一维势阱和势垒问题
合集下载
16-3 一维势阱和势垒问题

]
ψ1 = A1 e + B1 e
ik1x
−ik1x
− ik 2 x
1
( x < 0)
( x > a)
U
通解: 通解
ψ 2 = A2 e
ik 2 x
1
+ B2 e
(0 ≤ x ≤ a )
U0
ψ 3 = A3 eik x + B3 e − ik x
处无反射波: 由 x > a 处无反射波: B 3 = 0 令 A1 = 1(以入射波强度为标准) 以入射波强度为标准) 由波函数的 标准条件得 O 可解得
§16-3 一维势阱和势垒问题
一、一维无限深方势阱 模型的建立:微观粒子被局限于某区域中, 模型的建立:微观粒子被局限于某区域中,并在该 区域内可以自由运动的问题 →简化模型。 →简化模型 简化模型。 例如: 例如: 金属中自由电子 受规则排列的晶格点阵作用 简化:交换动量) 简 相互碰撞 (简化:交换动量) 化 只考虑边界上突然升高的势 能墙的阻碍 —— 势阱 认为金属中自由电子不能逸出表面 ——无限深势阱 无限深势阱
2 2πx p = ∫ |ψ | d x = ∫ sin dx a a 0 0
4 4 2 a a
2a πx 2 πx = ∫ sin d( ) aπ a a 0
4
a
1 πx 1 2 2 2π x = ( − sin ) π a 4 a
a
4
= 9.08 × 10 −2
0
练习: 练习
已知: 已知:
ψ = cx ( L − x )
A A2 ∞ 2 dx = ∫ dx = A arctg x − ∞ = A2π = 1 ∫∞ 1 + ix 1 + x2 − −∞
量子力学-第二章-一维势阱

3
时间依赖薛定谔方程
根据能量守恒和时间演化,推导出薛定谔方程。
薛定谔方程的解析解
无限深势阱
假设粒子被限制在一个 无限深的势阱中,无法 逃逸。
波函数的边界条件
在势阱的边界处,波函 数必须满足特定的边界 条件。
波函数的对称性
在势阱中,波函数可能 具有对称或反对称的性 质。
薛定谔方程的数值解
有限差分法
含时薛定谔方程的一维势阱模型
含时薛定谔方程是一维势阱模型中描述粒子动态行为的方 程。该方程包含了时间依赖的势能项,可以描述粒子在时 间演化过程中受到的外部作用力。
含时薛定谔方程的解可以用来研究粒子在一维势阱中的动 态行为,例如粒子在受到激光脉冲作用时的运动轨迹和能 量变化。通过求解含时薛定谔方程,可以深入了解粒子在 一维势阱中的动力学性质。
01
将薛定谔方程转化为差分方程,通过迭代求解。
网格化方法
02
将连续的空间离散化为有限个网格点,对每个网格点上的波函
数进行求解。
量子隧穿效应
03
当势阱深度较小时,粒子有一定的概率隧穿势垒,从势阱中逃
逸。
03
一维势阱中的粒子行为
BIG DATA EMPOWERS TO CREATE A NEW
ERA
粒子在无限深势阱中的行为
时间依赖的一维势阱模型
时间依赖的一维势阱模型描述了粒子在一维空间中受到随时 间变化的势能作用的情况。这种模型可以用来研究粒子在时 间依赖的外部场中的动态行为,例如粒子在激光场中的运动 。
时间依赖的一维势阱模型需要求解含时薛定谔方程,该方程 描述了粒子在时间演化过程中的波函数变化。通过求解含时 薛定谔方程,可以了解粒子在时间依赖的势阱中的动态行为 。
163一维势阱和势垒问题

mn
0,
mn mn
克罗内克符号
二、势垒穿透和隧道效应
有限高的方形势垒
数学形式:
U
(
x)
0,
U 0 ,
图形形式:
x 0(P区),x a(S区) 0 x a(Q区)
U
考虑粒子的动能 E小于势垒高
U0
度 U0的情况。( E < U0 )
E
PQ S
o ax
U (x) 0, x 0和x a
1
(0 x a)
(x 0及x a)
2
势阱内 0 < x < a
d 2 1
dx2
2E
2
1
0
势阱外 x ≤ 0 ;x ≥a
2 0
理由:因为势壁无限高,所以粒子不能穿透势壁,故势 阱外的 波函数为零
定态薛定谔方程为
d 2
d x2
2E
2
0
E是粒子的总能量,E > 0,令 k
定态薛定谔方程变为
d 2
一维无限深方势阱的图形表达形式 :
∞∞
U(x)
粒子只能在宽为 a 的两个无限 高势壁间运动,这种势称为一 维无限深方势阱。
0
ax
因为系统的势能与时间无关,因此这是一个定 态问题,可以用定态薛定谔方程进行求解。
2
2
2
U
(r)
(r )
E
(r )
————定态薛定谔方程
①列出各区域的定态薛定谔方程
若在样品与针尖之间
加一微小电压Ub电子 就会穿过电极间的势
垒形成隧道电流。
隧道电流对针尖与样品间的距离十分敏感。 若控制隧道电流不变,则探针在垂直于样品 方向上的高度变化就能反映样品表面的起伏。
0,
mn mn
克罗内克符号
二、势垒穿透和隧道效应
有限高的方形势垒
数学形式:
U
(
x)
0,
U 0 ,
图形形式:
x 0(P区),x a(S区) 0 x a(Q区)
U
考虑粒子的动能 E小于势垒高
U0
度 U0的情况。( E < U0 )
E
PQ S
o ax
U (x) 0, x 0和x a
1
(0 x a)
(x 0及x a)
2
势阱内 0 < x < a
d 2 1
dx2
2E
2
1
0
势阱外 x ≤ 0 ;x ≥a
2 0
理由:因为势壁无限高,所以粒子不能穿透势壁,故势 阱外的 波函数为零
定态薛定谔方程为
d 2
d x2
2E
2
0
E是粒子的总能量,E > 0,令 k
定态薛定谔方程变为
d 2
一维无限深方势阱的图形表达形式 :
∞∞
U(x)
粒子只能在宽为 a 的两个无限 高势壁间运动,这种势称为一 维无限深方势阱。
0
ax
因为系统的势能与时间无关,因此这是一个定 态问题,可以用定态薛定谔方程进行求解。
2
2
2
U
(r)
(r )
E
(r )
————定态薛定谔方程
①列出各区域的定态薛定谔方程
若在样品与针尖之间
加一微小电压Ub电子 就会穿过电极间的势
垒形成隧道电流。
隧道电流对针尖与样品间的距离十分敏感。 若控制隧道电流不变,则探针在垂直于样品 方向上的高度变化就能反映样品表面的起伏。
量子力学_第二章_一维势阱

I II III
0
a
ψ 有限条件要求 C2=0。
d2 2 dx d2 2 dx d2 2 dx
I
2 2
I
0 0 0
II
II
III
2
III
C1e x C 2 e x A sin x B cosx B1e x B2 e x
n a n 1,2,3,... 2 2E n 2 2 2 2 由 2 E 8a 2
n为正整数
波函数解: n A sin x, 2a n 0 另一组解: n n Bcos x B' sin (x a), 2a 2a n 0 x a 两式合并: n A' sin ( x a ), n为正整数, 2a n 0 x a
e
C2 e
i n -i x En t 2a
n ( x, t )是由两个沿相反方向传 播的平面波叠加而成
[小结]
由无穷深方势阱问题的求解可以看 出,解S—方程的一般步骤如下:
l
l
一、列出各势域上的S—方程; 二、求解S—方程;
l三、利用波函数的标准条件(单值、有限、连续)定未知数和能量本征值;
2 d 2 [ V1 ( x )]X ( x) E x X ( x) 2 2 dx [ d V2 ( y )]Y ( y ) E y Y ( y ) 2 2 dy
2 2
2 d 2 [ V3 ( z )]Z ( z ) E z Z ( z ) 2 2 dz
等式两边除以 (x, y, z ) X ( x )Y ( y ) Z ( z )
1 X 1 2 d 2 X V1 ( x ) 2 dx2 Y 1 2 d 2 Y V2 ( y ) 2 dy2 Z 2 d 2 Z V3 ( z ) E 2 dz2
0
a
ψ 有限条件要求 C2=0。
d2 2 dx d2 2 dx d2 2 dx
I
2 2
I
0 0 0
II
II
III
2
III
C1e x C 2 e x A sin x B cosx B1e x B2 e x
n a n 1,2,3,... 2 2E n 2 2 2 2 由 2 E 8a 2
n为正整数
波函数解: n A sin x, 2a n 0 另一组解: n n Bcos x B' sin (x a), 2a 2a n 0 x a 两式合并: n A' sin ( x a ), n为正整数, 2a n 0 x a
e
C2 e
i n -i x En t 2a
n ( x, t )是由两个沿相反方向传 播的平面波叠加而成
[小结]
由无穷深方势阱问题的求解可以看 出,解S—方程的一般步骤如下:
l
l
一、列出各势域上的S—方程; 二、求解S—方程;
l三、利用波函数的标准条件(单值、有限、连续)定未知数和能量本征值;
2 d 2 [ V1 ( x )]X ( x) E x X ( x) 2 2 dx [ d V2 ( y )]Y ( y ) E y Y ( y ) 2 2 dy
2 2
2 d 2 [ V3 ( z )]Z ( z ) E z Z ( z ) 2 2 dz
等式两边除以 (x, y, z ) X ( x )Y ( y ) Z ( z )
1 X 1 2 d 2 X V1 ( x ) 2 dx2 Y 1 2 d 2 Y V2 ( y ) 2 dy2 Z 2 d 2 Z V3 ( z ) E 2 dz2
21.7 一维势阱 势垒 隧道效应

STM的发明者 宾尼、罗雷尔和电 子显微镜的发明者 卢斯卡分享了1986 年诺贝尔物理奖。
宾尼
罗雷尔
U0
电子云重叠 U0 U0 E
样 品
d
针 尖
扫描隧道显微镜(STM)装置示意图
用STM得到的神经细胞象
液体中观察原子图象
在电解液中得到的硫酸根离子吸附在铜 单晶表面的STM图象。
“扫描隧道绘画 ” 一氧化碳“分子人”
8 n1 x n2 y n3 z ( x, y, z ) sin sin sin l1l2 l3 l1 l2 l3
三维势阱中粒子的能量:
n12 2 2 n2 2 2 2 n32 2 2 E 2 2 2 2ml1 2ml2 2ml3
处在超晶格的一维量子线和两维量子阱中的电子 就属于一维和两维势阱中的粒子,而处在金属内的电 子可看作三维势阱中的粒子。
i En t
)e
i En t
( px En t )
C 2e
( px En t )
n ( x, t ) 是由两个沿相反方向传播的平面波叠加而
③粒子在阱中的分布 经典力学的结果:均匀分布 P ( x ) 1/ a a a P ( x)dx P ( x) dx P ( x)a 1
(4) 解方程、定常数 在 0<x<a 区域,定态薛定谔方程为
令
d x 2mE 2 x 0 2 dx 2mE 2 k 2 d 2 x 2 k x 0 2 dx
2
比较谐振动方程 特解为
d2x 2 x0 2 dt
( x ) C sin(kx )
2 2 2
16-3一维势阱和势垒问题解读

n4
x a
a x
第k激发态(n=k+1)有k个节点。
(2)一维无限深势阱 的粒子位置概率密度 分布
1
2
n 1
0 2 2 n 2 a
2
x
0 无数峰:量子 经典均匀分布 0
a a n 1,x 处,几率最大 0 3 2 b n ,峰数 ,当n 时,
4
U0
II
III
o
a
x
而在微观粒子的情形,却会发生反射。
ቤተ መጻሕፍቲ ባይዱ
(2)E<U0 从解薛定谔方程的结果来看,在 势垒内部存在波函数2。即在势垒内 部找出粒子的概率不为零,同时,在 x>a区域也存在波函数,所以粒子还 I 可能穿过势垒进入x>a区域。
V
V0
II
III
o
a
x
粒子在总能量E小于势垒高度时仍能贯穿势垒的 现象称为隧道效应。
式中 A和α是待定常数,由边界条件和归一化条 件确定。
( x) A sin( kx )
从物理上考虑,粒子不可能透过阱壁,因而按照波 函数的统计诠释,要求在阱壁上和阱外波函数为0。 考虑波函数在阱壁上等于零的情况,即
(0) 0, (a) 0
————边界条件
(0) 0
这说明:并非任何 E值所对应的波函数都能满足一维 无限深方势阱所要求的边界条件,只有当能量取上式 给出的那些分立的值 En(体系的能量本征值)时, 相应的波函数才是物理上有意义的,即本问题中体系 的能量是量子化的,亦即体系的能谱是分立的。
2
2
2 2 2
( x) A sin kx
nx n ( x) A sin( ) a
x a
a x
第k激发态(n=k+1)有k个节点。
(2)一维无限深势阱 的粒子位置概率密度 分布
1
2
n 1
0 2 2 n 2 a
2
x
0 无数峰:量子 经典均匀分布 0
a a n 1,x 处,几率最大 0 3 2 b n ,峰数 ,当n 时,
4
U0
II
III
o
a
x
而在微观粒子的情形,却会发生反射。
ቤተ መጻሕፍቲ ባይዱ
(2)E<U0 从解薛定谔方程的结果来看,在 势垒内部存在波函数2。即在势垒内 部找出粒子的概率不为零,同时,在 x>a区域也存在波函数,所以粒子还 I 可能穿过势垒进入x>a区域。
V
V0
II
III
o
a
x
粒子在总能量E小于势垒高度时仍能贯穿势垒的 现象称为隧道效应。
式中 A和α是待定常数,由边界条件和归一化条 件确定。
( x) A sin( kx )
从物理上考虑,粒子不可能透过阱壁,因而按照波 函数的统计诠释,要求在阱壁上和阱外波函数为0。 考虑波函数在阱壁上等于零的情况,即
(0) 0, (a) 0
————边界条件
(0) 0
这说明:并非任何 E值所对应的波函数都能满足一维 无限深方势阱所要求的边界条件,只有当能量取上式 给出的那些分立的值 En(体系的能量本征值)时, 相应的波函数才是物理上有意义的,即本问题中体系 的能量是量子化的,亦即体系的能谱是分立的。
2
2
2 2 2
( x) A sin kx
nx n ( x) A sin( ) a
【大学物理】§3-2薛定谔方程 一维势阱和势垒问题
§2-3 薛定谔方程
一、一维无限深方势阱
对于一维无限深方势阱有
一维势阱和势垒问题
∞
∞
U(x)
U
(
x)
0
(0 x a) ( 0 x, x a)
势阱内U(x) = 0,哈密顿算符为
H
2
2
d2 d x2
定态薛定谔方程为
0
a
令
2E
k
薛定谔方程的解为
d 2
d x2
2E
2
0
(x) Asin(kx )
由此解得最大值得位置为
x (2N 1) a 2n
例如
n 1, N 0
最大值位置
x 1a 2
n 2, N 0,1, 最大值位置 x 1 a , 3 a Nhomakorabea44
n 3, N 0,1, 2, 最大值位置 x 1 a , 3 a , 5 a.
6 66
可见,概率密度最大值的数目和量子数n相等。
10
2m dx2
2. 波函数
(
x)
2 sin( n x), 0 x a
aa
0,
x 0或x a
3. 能量
En
n
2
22
2ma 2
n 1,2,3
4. 概率密度
(x) 2 2 sin 2 ( n π x)
a
a
4
讨论
n (x)
2 sin n x
a a
(0 x a)
1.n=0给出的波函数
1
根据 (0,)可以0确定 = 0或m,m =1,2,3,。于是上式改写为
根据 (a) 0,得
(x) Asin kx
ka = n, n = 1,2,3, ···
一、一维无限深方势阱
对于一维无限深方势阱有
一维势阱和势垒问题
∞
∞
U(x)
U
(
x)
0
(0 x a) ( 0 x, x a)
势阱内U(x) = 0,哈密顿算符为
H
2
2
d2 d x2
定态薛定谔方程为
0
a
令
2E
k
薛定谔方程的解为
d 2
d x2
2E
2
0
(x) Asin(kx )
由此解得最大值得位置为
x (2N 1) a 2n
例如
n 1, N 0
最大值位置
x 1a 2
n 2, N 0,1, 最大值位置 x 1 a , 3 a Nhomakorabea44
n 3, N 0,1, 2, 最大值位置 x 1 a , 3 a , 5 a.
6 66
可见,概率密度最大值的数目和量子数n相等。
10
2m dx2
2. 波函数
(
x)
2 sin( n x), 0 x a
aa
0,
x 0或x a
3. 能量
En
n
2
22
2ma 2
n 1,2,3
4. 概率密度
(x) 2 2 sin 2 ( n π x)
a
a
4
讨论
n (x)
2 sin n x
a a
(0 x a)
1.n=0给出的波函数
1
根据 (0,)可以0确定 = 0或m,m =1,2,3,。于是上式改写为
根据 (a) 0,得
(x) Asin kx
ka = n, n = 1,2,3, ···
52_6半无限深势阱_一维势垒
ϕ1 ( x) = Ae + r e
ikx
1
−ikx
,
x≥a
x≤0
0≤ x≤a
ϕ2 ( x) = Cek x + De−k x ,
1
ϕ 1 (0) = ϕ 2 (0)
ϕ3 ( x) = te ,
ikx
ϕ 2 (a ) = ϕ 3 (a )
dϕ 1 ( x ) dϕ 2 ( x ) |x=0 = |x=0 dx dx
例如,电子可逸出金属表面, 例如,电子可逸出金属表面, 在金属表面形成一层电子气。 在金属表面形成一层电子气。 7
怎样理解粒子通过势垒区? 怎样理解粒子通过势垒区 经典物理:粒子不能进入E 的区域(动能 经典物理:粒子不能进入 < U的区域 动能< 0)。 的区域 动能< 。 量子物理:粒子有波动性,遵从不确定关系, 量子物理:粒子有波动性,遵从不确定关系, 粒子穿过势垒区和能量守恒并不矛盾。 粒子穿过势垒区和能量守恒并不矛盾。 只要势垒区宽度∆ 不是无限大, 只要势垒区宽度∆ x = a 不是无限大, 粒子能量就有不确定量∆ 粒子能量就有不确定量∆E
U ( x)
U0
方程的解必处处为零,根据 方程的解必处处为零 根据 波函数的标准化条件, 波函数的标准化条件,在边界上
ϕ ( x) = 0
x≤0
E2 E1
o
a
x
2、在0<x<a 区域粒子势能为零,定态薛定谔方程 、 区域粒子势能为零,
− ℏ 2 d 2ϕ ( x ) = Eϕ ( x ) 2 2m dx 0< x<a
ℏ 2 d 2ϕ 3 ( x ) − = E ϕ 3 ( x ), 2 2 m dx
52_6半无限深势阱_一维势垒解读
d 1 ( x ) d 2 ( x ) / 1 ( x ) | x a / 2 ( x ) |xa dx dx
2m 2 (U 0 E )
2
cos(ka) k sin(ka)
cos2 ( ka) 2 U 0 2 1 2 sin ( ka) k E
空气隙
样品
STM工作示意图
16
d变~ 10nm
i 变几十倍,非常灵敏。
竖直分辨本领可达约百分之几 nm; 横向分辨本领与探针、样品材料及绝缘物有关, 在真空中可达0.2nm 技术关键: 1. 消震:多级弹簧,底部铜盘涡流阻尼。 2. 探针尖加工:电化学腐蚀,强电场去污, 针尖只有1~2个原子! 3. 驱动和到位:利用压电效应的逆效应 —— 电致伸缩,一步一步扫描。 扫描一步0.04nm, 扫描12 ,用0.7s
2 d 2 3 ( x ) E 3 ( x ), 2 2m dx
xa
9
2mE 令: k 2
2
2m(U 0 E ) k 2
2 1
三个区间的薛定谔方程化为
U
d 1 ( x) 2 k 1 ( x ) 0, 2 dx
2
x0
U0
d 2 3 ( x ) 2 k 3 ( x ) 0, 2 dx
2
2mE k 2
2
sin ( ka ) 1或
2
ka
h2 E U0 2 2 8ma 32ma
2 2
( x) Be
x
,
xa
结果说明粒子会出现在x=a的表层附近
6
§6 一维方势垒 势垒贯穿(隧道效应) U
U ( x ) 0, x 0, x a
2m 2 (U 0 E )
2
cos(ka) k sin(ka)
cos2 ( ka) 2 U 0 2 1 2 sin ( ka) k E
空气隙
样品
STM工作示意图
16
d变~ 10nm
i 变几十倍,非常灵敏。
竖直分辨本领可达约百分之几 nm; 横向分辨本领与探针、样品材料及绝缘物有关, 在真空中可达0.2nm 技术关键: 1. 消震:多级弹簧,底部铜盘涡流阻尼。 2. 探针尖加工:电化学腐蚀,强电场去污, 针尖只有1~2个原子! 3. 驱动和到位:利用压电效应的逆效应 —— 电致伸缩,一步一步扫描。 扫描一步0.04nm, 扫描12 ,用0.7s
2 d 2 3 ( x ) E 3 ( x ), 2 2m dx
xa
9
2mE 令: k 2
2
2m(U 0 E ) k 2
2 1
三个区间的薛定谔方程化为
U
d 1 ( x) 2 k 1 ( x ) 0, 2 dx
2
x0
U0
d 2 3 ( x ) 2 k 3 ( x ) 0, 2 dx
2
2mE k 2
2
sin ( ka ) 1或
2
ka
h2 E U0 2 2 8ma 32ma
2 2
( x) Be
x
,
xa
结果说明粒子会出现在x=a的表层附近
6
§6 一维方势垒 势垒贯穿(隧道效应) U
U ( x ) 0, x 0, x a
一一一维维维势势势垒垒垒贯贯贯穿穿穿
2 ˆ (x) = − � ψ (x)�� = Eψ (x) Hψ 2m
(2.88)
(2.89)
在x < 0, x > a的区域, 就是 ψ (x) + k = 0, 在0 ≤ x ≤ a, ψ (x) − β = 0,
�� 2 �� 2
k=
�
2mE �2
(2.90)
β=
�
2m(V0 − E ) . �2
.
(2.106)
2.4. 一维势垒贯穿
37
在以上计算的基础上, 我们来讨论些物理问题. 首先我们看到S 不等于零! 这意味着我们可以在势垒的右边找到粒子! 这一完 全不同于经典力学的结论称为隧 道 效 应 (tunneling effect). 下面作更详细的分析. 在势垒左边, x < 0区域, 我们可以计算几率流密度j . j= 1 ˆψ − ψ p ˆψ ∗ ), (ψ ∗ p 2m (2.107)
2 sinh2 βa V0 4E (V0 −E )
CHAPTER 2. 一维问题
= =
A + B, (A − B )β.
(2.95)
= =
Байду номын сангаас
Seika , ikSeika
(2.96)
= =
β + ik + R(β − ik ) β − ik + R(β + ik ). (2.97)
= =
eika−βa S (β + ik ) eika+βa S (β − ik ).
2 sin2 αa V0 4E (E −V0 )
(2.111) . (2.112)
我们应该可以观察到所谓的共振透射。当αa = nπ , n = 1, 2, 3, · · · , |S |2 = 1. 如果粒子遇到一个势井,V0 < 0, 会怎样?(2.112)仍然适用。唯一要注意的 是:当E → 0, T → 0.
(2.88)
(2.89)
在x < 0, x > a的区域, 就是 ψ (x) + k = 0, 在0 ≤ x ≤ a, ψ (x) − β = 0,
�� 2 �� 2
k=
�
2mE �2
(2.90)
β=
�
2m(V0 − E ) . �2
.
(2.106)
2.4. 一维势垒贯穿
37
在以上计算的基础上, 我们来讨论些物理问题. 首先我们看到S 不等于零! 这意味着我们可以在势垒的右边找到粒子! 这一完 全不同于经典力学的结论称为隧 道 效 应 (tunneling effect). 下面作更详细的分析. 在势垒左边, x < 0区域, 我们可以计算几率流密度j . j= 1 ˆψ − ψ p ˆψ ∗ ), (ψ ∗ p 2m (2.107)
2 sinh2 βa V0 4E (V0 −E )
CHAPTER 2. 一维问题
= =
A + B, (A − B )β.
(2.95)
= =
Байду номын сангаас
Seika , ikSeika
(2.96)
= =
β + ik + R(β − ik ) β − ik + R(β + ik ). (2.97)
= =
eika−βa S (β + ik ) eika+βa S (β − ik ).
2 sin2 αa V0 4E (E −V0 )
(2.111) . (2.112)
我们应该可以观察到所谓的共振透射。当αa = nπ , n = 1, 2, 3, · · · , |S |2 = 1. 如果粒子遇到一个势井,V0 < 0, 会怎样?(2.112)仍然适用。唯一要注意的 是:当E → 0, T → 0.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
§16-3 一维势阱和势垒问题
1.一维无限深势阱
一维无限深方势阱是金属中自由电子的简化模型
粒子在势阱内受力为零,势能为零。在阱内自由运 动。在阱外势能为无穷大,在阱壁上受极大的斥力, 不能到阱外。
一维无限深方势阱的数学表达形式 :
0 (0 x a) U (x) (x 0及x a )
无数峰:量子 经典均匀0分布4 2
a
n4
x
0
ax
n时
量子经典
|n | 2 n很大
En
0
a
一维无限深势阱
En n
n(x)
En ( x)
h2 8ma 2
n2
n (x)
2 sin n x
aa
n(x)
2 sin2( n
aa
x)
0
ax
例1: 证明无限深方势阱中,不同能级的粒子波函数 具有正交性:
0 x a;
0,
x 0, x a.
讨论:
① 粒子的能量
En
2k 2
2
22n2
2 a2
,
n 1,2,3,
粒子的最低能量状态称为基态,则一维无限深方势 阱的基态能量为:
E1
22 2a2
0
————零点能
与零点能相对应的,应存在零点运动。这与经典粒
子的运动是相矛盾的。零点能是微观粒子波动性的表 现,因为“静止的波”是没有意义的。
② 图形
一维无限深方势阱中粒子的能级、波函数和几率密度
(2 sin nx , 0 x a;
a a
0,
x 0, x a. 0
除端点外,
0
基态的波函数(n=1)无节点,
的能量是量子化的,亦即体系的能谱是分立的。
(x) Asin kx ka n , n 1,2,3,......
与能量本征值En相对应的本征波函数n (x)为:
n (x)
Asin( nx )
a
(0 x a) n 1,2,3,...
利用归一化条件
n
(0) 0, (a) 0
————边界条件
(0) 0
0,或m , m 1,2,3,......
波函数改写为: (x) A sin kx
(a) 0
ka n , n 1,2,3,......
讨论一:n不等于零
d2 k 2 0
dx2
定态薛定谔方程变为
d 2
dx2
k 2
0
此薛定谔方程的解为
2E
(x) Asin(kx )
式中 A和α是待定常数,由边界条件和归一化条 件确定。
(x) Asin(kx )
从物理上考虑,粒子不可能透过阱壁,因而按照波 函数的统计诠释,要求在阱壁上和阱外波函数为0。 考虑波函数在阱壁上等于零的情况,即
一维无限深方势阱的图形表达形式 :
∞
U(x)
0
∞
粒子只能在宽为 a 的两个无
限高势壁间运动,这种势称为 一维无限深方势阱。
ax
因为系统的势能与时间无关,因此这是一个定 态问题,可以用定态薛定谔方程进行求解。
2
2
2
U
(r)
(r)
E
(r)
————定态薛定谔方程
①列出各区域的定态薛定谔方程
(x)
2dx
a 0
n
(x)
2dx
1
A 2 a sin2 nx dx A 2 a n sin 2tdt
0 a
n 0
A 2 a n A 2 a 1
n 2
2
波
函数: n(x)
A 2 / a 取 A为正实数
2 sin nx ,
a a
1
(0 x a)
(x 0及x a)
2
势阱内 0 < x < a
d2 1
dx2
2E
2
1
0
势阱外 x ≤ 0 ;x ≥a
2 0
理由:因为势壁无限高,所以粒子不能穿透势壁,故势 阱外的 波函数为零
定态薛定谔方程为
d 2
d x2
2E
2
0
E是粒子的总能量,E > 0,令 k
1 (m
n)
(mn)
0
cos udu
1 (m
n)
(mn)
0
cos vdv
0
属于不同能级的波函数是正交的。
把波函数的正交性和归一性表示在一起,
m nd δmn
1,
mn
0,
mn mn
克罗内克符号
二、势垒穿透和隧道效应
有限高的方形势垒
数学形式:
m nd 0
即不同能级的波函数是互相正交的。
解:
波函数 m 取其复共轭
m
相乘并积分,得
m
(
x)
n
(
x)d
0a(
2 mπx sin )(
aa
2 nπx sin )dx
aa
0a
1 a
[cos
(m
n)πx a
cos
(m
n)πx ]dx
a
d2 0
dx2
(x) Cx D
(0) 0
D0
(a) 0
C0
0
此时波函数没有物理意义,故舍去。
讨论二:n不取负数
(x) Asin kx Asin kx
此时波函数与 n取正数时代表相同的概率分布, 即无法给出新的波函数,故舍去。
2E
k
第一激发态(n=2)有一个节点, 0
第k激发态(n=k+1)有k个节点。 0
1 n 1
ax
2 n2
ax
3 n3
ax
4 n4
ax
(2)一维无限深势阱 的粒子位置概率密度
1 2 n 1
分布
0 2 2 n2 a x
an
1,x
a 2
处,几率最大0
3 2 n3
a
x
bn ,峰数 ,当n 时,
U
(x)
0,
U 0 ,
图形形式:
x 0(P区),x a(S区) 0 x a(Q区)
U
考虑粒子的动能 E小于势垒高
U0
度 U0的情况。( E < U0 )
E
PQ S
o ax
U (x) 0, x 0和x a
V
U0, 0 x a
ka n , n 1,2,3,......
En
2k 2
2
22n2
2 a2
,
n 1,2,3,
这说明:并非任何 E值所对应的波函数都能满足一维 无限深方势阱所要求的边界条件,只有当能量取上式
给出的那些分立的值 En(体系的能量本征值)时, 相应的波函数才是物理上有意义的,即本问题中体系
1.一维无限深势阱
一维无限深方势阱是金属中自由电子的简化模型
粒子在势阱内受力为零,势能为零。在阱内自由运 动。在阱外势能为无穷大,在阱壁上受极大的斥力, 不能到阱外。
一维无限深方势阱的数学表达形式 :
0 (0 x a) U (x) (x 0及x a )
无数峰:量子 经典均匀0分布4 2
a
n4
x
0
ax
n时
量子经典
|n | 2 n很大
En
0
a
一维无限深势阱
En n
n(x)
En ( x)
h2 8ma 2
n2
n (x)
2 sin n x
aa
n(x)
2 sin2( n
aa
x)
0
ax
例1: 证明无限深方势阱中,不同能级的粒子波函数 具有正交性:
0 x a;
0,
x 0, x a.
讨论:
① 粒子的能量
En
2k 2
2
22n2
2 a2
,
n 1,2,3,
粒子的最低能量状态称为基态,则一维无限深方势 阱的基态能量为:
E1
22 2a2
0
————零点能
与零点能相对应的,应存在零点运动。这与经典粒
子的运动是相矛盾的。零点能是微观粒子波动性的表 现,因为“静止的波”是没有意义的。
② 图形
一维无限深方势阱中粒子的能级、波函数和几率密度
(2 sin nx , 0 x a;
a a
0,
x 0, x a. 0
除端点外,
0
基态的波函数(n=1)无节点,
的能量是量子化的,亦即体系的能谱是分立的。
(x) Asin kx ka n , n 1,2,3,......
与能量本征值En相对应的本征波函数n (x)为:
n (x)
Asin( nx )
a
(0 x a) n 1,2,3,...
利用归一化条件
n
(0) 0, (a) 0
————边界条件
(0) 0
0,或m , m 1,2,3,......
波函数改写为: (x) A sin kx
(a) 0
ka n , n 1,2,3,......
讨论一:n不等于零
d2 k 2 0
dx2
定态薛定谔方程变为
d 2
dx2
k 2
0
此薛定谔方程的解为
2E
(x) Asin(kx )
式中 A和α是待定常数,由边界条件和归一化条 件确定。
(x) Asin(kx )
从物理上考虑,粒子不可能透过阱壁,因而按照波 函数的统计诠释,要求在阱壁上和阱外波函数为0。 考虑波函数在阱壁上等于零的情况,即
一维无限深方势阱的图形表达形式 :
∞
U(x)
0
∞
粒子只能在宽为 a 的两个无
限高势壁间运动,这种势称为 一维无限深方势阱。
ax
因为系统的势能与时间无关,因此这是一个定 态问题,可以用定态薛定谔方程进行求解。
2
2
2
U
(r)
(r)
E
(r)
————定态薛定谔方程
①列出各区域的定态薛定谔方程
(x)
2dx
a 0
n
(x)
2dx
1
A 2 a sin2 nx dx A 2 a n sin 2tdt
0 a
n 0
A 2 a n A 2 a 1
n 2
2
波
函数: n(x)
A 2 / a 取 A为正实数
2 sin nx ,
a a
1
(0 x a)
(x 0及x a)
2
势阱内 0 < x < a
d2 1
dx2
2E
2
1
0
势阱外 x ≤ 0 ;x ≥a
2 0
理由:因为势壁无限高,所以粒子不能穿透势壁,故势 阱外的 波函数为零
定态薛定谔方程为
d 2
d x2
2E
2
0
E是粒子的总能量,E > 0,令 k
1 (m
n)
(mn)
0
cos udu
1 (m
n)
(mn)
0
cos vdv
0
属于不同能级的波函数是正交的。
把波函数的正交性和归一性表示在一起,
m nd δmn
1,
mn
0,
mn mn
克罗内克符号
二、势垒穿透和隧道效应
有限高的方形势垒
数学形式:
m nd 0
即不同能级的波函数是互相正交的。
解:
波函数 m 取其复共轭
m
相乘并积分,得
m
(
x)
n
(
x)d
0a(
2 mπx sin )(
aa
2 nπx sin )dx
aa
0a
1 a
[cos
(m
n)πx a
cos
(m
n)πx ]dx
a
d2 0
dx2
(x) Cx D
(0) 0
D0
(a) 0
C0
0
此时波函数没有物理意义,故舍去。
讨论二:n不取负数
(x) Asin kx Asin kx
此时波函数与 n取正数时代表相同的概率分布, 即无法给出新的波函数,故舍去。
2E
k
第一激发态(n=2)有一个节点, 0
第k激发态(n=k+1)有k个节点。 0
1 n 1
ax
2 n2
ax
3 n3
ax
4 n4
ax
(2)一维无限深势阱 的粒子位置概率密度
1 2 n 1
分布
0 2 2 n2 a x
an
1,x
a 2
处,几率最大0
3 2 n3
a
x
bn ,峰数 ,当n 时,
U
(x)
0,
U 0 ,
图形形式:
x 0(P区),x a(S区) 0 x a(Q区)
U
考虑粒子的动能 E小于势垒高
U0
度 U0的情况。( E < U0 )
E
PQ S
o ax
U (x) 0, x 0和x a
V
U0, 0 x a
ka n , n 1,2,3,......
En
2k 2
2
22n2
2 a2
,
n 1,2,3,
这说明:并非任何 E值所对应的波函数都能满足一维 无限深方势阱所要求的边界条件,只有当能量取上式
给出的那些分立的值 En(体系的能量本征值)时, 相应的波函数才是物理上有意义的,即本问题中体系