维格子; 第二章晶体结构与缺陷 晶体化学基本原理:离子半径、球体最紧密堆积原理、配位数及配位多面体; 典型金属晶体结构; 离子晶体结构,鲍林规则(第一、第二);书上表2-3下的一段话;共价健晶体结构的特点;三个键的异同点(举例); 晶体结构缺陷的定义及其分类,晶体结构缺陷与材料性能之间的关系(举例); 第三章材料的相结构及相图 相的定义 相结构 合金的概念:

固溶体 置换固溶体 (1)晶体结构 无限互溶的必要条件—晶体结构相同 比较铁(体心立方,面心立方)与其它合金元素互溶情况(表3-1的说明) (2)原子尺寸:原子半径差及晶格畸变; (3)电负性定义:电负性与溶解度关系、元素的电负性及其规律;(4)原子价:电子浓度与溶解度关系、电子浓度与原子价关系;间隙固溶体 (一)间隙固溶体定义 (二)形成间隙固溶体的原子尺寸因素 (三)间隙固溶体的点阵畸变性 中间相 中间相的定义 中间相的基本类型: 正常价化合物:正常价化合物、正常价化合物表示方法 电子化合物:电子化合物、电子化合物种类 原子尺寸因素有关的化合物:间隙相、间隙化合物 二元系相图: 杠杆规则的作用和应用; 匀晶型二元系、共晶(析)型二元系的共晶(析)反应、包晶(析)

型二元系的包晶(析)反应、有晶型转变的二元系相图的特征、异同点; 三元相图: 三元相图成分表示方法; 了解三元相图中的直线法则、杠杆定律、重心定律的定义; 第四章材料的相变 相变的基本概念:相变定义、相变的分类(按结构和热力学以及相变方式分类); 按结构分类:重构型相变和位移型相变的异同点; 马氏体型相变:马氏体相变定义和类型、马氏体相变的晶体学特点,金属、瓷中常见的马氏体相变(举例)(可以用许教授提的一个非常好的问题――金属、瓷马氏体相变性能的不同――作为题目) 有序-无序相变的定义 玻璃态转变:玻璃态转变、玻璃态转变温度、玻璃态转变点及其黏度按热力学分类:一级相变定义、特点,属于一级相变的相变;二级相变定义、特点,属于二级相变的相变; 按相变方式分类:形核长大型相变、连续型相变(spinodal相变)按原子迁动特征分类:扩散型相变、无扩散型相变

材料科学基础相图习题

1word 版本可编辑.欢迎下载支持. 1.下图为一匀晶相图,试根据相图确定: (1) w B =0.40的合金开始凝固出来的固相成分为多少? (2)若开始凝固出来的固体成分为w B =0.60,合金的成分为多少? (3)成分为w B =0.70的合金最后凝固时的液体成分为多少? (4)若合金成分为w B =0.50,凝固到某温度时液相成分w B =0.40,固相成分为w B =0.80,此时液相和固相的相对量各为多少? 2.Mg —Ni 系的一个共晶反应为: 0.23520.546g g i M L M N α纯+(570℃) 设w Ni 1=C 1为亚共晶合金,w Ni 2=C 2为过共晶合金,这两种合金中的先共晶相的质量分数相等,但C 1合金中的α总量为C 2台金中α总量的2.5倍,试计算C 1和C 2的成分。 3.根据A-B 二元相图 (1) 写出图中的液相线、固相线、α和β相的溶解度曲线、所有的两相区及三相恒温转变线; (2) 平衡凝固时,计算A-25B(weight%)合金(y ’y 线)凝固后粗晶β相在铸锭中的相对含量; (3) 画出上述合金的冷却曲线及室温组织示意图。 4.根据如图所示的二元共晶相图 (1)分析合金I ,II 的结晶过程,并画出冷却曲线; (2)说明室温下合金I ,II 的相和组织是什么,并计算出相和组织组成物的相对含量? (3)如果希望得到共晶组织加上5%的β初的合金,求该合金的成分。 (4)合金I ,II 在快冷不平衡状态下结晶,组织有何不同? 5.指出下列相图中的错误: 6. 试述二组元固溶体相的吉布斯(Gibbs )自由能-成分曲线的特点? 1.下图为一匀晶相图,试根据相图确定: (1) w B =0.40的合金开始凝固出来的固相成分为多少? (2)若开始凝固出来的固体成分为w B =0.60,合金的成分约为多少? (3)成分为w B =0.70的合金最后凝固时的液体成分约为多少? (4)若合金成分为w B =0.50,凝固到某温度时液相成分w B =0.40,固相成分为w B =0.80,此时液相和固相的相对量各为多少? 第1题答案 2.Mg —Ni 系的一个共晶反应为: (a) (b)

第三章材料的相结构及相图_材料科学基础

第三章材料的相结构及相图 第一节材料的相结构 1.1置换固溶体 当溶质原子溶入溶剂中形成固溶体时,溶质原子占据溶剂点阵的阵点,或者说溶质原子置换了溶剂点阵的部分溶剂原子,这种固溶体就称为置换固溶体。 金属元素彼此之间一般都能形成置换固溶体,但溶解度视不同元素而异,有些能无限溶解,有的只能有限溶解。影响溶解度的因素很多,主要取决于以下几个因素: (1)晶体结构 晶体结构相同是组元间形成无限固溶体的必要条件。只有当组元A和B的结构类型相同时,B原子才有可能连续不断地置换A原子,如图3-1所示。 (2) 原子尺寸因素 (3) 化学亲和力 (电负性因素) (4)原子价合金中的电子浓度可按下式计算: (3-1) 式中 A--分别为溶剂; B--溶质的原子价; x--为溶质的原子数分数(%)。

图3-2 元素的电负性(虚线表示铁的电负性数值) 1.1.2间隙固溶体 溶质原子分布于溶剂晶格间隙而形成的固溶体称为间隙固溶体。 在间隙固溶体中,由于溶质原子一般都比晶格间隙的尺寸大,所以当它们溶人后,都会引起溶剂点阵畸变,点阵常数变大,畸变能升高。因此,间隙固溶体都是有限固溶体,而且溶解度很小。 1.1.3固溶体的微观不均匀性 为了了解固溶体的微观不均匀性,可引用短程序参数。短程序参数α定义为 1.1.4固溶体的性质 (1)点阵常数改变 (2)产生固溶强化 (3)物理和化学性能的变化 1.2 中间相 1.2.1正常价化合物

1.2.2电子化合物 1.2.3原子尺寸因素有关的化合物 (1)间隙相和间隙化合物 (2) 拓扑密堆相 1.2.4超结构(有序固溶体) 金属间化合物由于原子键合和晶体结构的多样性,使得这种化合物具有许多特殊的物理、化学性能,已日益受到人们的重视,不少金属间化合物特别是超结构已作为新的功能材料和耐热材料正在被开发应用。 第二节二元系相图 2.1 固溶体的类型 置换固溶体示意图 间隙固溶体示意图

材料科学基础相图部分参考

参考答案 第4章 相 图 范莉: p.4 问题 讲义中说:“压力平衡最容易,温度平衡次之,化学势平衡最难达到”,为什么? 答:从三个层次考虑,力(压力) 能量(温度) 物质(化学势),平衡越来越难。 p.8 问题 从图4-1看出,自由能G 随温度T 的增加而下降。能不能据此做如下判断:低温物质不如高温物质稳定,因为前者的G 高,而后者低。 答:不可以。用G 判据判定体系是否稳定需在同一温度下比较,否则无意义。 问题 p G S T ???=- ????表明,G T -曲线的斜率一定是负的。除此之外,G T -曲线还有另一个特点,请问是什么? 答:温度越高熵值越大,曲线斜率越来越负,即曲线随温度的增加越降越快。 问题 在图4-1中,设有一个温度m T T <。证明:若T 与m T 相差不大,则 ()T T T L G G G m m m L S V -=-=? 答:提示:(1)局部线性 (2)m m /T L S = p G S T ???=- ????,m m m T L T )-T S T G (=??=? 问题 当压力不变时,某种纯金属处于两种不同的状态:一是理想晶体;二是含晶界的多晶体。请说明两种不同状态下该金属的G T -曲线有什么差异? 答:含晶界的多晶体的熵值比理想晶体大,故曲线更陡。 问题 当压力不变时,某种纯金属处于两种不同的状态:一是非晶体;二是含晶界的多晶体。请说明两种不同状态下该金属的G T -曲线有什么差异?在横坐标中注明熔点位置。 答:(1)非晶体的熵值比含晶界的多晶体大,故曲线更陡。 (2)按照纯金属的自由能-温度曲线标出熔点。

问题 从图4-2看出,固-气、液-气两相平衡的温度范围比较大,而固-液两相平衡仅在很窄的温度范围存在,请分析原因。 答:根据 m d d L p T T V =? ,主要看V ?的大小。 问题 对图4-2中的亚稳平衡线,克拉贝龙方程还适用吗?为什么? 答:适用,克拉贝龙适用于两相平衡。 P12~13 问题 为什么“应变能因素总是使固溶体中A 组元的化学势高于纯A ”?注意,不能用公式回答,而要用文字表述。 答:应变能永远为正,使得体系能量增大,A 组元的化学势高于纯A.(位错等缺陷带来影响也是使体系自由能增大,与之类似。) 问题 从()x T k Z x G -+Ω+=1ln B 2A A μ看出,当1x →时,A μ→-∞。请从物理概念角度分析这一问题。注意:负无穷大总是不合理的。 答:考虑在纯B 中加入一个A 的情况,此时熵的变化很大而内能变化很小,此时G-X 的曲线做切线时斜率很大,A d d G G x x μ=-,故A μ→-∞ 问题 讲义中说:规则溶液模型既可以用于液体,也可以用于固溶体。问:具体应用时,两者的主要差异是什么? 答:两者的是主要差异在于线性项,参见教材P14

材料科学基础习题5-答案-二元相图作业

《材料科学基础》第五章习题——二元相图1、发生匀晶转变的两个组元在晶体结构、原子尺寸方面有什么特点? 答:两者的晶体结构相同,原子尺寸相近,尺寸差小于15%。 2、固溶体合金的相图如下图所示,试根据相图确定: ①成分为ω(B) = 40%的合金首先要凝固出 来的固体成分;(画图标出) ②若首先凝固出来的固相成分含ω(B) = 60%,合金的成分为多少?(画图标出) ③成分为ω(B) = 70%的合金最后凝固的液 体成分;(画图标出) ④合金成分为ω(B) = 50%,凝固到某温度 时液相含ω(B)为40%,固相含有ω(B) = 80%, 此时液体和固相各占多少?(计算) ①过ω(B) = 40%的成分线与液相线的交点做与底边的平行线交固相线即可 ②过ω(B) = 60%的成分线与固相线的交点做与底边的平行线交液相线即可 ③过ω(B) = 70%的成分线与固相线的交点做与底边的平行线交液相线即可 ④液相:(80-50)/(80-40)=0.75 固相:(50-40)/(80-40)=0.25 3、指出下列相图中的错误,并加以改正。 由相律知,三相平衡时,图中应该为一点,而不是线 段,且二元相图中最多只有三相平衡,所以把d图中 r相除去。 由相律知在二元相图中 纯组元凝固温度恒定,液固 相线交于一点 4、根据教材图7.20,假设F与G点坐标分别选取5%与99%,计算:①Sn含量为40%的合金在凝固至室 A 20 40 60 80 B 温 度 W(B) % α L+a L

温后的组织组成比例;②根据初生相(α)、共晶组织中的相(α+β),以及冷却过程中析出的二次相(αⅡ或βⅡ),计算室温下的相组成比例。 解:①Sn 含量为40%的合金在凝固至室温后的组织组成比例: %95.4819 9.6119 40)(=--= +βαW =--?--=5991999199.61409.61αW 43.45% %6.7599519199.61409.61=--?--=∏βW ②根据一次相、共晶组织中的相,以及冷却过程中析出的二次相,计算室温下的相组成比例: 5、 Mg-Ni 系的一个共晶反应为 设C 1为亚共晶合金,C 2 为过共晶合金,这两种合金中的初生相的质量分数相等,但C 1合金中的α总量为C 2合金中的α总量的2.5倍,试计算C 1和C 2的成分。 解:相图: Ni Mg 由二者的初生相的质量分数相等得:(23.5- C 1 )/23.5= (C 2 -23.5)/54.6-23.5 又α总量为C 2 中α总量的205倍:(54.6- C 1 )/54.6=2.5*(54.6- C 2 )/54.6 由以上两式得C 1 =12.7% C 2 =37.8% 6、 组元A 和B 在液态完全互溶,但在固态互不溶解,且形成一个与A ,B 不同晶体结构的中间化合物,α(纯镁)+ 2Mg Ni[w(Ni) = 54.6%] L (ω(Ni) = 23.5%) 507℃ A 23.5 54.6 B

最新材料科学基础相图习题

最新材料科学基础相图习题 (1) w B =0.40的合金开始凝固出来的固相成分为多少? (2)若开始凝固出来的固体成分为w B =0.60,合金的成分为多少? (3)成分为w B =0.70的合金最后凝固时的液体成分为多少? (4)若合金成分为w B =0.50,凝固到某温度时液相成分w B =0.40,固相成分为w B =0.80,此时液相和固相的相对量各为多少? 2.Mg —Ni 系的一个共晶反应为: 0.23520.546g g i M L M N α纯+(570℃) 设w Ni 1=C 1为亚共晶合金,w Ni 2=C 2为过共晶合金,这两种合金中的先共晶相的质量分数相等,但C 1合金中的α总量为C 2台金中α总量的2.5倍,试计算C 1和C 2的成分。 3.根据A-B 二元相图 (1) 写出图中的液相线、固相线、α和β相的溶解度曲线、所有的两相区及三相恒温转变线; (2) 平衡凝固时,计算A-25B(weight%)合金(y ’y 线)凝固后粗晶β相在铸锭中的相对含量; (3) 画出上述合金的冷却曲线及室温组织示意图。 4.根据如图所示的二元共晶相图 (1)分析合金I ,II 的结晶过程,并画出冷却曲线; (2)说明室温下合金I ,II 的相和组织是什么,并计算出相和组织组成物的相对含量? (3)如果希望得到共晶组织加上5%的β初的合金,求该合金的成分。 (4)合金I ,II 在快冷不平衡状态下结晶,组织有何不同? 5.指出下列相图中的错误: 6. 试述二组元固溶体相的吉布斯(Gibbs )自由能-成分曲线的特点? 1.下图为一匀晶相图,试根据相图确定: (1) w B =0.40的合金开始凝固出来的固相成分为多少? (2)若开始凝固出来的固体成分为w B =0.60,合金的成分约为多少? (3)成分为w B =0.70的合金最后凝固时的液体成分约为多少? (4)若合金成分为w B =0.50,凝固到某温度时液相成分w B =0.40,固相成分为w B =0.80,此时液相和固相的相对量各为多少? 第1题答案 (a) (b)

相图在材料学科中的应用

材料热力学作业 姓名:魏海莲 学号:s20100715 班级:材研6班 相图在材料学科中得应用 相图就是在给定条件下达到相平衡时热力学变量得图示。相图被誉为材料设计得指导书,冶金工作者得地图,热力学数据得源泉,其重要性已被冶金、材料、化工、地质工作者广为认同。一个多世纪以来,经过一代又一代相图学家得努力,已经积累了大量得相图资料,特别就是近二十年来,随着相图计算技术得不断发展,有关相图得资料迅速增加,为材料设计提供了重要依据。以下就是相关相图得几点应用。 (一)铁碳合金相图得几点应用 铁碳合金相图反映了铁碳合金得成分、温度、组织三者之间得关系。利用铁碳相图可以制定各种热加工及热处理工艺得加热温度,还可以通过它分析钢铁材料得性能,它就是研究钢铁得重要理论基础。实际生产中使用得铁碳合金得含碳量不超过5%,因而常用得铁碳相图只就是Fe—C合金相图得一部分,即Fe—Fe3C相图。研究铁碳合金只需深入研究Fe与Fe3C相图部分就可满足生产上得要求。下图就是简化得Fe—Fe3C相图。

图1 简化得Fe—Fe3C相图 1.估算碳钢与铸铁铸造熔化加热温度 在铸造工艺中,首先要把合金加热融化,即要加热达到相图上得液态区间(“L”区),因此可以根据相图上得液相线(“ACD”线)确定碳钢与铸铁得浇注温度,为制定铸造工艺提供基础数据。由铁碳相图可知,共晶成分得合金(4.3%C)结晶温度最低,其凝固温度间隔最小(为零),故流动性好,体积收缩小,易获得组织致密得铸件;此外,越接近共晶成分得合金,其液相线与固相线(“ACD”与“A ECF”线)间距离越小,即结晶温度范围越小,从而合金得流动性好,有利于浇注,也就就是越接近共晶成分得合金其铸造性越好,所以在铸造生产中,接近于共晶成分得铸铁得到较广泛得应用。 2.估算碳钢锻造加热温度 锻造就是利用材料得塑性变形来成型得一种工艺,锻造加热得目得也正就是为了提高材料得塑性变形。由铁碳相图可知,含碳量小于2.11%得铁碳合金在较高温度下可得到单相奥氏体,即AESG区间,利用奥氏体得塑性好、变形抗力小,碳钢锻造时易于成形。利用铁碳合金相图可以确定碳钢锻造时得加热温度,一般始锻温度控制在固相线(AE线)以下100~200℃,以利于充分地塑性变形;温度过高,不仅使材料严重氧化,甚至会发生晶界熔化。终锻温度,对亚共析钢,一般应稍高于GS线,即控制在奥氏体区内:终锻温度过高,奥氏体在变形终了后得冷却中晶粒还会长大;而终锻温度过低,则由于铁素体呈带状组织,使钢得机械性能产生方向性,从而降低钢得韧性。对于过共析钢,则选择在ES线与PSK线之间得温度范围,目得就是利用变形时得机械作用击碎网状得Fe 3 CⅡ,一般为800~850℃。 3.估算热处理加热温度 热处理工艺与铁碳合金相图有着更为直接得关系。根据对工件材料性能要求得不同,各种不同热处理方法得加热温度都就是参考铁碳合金相图制定得。在钢得热处理工艺中要应用到相图得左下角部分,如图2所示。在Fe—Fe3C相图上,碳钢在平衡条件下加热与冷却得相变线有:PSK线——共析转变线(A1线);G S线——同素异构转变线(A3线);ES线——固溶线(Acm线),它们就是平衡条 件下钢发生组织转变得三条温度线,称为临界点。利用A 1、A 3 、Acm线可以确

相图在材料学科中的应用

材料热力学作业 :海莲 学号:s2******* 班级:材研6班

相图在材料学科中的应用 相图是在给定条件下达到相平衡时热力学变量的图示。相图被誉为材料设计的指导书,冶金工作者的地图,热力学数据的源泉,其重要性已被冶金、材料、化工、地质工作者广为认同。一个多世纪以来,经过一代又一代相图学家的努力,已经积累了大量的相图资料,特别是近二十年来,随着相图计算技术的不断发展,有关相图的资料迅速增加,为材料设计提供了重要依据。以下是相关相图的几点应用。 (一)铁碳合金相图的几点应用 铁碳合金相图反映了铁碳合金的成分、温度、组织三者之间的关系。利用铁碳相图可以制定各种热加工及热处理工艺的加热温度,还可以通过它分析钢铁材料的性能,它是研究钢铁的重要理论基础。实际生产中使用的铁碳合金的含碳量 C相图。不超过5%,因而常用的铁碳相图只是Fe—C合金相图的一部分,即Fe—Fe 3 研究铁碳合金只需深入研究Fe与Fe C相图部分就可满足生产上的要求。下图是简 3 C相图。 化的Fe—Fe 3 C相图 图1 简化的Fe—Fe 3 1.估算碳钢和铸铁铸造熔化加热温度 在铸造工艺中,首先要把合金加热融化,即要加热达到相图上的液态区间

(“L”区),因此可以根据相图上的液相线(“ACD”线)确定碳钢和铸铁的浇注温度,为制定铸造工艺提供基础数据。由铁碳相图可知,共晶成分的合金(4.3%C)结晶温度最低,其凝固温度间隔最小(为零),故流动性好,体积收缩小,易获得组织致密的铸件;此外,越接近共晶成分的合金,其液相线与固相线(“ACD”与“AECF”线)间距离越小,即结晶温度围越小,从而合金的流动性好,有利于浇注,也就是越接近共晶成分的合金其铸造性越好,所以在铸造生产中,接近于共晶成分的铸铁得到较广泛的应用。 2.估算碳钢锻造加热温度 锻造是利用材料的塑性变形来成型的一种工艺,锻造加热的目的也正是为了提高材料的塑性变形。由铁碳相图可知,含碳量小于2.11%的铁碳合金在较高温度下可得到单相奥氏体,即AESG区间,利用奥氏体的塑性好、变形抗力小,碳钢锻造时易于成形。利用铁碳合金相图可以确定碳钢锻造时的加热温度,一般始锻温度控制在固相线(AE线)以下100~200℃,以利于充分地塑性变形;温度过高,不仅使材料严重氧化,甚至会发生晶界熔化。终锻温度,对亚共析钢,一般应稍高于GS线,即控制在奥氏体区:终锻温度过高,奥氏体在变形终了后的冷却中晶粒还会长大;而终锻温度过低,则由于铁素体呈带状组织,使钢的机械性能产生方向性,从而降低钢的韧性。对于过共析钢,则选择在ES线与PSK线之间的温度 围,目的是利用变形时的机械作用击碎网状的Fe 3C Ⅱ ,一般为800~850℃。 3.估算热处理加热温度 热处理工艺与铁碳合金相图有着更为直接的关系。根据对工件材料性能要求的不同,各种不同热处理方法的加热温度都是参考铁碳合金相图制定的。在钢的热处理工艺中要应用到相图的左下角部分,如图2所示。在Fe—Fe 3 C相图上,碳 钢在平衡条件下加热和冷却的相变线有:PSK线——共析转变线(A 1 线);GS线—— 同素异构转变线(A 3线);ES线——固溶线(A cm 线),它们是平衡条件下钢发生组织 转变的三条温度线,称为临界点。利用A 1、A 3 、A cm 线可以确定共析钢、亚共析钢、 过共析钢的完全奥氏体化温度,为制定热处理工艺提供理论数据。由于实际生产 中,加热和冷却都有一定的速度,因而钢的结晶或熔化均滞后于A 1、A 3 ,和A cm , 通常把实际加热时的临界点记为Ac 1、Ac 2 、Ac 3 ,实际冷却时的临界点记为Ar l 、Ar 3 、 Ar cm 。

相图材料科学基础 (3)

学前指导将学习到的知识点: 知识点094.具有一个低温分解、高温稳定二元化合物的三元 系统相图

6.4.3.6 具有一个低温稳定、高温分解的二元 化合物的三元系统相图 ●化合物S的组成点在AB边上,化合物在 T R温度以下才能稳定存在,温度高于T R, 则分解为A、B两种晶相。 ●由于其分解温度低于A、B两组元的低共 熔温度,因而不可能从A、B二元的液相 线A′e3′和B′e3′直接析出 S晶体,即S晶体 的初晶区不会与AB边相接触。

E和R,但只能划分出与P和E对应的两个副三 角形。 ●P点在对应的△ASC外的交叉位置,是双升点。 E点在对应的△BSC内的重心位置,是低共熔 ●R点周围的三个初晶区是(A)、(S)、 (B),对应的三种晶相的组成点A、S、B在 一条直线上,不能形成一个副三角形。

在R点上进行的过程是化合物的形成或分解过 程,即: A+B<-> S(A m B n)。 ●这种无变量点称为过渡点。从R点周围三条界 线上的温降方向看,类似于双降点,所以R点 ●在过渡点上由于F=0。系统的温度不变,液相 组成在R点上不变,实际上液相量也不变,这 个情况和前面介绍的各种无变量点有所不同。 有缘学习更多+谓ygd3076考证资料或关注桃报:奉献教育(店铺)

●M点在副三角形SBC内,对应的无变量点E, 最终析晶产物为晶相B、S、C ●M的初晶区在A内,冷却先析出A,P=2, F=2,液相组成沿着AM背向线变化,固相组成在A, ●液相组成到达界线Re3上的a后析出A和B, P=3,F=1,液相组成沿着界线aR变化,固相组成离开A沿着AB变化。

相图的热力学基础

相图的热力学基础 合金相图尽管都是由实验测绘的,但其理论基础却是热力学。因此,了解一些相图热力学的基本原理,对正确测绘相图、正确理解和应用相图均有重要意义。现在,对于一些简单类型相图已能利用组元的热力学参数进行理论计算。理论算出的相图与实验测绘的基本符合。由于电子计算机的出现,促使理论计算相图有了显著进展。特别是对一些实验测绘有困难的领域,如超高温、高压和低温等方面的相图工作,理论计算更有其重要意义。 一、两相混合的自由能 在一定温度下,当某成分合金分解成两个混合相时,如果忽略它们的界面能,则在自由能一成分图上,此合金和两个混合相的自由能值必在一条直线上,如图3—72所示。设合金为x,其摩尔自由能为G(高度为bx),当它分解为x1和x2两相后,其摩尔数分别为n1和n2,靡尔自由能分别为G1(高度为ax1)和G2(高)。此时合金的成分x和摩尔自由能G可分别用下式表示: 度为cx 2 式(3-22)表明,ab线和bc线的斜率相等,所以a、b和c三点在一直线上,即是说,两个相混合后的自由能值(b)就在此两相的自由能值的连线上,而b点的位置可由两个相的摩尔数(n1和n2)按杠杆定律决定,即

二、溶体的自由能一成分曲线 溶体是指两种以上组元组成的均匀单相溶体,如溶液和固溶体。已知吉布斯自由能G(简称自由能)的一般表示式为 式中H为焓(热函),S为熵,T为绝对温度。 1、焓:在温度T时,溶体的焓是由构成它的原子之间的结合能及其热能之和组成的,即 式中Ho为OK时原子间的结合能,Cp为等压热容。 T CpdT/T和混合熵△Sm。 2、熵:也是由两项组成,即升高温度时的温熵∫ 根据热力学第三定律,在温度OK时,如果是纯组元或化合物,其结构处于理想完整状态,两项熵值皆为零。如果是由两种以上原子组成的溶体,由于两种原子存在不同的排列方式,使得混合熵不为零。故在温度T时,溶体的熵值S为 3、溶体自由能的表达式 将式(3-24、25)代入式(3-23)中,即得在温度T时溶体自由能的表达式: 溶体的Cp值难于理论计算,只能用实验测出。 下面介绍Hm和△Sm值的近似求法。(此处省略,详见本文最后(一)或书本p100-104)

材料设计与热力学相图计算

哈尔滨工业大学材料热力学论文——相图计算及其在材料设计中的应用 指导老师:郑明毅 学生:孙永根 学号:11S109048

相图计算及其在材料设计中的应用 摘要 本文首先介绍了材料设计所遇到的困难以及CALPHAD技术的出现及应用。CALPHAD 技术综合利用计算热力学、动力学模拟及实验数据规范评估来优化材料的成分、相(含亚稳相)组成、组织结构及加工处理过程,进而改善材料性能,是二十世纪八十年代出现了计算材料学这一新学科的重要组成部分。 本文分别简要介绍了计算相图(CALPHAD技术)在ZA52-xY镁合金的合金设计及建立Mg-Ca-Ce三元体系热力学系统中的应用,凸显了CALPHAD技术在计算多元体系相图中的优势。 1 材料设计与热力学相图计算 1.1 材料设计的途径及CALPHAD技术 在以往的材料开发上,通常采用“试错法”来实现,即材料开发人员通过大量的实验和经验来选择材料的成分、稳定工艺参数。这样即消耗了大量的人力和物力,又不利于系统地探讨材料改性的机理。 材料科学研究面临的突出问题可以归结到两个方面:(1)由于研究对象的复杂性,现有理论模型无法突破局限性,对一些错综复杂问题的处理难以令人满意;(2)虽然新的实验技术、仪器和设备不断涌现,在一定范围内为实验研究提供了新的途径,但大都极为昂贵。材料制备中一个不容忽视的问题是:我们对具有一定组织和性能的多组元或多相材料的成分缺乏可预见性。相图常常作为确定材料制各工艺路线(包括成分配比、合成和处理)的唯一依据。但是,对于多元、多相新兴材料,绝大多数情况下只能找到其构成元素间的二元相图,而三元和三元以上的多元相图非常有限。因此,对多组元合金制备时成分的确定相当缺乏理论指导,而试验尝试的方法盲目性较大,又非常耗时耗力。 由上述可见,传统的材料研究方法存在不少局限性。对于新材料研制,单纯依靠理论研究和实验尝试都不能保证科学性和高效性。 随着近一个世纪合金理论的积累和几十年来计算机技术的迅速发展,20世纪60年代相计算(PHACOMP)技术在Ni基高温合金成分设计上的成功应用揭开了合金设计的序幕。虽然那仍是一种依赖于经验的相平衡成分计算,至少让材料学家体会到相平衡信息对于合金设计是多么的重要;70年代出现的CALPHAD技术已经是在追求利用普遍适应性的热力学模型获得多元体系中所有物相(包括亚稳相)的特征函数,再通过严格的热力学理论,得到多元体系的所有物相的热力学性质,使材料设计由经验设计向科学设计转变。 CALPHAD技术综合利用计算热力学、动力学模拟及实验数据规范评估来优化材料的成分、相(含亚稳相)组成、组织结构及加工处理过程,进而改善材料性能,是二十世纪八十年代出现了计算材料学这一新学科的重要组成部分。CALPHAD技术利用实验测定的相平衡信息和热化学数据,对相关研究体系进行严格的热力学优化,获得体系中包括亚稳相在内所有物相的热力学特征函数(通常为Gibbs自由焓),虽然它仍依赖于由实验获得低元体系的数据参数,但可以说,多元体系的所有热化学性质尤其是相转变驱动力、相转变所需克服的势垒及亚稳相关系的获得过程已经达到了真正意义上的理性阶段。人们对实验测定相关系在新材料研发特别是材料设计上的重要性是有足够认识的,但只有在通过CALPHAD技术来获得所有热化学性质之后,相图测定和相平衡研究才真正成为了材料设计的一部分。 目前,材料设计领域富有挑战性的课题就是如何在不同层次一材料的成分设计、显微结构、性能和制备工艺之间搭桥,从而达到从材料微观结构到宏观性能的预测和设计。

工程热力学读书笔记

2011/6/1 第一部分:绪论 1、工程热力学 工程热力学是研究热能有效利用及其热能与其他形式能量转换规律的科学。 2、热力学分类 工程热力学(热能与机械能),物理热力学,化学热力学等 3、热力装置的共同特点 热源和冷源、工质、容积变化功、循环 4、热效率 5、工程热力学研究内容 能量转换的基本定律,工质的基本性质和热力过程,热工转换设备及其工作原理,化学热力学基础。 6、工程热力学研究方法 (1)宏观方法:连续体(continuum),用宏观物理量描述其状态,其基本规律是无数经验的总结(如:热力学第一定律)。 特点:可靠,普遍,不能任意推广 经典 (宏观,平衡)热力学 (2)微观方法:从微观粒子的运动及相互作用角度研究热现象及规律 特点:揭示本质,模型近似 1 W Q η= =收益 代价

微观(统计)热力学 第一章:基本概念 1、热力系统 (1)热力系统(热力系、系统):人为指定的研究对象(如:一个固定的空间); (2)外界:系统以外的所有物质; (3)边界(界面):系统与外界的分界面; (4)系统与外界的作用都通过边界; (5)以系统与外界关系划分: 有无 是否传质开口系闭口系 是否传热非绝热系绝热系 是否传功非绝功系绝功系 是否传热、功、质非孤立系孤立系 (6)简单可压缩系统 只交换热量和一种准静态的容积变化功; 2、状态和状态参数 (1)状态:某一瞬间热力系所呈现的宏观状况 (2)状态参数:描述热力系状态的物理量 (3)状态参数的特征: ●状态确定,则状态参数也确定,反之亦然 ●状态参数的积分特征:状态参数的变化量与路径无关,只与初终态有关 ●状态参数的微分特征:全微分 (4)强度参数与广延参数 ●强度参数:与物质的量无关的参数,如压力 p、温度T ●广延参数:与物质的量有关的参数 可加性,如质量m、容积 V、内能(也称之 为:热力学能) U、焓 H、熵S 3、基本状态参数 (1)压力 p ( pressure ) ●物理中压强,单位: Pa (Pascal), N/m2。 ●绝对压力与环境压力的相对值——相对压力;

第五章 材料的相结构及相图

第五章材料的相结构及相图 (材料的相结构已提前在§2材料中的晶体结构中讲过) Unit 1相图基本知识、单元系相图、二元系相图 【目标与要求】 1.掌握组元、合金系、相、相变、固态相变、相平衡、相图 凝固与结晶等基本概念 2.掌握二元系相图的测定方法 3.掌握相律,杠杆定律及其应用 【内容】 1.相图基本知识 2.单元系相图 3.二元系相图的建立 【重点、难点】 1.相变、固态相变、相平衡、相图、凝固与结晶等基本概念 2.相律、杠杆定律及其应用 【方法及手段】 采用多媒体辅助教学,并结合提问和启发相结合的方式。利用动画来演示相图的测定。【进程】 §5.1 相图的基本知识 一、组元、合金系 1. 组元(component):组成合金最基本的、可以独立存在的物质。 一元合金:纯Fe、纯Cu 二元合金:Fe-C、Cu-Zn、Cu-Ni 三元合金:1Cr13、2Cr13、3Cr13、4Cr13 2. 合金系(alloy system):一系列成分不同的合金 二(三、多)元系合金 二、相、相变、相平衡、相律 1. 相(phase): 单相合金:如单相 A 体不锈钢,单相黄铜(30%Zn) 多相合金:如双相不锈钢(A+F、A+M)、双相黄铜(40%Zn) 2. 相变(phase transformation):旧相→新相的转变过程 固态相变(solid phase transformation )。 从液相转变为固相的过程称为凝固(solidification)。 若凝固后的产物为晶体称为结晶(crystallization)。 金属转变过程为:汽态←液态←→固态 3. 相平衡(phase equilibrium):没有量的增减和成份的改变。 实际上是一种动态平衡 相平衡条件:每个组元在各相中的化学势都彼此相等。 4. 相律(phase rule) 相律数学表达式:f=c-p+2

工程热力学8 蒸气热力性质讲诉

八、蒸气的热力性质 蒸气是一种气体,但离液态不远,故工作时常会有气-液相变发生。 8.1 单元工质的相图与相变 一、相图 气 (P 低,T 高) 相 液 (P 中,T 中) (物质的聚集状态) 固 (P 高,T 低) 相图: 反映物质不同的相及相变的状态坐标图。 状态方程 0),,( T v p f 在 P-V-T 三维坐标系中构成一曲面。若在其上不同的区域(参数范围)呈现有不同的相及相变,则构成 三维相图。 其在P-T 面上的投影,称为 P-T 相图; 在P-V 面上的投影,称为 P-V 相图。 此外,也还有其他状态参数相图,如 T-S 相图。这些都是二维相图。

二、P-T 相图 图中的升华线、汽化线、熔解线 统称为相界线。其上发生相变,两相平衡共存, 此时的状态成为饱和状态,如气化线上 饱和液 ? 饱和气,任意比例混合 )(T p p s s =, )(p T T s s = 故 饱和压力与饱和温度不独立。 图中 汽化线延伸到临界点戛然而止(液-气相变的潜热及体积变化减小到零) 问对于熔解线 是否也存在这么一个临界点?(固-液无连续转变,故。。。) 三、P-V 相图 T P P V

点→线 P-T 相图上 P-V 相图上 线→面 (汽化线→两相区) 相变线,定P 即定T 。 定压加热T 不升,热量为相变潜热所吸收。 ()s s T h h s '-''='-''=γ 8.2 单元复相系平衡条件 一、热力系的平衡判据 ()0≥iso dS S 无序度最大 ()0,≤V T dF 平衡时 F 、G 势能最小 ()0,≤p T dG 二、 化学势 对于 定质量系统 (闭系) pdV TdS dU -=→ ),(V S U 对于 变质量系统 ),,(m V S U ),,(),,( ),,(),(m V S U m m V m S f m v s f v s mu mu U =====dm m U dV V U dS S U dU S V m S m V ,,,??? ????+??? ????+??? ????= ↓ ↓ ↓ T p - μ 热势 力势 化学势(推动物质转变的势)

相图在材料设计中的应用

相图在材料设计中的应用 newmaker 来源:中仿科技 当今世界,对材料的需求以及要求从未间断。很明显,工业越发达,对材料的要求越高。更高端的产业,对材料的要求自然也更加苛刻。像我们应用在航空航天方面的材料,要求更是极端苛刻的。 但是在人类历史上,材料的研究与开发,特别是新金属材料的创造与发明一直是沿用了尝试法(Trial and error ) 的模式。经过反复的实验摸索,才能探索到一种新的或更好的材料成分。在20 世纪的60 年代初,一种相计算( PHACOMP) 技术在Ni 基高温合金成分设计上的应用终于揭开了合金设计的序幕。其实,那仍是一种依赖于经验的相平衡成分的计算。但是Ni 基高温合金的PHACOMP 设计至少告诉我们,多元合金相图中的信息对于合金设计来说是非常重要的。其后在70 年代出现的相图计算(CALPHAD) 已经是在追求应用普适性热力学模型来计算多元系的相平衡了,虽然这种计算仍依赖于由实验获得的热力学参数,但已可以说,相平衡成分的获得过程已达到了真正意义上的理性阶段。当前,人们对于实测相图在合金研究特别是合金设计上的重要性是有足够的认识的;但是,只有在能够通过热力学计算来获得相图之后,相平衡研究才真正成为了材料设计的一部分。 材料设计中的计算机相图计算 材料设计无论是第一原理的, 还是依赖实验结果的都是一种人工智能工程。很显然, 合金设计的过程首先是确定多相相平衡成分的过程。具有这种功能的相平衡计算程序系统的开发是国际性的, 目前, 许多国家已经开发了多种这样的系统. 如美国的NBS/ ASM、ManLabs 数据库, 加拿大的FACT数据库, 欧洲的SGTE 数据库和瑞典的THERMO - CALC 相平衡计算与数据库,英国的Thermotech,在美国还有独立开发的PANDAT 相图计算与数据库系统, 也有很好的应用实绩。所有这些系统都是依赖通过各种渠道所获得的热力学参数的, 因此评价或评估热力学参数也同样是这些程序系统的重要功能. 由于热力学参数的重要性, 除了特别的需要之外, 人们不再热衷于创建新的计算方法。而更重视在CALPHAD 的普遍模式下, 积累更丰富的热力学数据。 从20 世纪90 年代起美国威斯康星大学Chang A Y(张永山) 教授为首的研究组注意到了若干相图计算软件(如Lukas 程序) 基于局部平衡算法(local minimization algorithm) ,而且使用者需要专门的技巧和输入设定的初值,不仅不便使用而且难以完全避免局部平衡的出

相关文档
最新文档