学好完全平方公式的三点提示

学好完全平方公式的三点提示
学好完全平方公式的三点提示

学好完全平方公式的三点提示

完全平方公式是两个形式相同的多项式相乘得到的公式,它的应用十分广泛,是教材中的重点和难点.那么如何掌握完全平方公式呢?下面给予三点提示,供参考.

一、意义特征要牢记

1、完全平方公式:(1)(a+b)2=a 2+2ab+b 2 ;(2)(a -b)2=a 2-2ab+b 2

2、文字描述:这两个公式的左边是一个二项式的完全平方,右边是三项式,而且每一项都是二次式,其中有两项是公式左边二项式中每一项的平方,而第三项是左边二项式中两项乘积的2倍(或-2倍).可用以下口诀来记忆:“头平方和尾平方,头(乘)尾两倍在中央,中间符号是一样”.这里的“头”指的是a ,“尾”指的是b .

这两个公式实质上是统一的,即都是二项式的平方展开式.其中第一个公式是基本的,第二个公式可由第一个公式导出.如:(a-b )2=[a+(-b )]2=a 2+2a (-b )+(-b )2= a 2-2ab+b 2.

3、完全平方公式的几何意义

图1ab ab b 2

a 2

b a b a

图2

(a-b)b

(a-b)b

(a-b)2b 2b a b a 在图1中,大正方形的面积是(a+b)2,它等于两个小正方形的面积a 2、b 2及两个等积的长方形面积ab 的和,因此有(a+b)2=a 2+2ab+b 2.

在图2中,大正方形的面积是a 2,它等于两个小正方形的面积b 2、(a -b)2及两个等积的长方形面积(a-b)b 的和,因此有(a -b)2=a 2-2(a-b)b-b 2= a 2-2ab+b 2.

二、两个公式的区别要清楚

在运用完全平方公式时,经常会出现类似于(a+b)2=a 2+b 2、(a -b)2=a 2 -b 2的错误.要注意从以下几个方面进行区别:

(1)意义不同:(a+b)2表示数a 与数b 和的平方,(a -b)2表示数a 与数b 差的平方;而a 2+b 2表示数a 的平方与数b 的平方和,a 2-b 2表示数a 的平方与数b 的平方差.

(2)读法不同:(a+b)2读作两数a 、b 和的平方,(a -b)2读作两数a 、b 差的平方;而a 2+b 2读作两数a 、b 平方的和,a 2-b 2读作两数a 、b 平方的差.

(3)运算顺序不同:(a+b)2的运算顺序是先算a+b ,然后再算和的平方,(a -b)2的运算顺序是先算a -b ,然后再算差的平方;而a 2+b 2是先算a 2与b 2,再求和a 2+b 2,a 2-b 2是先算a 2与b 2,再求差a 2-b 2.

(4)一般情况下它们的值不相等:如当a=2,b=1时,(a+b)2=(2+1)2= 32=9,(a -b)2=(2-1)2=12=1;而a 2+b 2= 22+12=5,a 2-b 2= 22-12=3.

三、应用方法要掌握

完全平方公式中的字母可以表示具体的数,也可以表示单项式,还可以表示多项式及各种代数式.应用时要认真观察题目是否符合公式的特征和条件,变形后是否符合公式的特征和条件,若符合,再把公式中的字母同具体题目中的数或式对照,再逐项对照着计算;若不符合就不能应用公式.要搞清楚公式中各项的符号,灵活地进行公式的各种变形应用.

例1、计算2

22213??

? ??--y x xy 分析:把23xy -看成a ,y x 22

1看成b ,原式即为两项差的平方,然后套用完全平方差公式. 解:222213??

? ??--y x xy =()()

??

? ??---y x xy xy 222221323+(y x 221)2 =2433424139y x y x y x ++ 例2、计算:(a-2b-c )2

分析:可以把(a-2b )看作公式中a ,把c 看作公式中的b ,然后套用完全平方差公式. 解:2222)2(2)2(])2[()2(c c b a b a c b a c b a +---=--=--

=2a bc ac ab c b a c bc ac b ab 424442442

2222+--++=++-+-.

说明:本题还可以进行如下变形: 222]2)[()2(b c a c b a --=--或22)]2([)2(c b a c b a +-=--

完全平方公式应用错例分析

完全平方公式是乘法公式中的重要组成部分,它能帮助同学们简捷、灵活的完成整式的乘法运算,但在运用公式解题的过程中,却经常出现这样或那样的错误,现将典型错例进行评析.

一、漏掉“中间项”

例1 计算:(a+3)2

错解:(a+3)2=a 2+9

分析:完全平方公式的结果有三项:首平方,末平方,乘积的2倍写中央.因此,运用公式时不要漏掉乘积项.不能将完全平方公式与平方差公式混淆.

正解:(a+3)2=a 2+6a+9

二、“中间项”漏乘2

例2 计算(2y+

21)2 错解:(2y+21)2 = 4y 2+2y ×21+4

1 分析:没有理解完全平方公式的中间项“2ab ”中2的意义,2y 中的2表示首项的一部分,不是乘积的2倍.防止发生这样错误的关键是要将题目中项与公式中的项进行对应,一定要找准哪个代表字母a ,哪个代表字母b .

正解:(2y+21)2 = 4y 2+2?2y ?21+41=4y 2+2y+4

1 三、“-”处理错误

例3 计算(-t-1) 2

错解:(-t-1) 2=t 2 -2t+1 或 (-t-1) 2= -t 2 +2t+1

分析:本题可以看成首项-t 与末项1的差的平方,应把-t 看做一个整体.

正解:(-t-1) 2=(-t) 2-2 (-t) ×1 +12=t 2+2t+1.

四、系数未平方

例4 计算(3x-2y) 2

错解:(3x-2y) 2=3x 2-12xy+2y 2

分析:首项3x 与末项2y 都应看成一个整体进行平方.

正解:(3x-2y) 2 = (3x)2-12xy+(2y)2 = 9x 2-12xy+4y 2

五、问题考虑不全面

例5 已知x 2-2mx+1是一个完全平方式,则m=

错解:因为12=1由乘积项-2mx=2x ×1得m=-1.

分析:错解忽略了另一种情况:因为(-1) 2=1,由-2mx=2x ×(-1)得m=1,所以m=±1. 正解:m=±1.

六、运算顺序错误

例6 计算2(a-) 2

错解:2(a-2

b ) 2=(2a-b) 2 分析:由乘方的定义知:2(a-

2b ) 2=2(a-2b )(a-2b )=(2a-b) (a-2b ),这与(2a-b) 2的结果是不相等的.因此,应按照运算顺序先算乘方,再算乘除进行化简.

正解:2(a-2b ) 2=2(a 2-ab+41b 2)=2a 2-2ab+2

1b 2.

总之,运用完全平方公式进行整式的运算时,应牢固掌握公式的实质,并与其它相关法则、运算顺序有机的结合,才能简便、准确地进行整式的运算.

完全平方公式学习导航

湖北 吴育弟

1.完全平方公式有两个:2222)(b ab a b a ++=+,2

222)(b ab a b a +-=-.即,两数和(或差)的平方,等于这两个数的平方和,加上(或者减去)这两个数的积的2倍.这两个公式叫做完全平方公式.它们可以合写在一起,为2222)(b ab a b a ++=±.

记忆口诀:“首平方、尾平方,2倍乘积在中央”.

2.公式的条件是:两数和的平方或两数差的平方.

3.公式的结果是:这两数的平方和,加上(或减去)这两数积的2倍.

4.公式的特征是:左边是两个相同的二项式相乘,右边是三项式,是左边二项式中两项的平方和,加上(这两项相加时)或减去(这两项相减时)这两项乘积的2倍.公式中的字母可以表示具体的数(正数或负数),也可以表示单项式或多项式等代数式.只要符合这一公式的结构特征,就可以运用这一公式.

5. 完全平方公式的几何意义

如图1,大正方形的面积可以表示为2

)(b a +,也可以表示为IV III II I S S S S S ++=,同时22222b ab a b ab ab a S ++=+++=.从

而验证了完全平方公式2222)(b ab a b a ++=+.

6.完全平方公式重难点

重点1 (1)公式右边是这两个数的平方和与这两个数乘积的2倍的和(差)。

(2)2

)(b a +的计算,可以看做是))((b a b a ++,由多项式与多项式的乘法展开、合并同类项,可以得到公式。

(3)而2)(b a +可以看做是[]2)(b a -+,可以由两数和的平方公式得到。 重点2 完全平方公式的灵活应用

(1)2

2)()(b a b a +=--

(2)ab b a b a 4)()(22+-=+

(3)ab b a b a 4)()(22=--+

(4))(2)()(2222b a b a b a +=-++

难点 三个或三个以上数的完全平方公式,可以先把一个看做一个整体,剩余部分看做一个整体,逐步利用完全平方公式。如2)(c b a ++可以把b a +看做一个整体,c 看做一个整体,利用完全平方公式.

7. 在使用完全平方公式时应注意以下几点:

(1)千万不要发生类似222)(b a b a ±=±的错误;

(2)不要与公式222)(b a ab =混淆;

(3)切勿把“乘积项”ab 2中的2漏掉;

(4)计算时,应先观察所给题目的特点是否符合公式的条件,如符合,则可以直接套用公式进行计算;如不符合,应先变形为公式的结构特点,再利用公式进行计算,如变形后仍不具备公式的结构特点,则应运用乘法法则进行计算.

8.在使用完全平方公式时易错点

易错点1 公式b a 、中含有常系数. 若b a 、中含有常系数,要将其看做一个整体,例如2

22229124)3()3)(2(2)2()32(y xy x y y x x y x ++=++=+

易错点2 公式中b a 、含有符号.尤其公式中b a 、有一项为负数时,可将负号看做是系数为1-,按照易错点1思维突破解决。

完全平方公式“学”与“用”

完全平方公式222222)(,2)(b ab b a b ab a b a +--++=+是一组重要的乘法公式,是今后常用的数学工具,它的应用也非常广泛.本文从以下几个方面剖析完全平方公式,以帮助同学们理解、掌握和灵活应用这个公式.

一、 注意公式的几何意义

如图(1),大正方形面积为2)(b a +是两个小正方形的面积 2a 、2b 之和,再加上两个长方形的面积2ab ,即得 2222)(b ab a b a ++=+.

如图(2),把2)(b a -看作大正方形的面积2a 减去两个有斜线的

长方形面积之和2ab ,这样就多减去斜线重合部分的小正方形的

面积2b ,在把它补上,即2222)(b ab a b a ++=-. 二、注意公式的结构特征 掌握公式的结构特点是正确使用公式的前提.完全平方公式的特征:

左边是两数和(或差)的平方和,加上(或减去)它们积的2倍,公式等号左右两边符号是一致.可以简记为“右边展开后的项数为三项,即前平方(2a ),后平方(2

b ),二倍之积在中央(2ab )”希同学们熟记这一结构特征.

三、注意公式的正确性

要理解掌握公式之间的异同点,既要正确理解课本对每个公式的推导依据,每一个公式的作用,同时也要明白每个公式的语言表达方式、结构形式,以及掌握课本对公式的几何推导法,避免出现以下错误,如222)(b a b a +=+, 222)(b a b a -=-,2222)(b ab a b a --=-等等.

四、注意公式的代表性和广泛性

完全平方公式是具有共同特征的某一类运算的概括总结,因而具有代表性,同时由于公式中字母代表的广泛含义,因而使完全平方公式具有广泛性.如字母不但可表示具体的数,还可表示单项式或多项式等代数式.

例1.计算:2

222)2(2)2(])2[()2(c c b a b a c b a c b a +---=--=--=2a bc ac ab c b a c bc ac b ab 4244424422222+--++=++-+-.

ab 2a ab

2

b

b b a a 2)(b a -

a 图1 图2

说明:本题还可以进行如下变形:2

22]2)[()2(b c a c b a --=--或 22)]2([)2(c b a c b a +-=--.

五、注意公式之间的联系

公式1:2222)(b ab a b a ++=+,公式2:2

222)(b ab a b a +-=-.

两式相加,得:)(2)()(2222b a b a b a +=-++. 即2)()(2

22

2b a b a b a -++=+,两式相减,得:ab b a b a 4)()(22=--+, 即22)2

()2(b a b a ab --+=. 六、注意公式的变形

根据题意要善于对公式变形应用,在解题中充分体现应用公式的思维灵活性和开阔性.完全平方公式常用的变化形式有:

①ab b a b a 2)(222-+=+;②ab b a b a 2)(2

22+-=+; ③2)()(222

2b a b a b a -++=+;④22)2()2(b a b a ab --+=. 同学们在运用公式时,不应拘泥于公式的形式,而要深刻理解、灵活应用.

例2.已知a+b=6,ab=9.求2

2

2b a +. 解:由ab b a b a 2)(2

22-+=+,∴ 222b a +=21[ab b a 2)(2-+] =9182

1)926(212=?=?-. 例3.已知a ,b 为自然数且a+b=40,①求22b a +的最小值;②求ab 的最大值.

解:①∵2)()(222

2b a b a b a -++=+=])(40[2122b a -+,∵2)(b a -≥0,∴当a=b 时,2

2b a +的有最小值,最小值为80040212=?;∵22)(4

1)(41b a b a ab --+== 22)2(41)2(b a b a ab --+==222)(41400)(414041b a b a --=--?,∵2)(b a -≥0,∴当a=b 时,ab 有最大值,最大值为400.

七、注意公式的逆用

不仅会熟练地正用公式,而且也要求会逆用公式,乘法公式均可逆用,完全平方公式的

逆用,就是配方,配方法是一种很重要的数学方法.

例4.设a ,b ,c ,d 为四边形的四边长且abcd d c b a 44444=+++,试判别此四边形的形状.

解:∵0422222

22242244224=-+++-++-abcd d c b a d d c c b b a a ,

即0)(2)()(2222222=-+-+-cd ab d c b a ,∴022=-b a ,022=-d c ,0=-cd ab ,∴d c b a ===,∴以a ,b ,c ,d 为四边的四边形为菱形.

平方差公式和完全平方公式基础拔高练习(含答案)

平方差公式 令狐采学 ◆基础训练 1.(a2+b2)(a2-b2)=(____)2-(____)2=______. 2.(-2x2-3y2)(2x2-3y2)=(____)2-(____)2=_____. 3.20×19=(20+____)(20-____)=_____-_____=_____. 4.9.3×10.7=(____-_____)(____+____)=____-_____. 5.20062-2005×2007的计算结果为() A.1 B.-1 C.2 D.-2 6.在下列各式中,运算结果是b2-16a2的是() A.(-4a+b)(-4a-b)B.(-4a+b)(4a-b) C.(b+2a)(b-8a)D.(-4a-b)(4a-b)

7.运用平方差公式计算. (1)102×98 (2)2×3(3)-2.7×3.3 (4)1007×993 (5)12×11(6)-19×20 (7)(3a+2b)(3a-2b)-b(a-b)(8)(a-1)(a-2)(a+1)(a+2) (9)(a+b)(a-b)+(a+2b)(a-2b)(10)(x+2y)(x-2y)-(2x+5y)(2x-5y)(11)(2m-5)(5+2m)+(-4m-3)(4m-3) (12)(a+b)(a-b)-(a-3b)(a+3b)+(-2a+3b)(-2a-3b) ◆综合应用 8.(3a+b)(____)=b2-9a2;(a+b-m)(____)=b2-(a-m)2. 9.先化简,再求值:(3a+1)(3a-1)-(2a-3)(3a+2),其中a=-. 10.运用平方差公式计算:

最新完全平方公式变形公式专题

半期复习(3)—— 完全平方公式变形公式及常见题型 一.公式拓展: 拓展一:ab b a b a 2)(222-+=+ ab b a b a 2)(222+-=+ 2)1(1222-+=+a a a a 2)1(1222+-=+a a a a 拓展二:a b b a b a 4)()(22=--+ ()()22 2222a b a b a b ++-=+ ab b a b a 4)()(22+-=+ ab b a b a 4)()(22-+=- 拓展三:bc ac ab c b a c b a 222)(2222---++=++ 拓展四:杨辉三角形 3223333)(b ab b a a b a +++=+ 4322344464)(b ab b a b a a b a ++++=+ 拓展五: 立方和与立方差 ))((2233b ab a b a b a +-+=+ ))((2233b ab a b a b a ++-=- 二.常见题型: (一)公式倍比 例题:已知b a +=4,求ab b a ++2 2 2。 (1)1=+y x ,则222 121y xy x ++= (2)已知xy 2y x ,y x x x -+-=---2 222)()1(则= (二)公式变形 (1)设(5a +3b )2=(5a -3b )2+A ,则A= (2)若()()x y x y a -=++22,则a 为 (3)如果2 2)()(y x M y x +=+-,那么M 等于 (4)已知(a+b)2=m ,(a —b)2=n ,则ab 等于 (5)若N b a b a ++=-22)32()32(,则N 的代数式是

完全平方公式变形的应用练习题

乘法公式的拓展及常见题型整理 一.公式拓展: 拓展一:ab b a b a 2)(222-+=+ ab b a b a 2)(222+-=+ 2)1(1222-+=+ a a a a 2)1(1222 +-=+a a a a 拓展二:ab b a b a 4)()(22=--+ ()()2 2 2222a b a b a b ++-=+ ab b a b a 4)()(22+-=+ ab b a b a 4)()(22-+=- 拓展三:bc ac ab c b a c b a 222)(2222---++=++ 拓展四:杨辉三角形 3223333)(b ab b a a b a +++=+ 4322344464)(b ab b a b a a b a ++++=+ 拓展五: 立方和与立方差 ))((2233b ab a b a b a +-+=+ ))((2233b ab a b a b a ++-=- 二.常见题型: (一)公式倍比 例题:已知b a +=4,求 ab b a ++2 2 2。 ⑴如果1,3=-=-c a b a ,那么()()()2 2 2 a c c b b a -+-+-的值是 ⑵1=+y x ,则2221 21y xy x ++= ⑶已知xy 2 y x ,y x x x -+-=---2 22 2)()1(则 = (二)公式组合 例题:已知(a+b)2=7,(a-b)2=3, 求值: (1)a 2+b 2 (2)ab ⑴若()()a b a b -=+=2 2 713,,则a b 22 +=____________,a b =_________

平方差与完全平方公式教案与答案

平方差与完全平方公式教案与答案

15.2.1 平方差公式 知识导学 1.平方差公式:(a+b)(a-b)=a2-b2 即两个数的和与这两个数的差的积,等于这两个数的平方差。 2. 平方差公式的灵活运用:通过变形,转化为符合平方差公式的形式,也可以逆用平方差公式,连续运用平方差公式,都可以简化运算。 典例解悟 例1. 计算:(1)(2x+3y)(2x-3y) (2) (-4m2-1)(-4m2+1) 解:(1)(2x+3y)(2x-3y)=(2x)2-(3y)2=4x2-9y2 (2) (-4m2-1)(-4m2+1)=(-4m2)2-12=16m4-1 感悟:正确掌握平方差公式的结构,分清“相同项”与“相反项”,再结合已学知识计算本题。其中第(2)题中的相同项是-4m2,不能误以为含有负号的项一定是相反项。 例2.先化简,再求值:(x+2y)(x-2y)-(2x-y)(-2x-y),其中x=8,y=-8. 解:原式=(x2-4y2)-(y2-4x2)=5x2-5y2. 当x=8,y=-8时,原式=5×82-5×(-8)2=0.

感悟:本题是整式的混合运算,其中两个多项式相乘符合平方差公式的特征。在本题(2x-y)(-2x-y)中,相同项是-y,相反项是2x与-2x,应根据加法的交换律,将此式转化为(-y+2x)(-y-2x)。阶梯训练 A级 1.下列各多项式乘法中,可以用平方差公式计算的是() A.(-a-b)(a+b) B.(-a-b)(a-b) C.(-a+b)(a-b) D.(a+b)(a+b) 2.在下列各式中,计算结果是a2 -16b2 的是() A.(-4b+a)(-4b-a) B.(-4b+a)(4b-a) C.(a+2b)(a-8b) D.(-4b-a)(4b-a) 3.下列各式计算正确的是() A.(x+3)(x-3)=x2 -3 B.(2x+3)(2x-3)=2x2 -9 C.(2x+3)(x-3)=2x2 -9 D.(2x+3)(2x-3)=4x2 -9 4.(0.3x-0.1)(0.3x+0.1)=_________ 5. (2 3x+3 4 y) (2 3 x-3 4 y) = _________ 6.(-3m-5n)(3m-5n)=_________

完全平方公式之恒等变形

§1.6 完全平方公式(2) 班级: 姓名: 【学习重点、难点】 重点: 1、弄清完全平方公式的结构特点; 2、会进行完全平方公式恒等变形的推导. 难点:会用完全平方公式的恒等变形进行运算. 【学习过程】 ● 环节一:复习填空 ()2_____________a b += ()2_____________a b -= ● 环节二: 师生共同推导完全平方公式的恒等变形 ①()222_______a b a b +=+- ②()222_______a b a b +=-+ ③()()22_______a b a b ++-= ④()()22_______a b a b +--= ● 典型例题及练习 例1、已知8a b +=,12ab =,求22a b +的值 变式训练1:已知5a b -=,22=13a b +,求ab 的值 变式训练2:已知6ab =-,22=37a b +,求a b +与a b -的值 方法小结:

提高练习1:已知+3a b =,22+30a b ab =-,求22a b +的值 提高练习2:已知210a b -=,5ab =-,求224a b +的值 例2、若()2=40a b +,()2=60a b -,求22a b +与ab 的值 小结: 课堂练习 1、(1)已知4x y +=,2xy =,则2)(y x -= (2)已知2()7a b +=,()23a b -=,求=+22b a ________,=ab ________ (3)()()2222________a b a b +=-+ 2、(1)已知3a b +=,4a b -=,求ab 与22a b +的值 (2)已知5,3a b ab -==求2()a b +与223()a b +的值。 (3)已知224,4a b a b +=+=,求22a b 与2()a b -的值。

平方差公式完全平方公式拓展

平方差公式完全平方公 式拓展 Document serial number【KKGB-LBS98YT-BS8CB-BSUT-BST108】

平方差公式、完全平方公式 一、填空 1、(-2x+y )(-2x -y )=______ 2、(-3x 2+2y 2)(______)=9x 4-4y 4 3、(a+b -1)(a -b+1)=(_____)2-(_____)2 4、两个正方形的边长之和为5,边长之差为2,那么较大正方形的面积减去较小的正方形的面积,差是_____ 5、计算:(a+1)(a -1)=______ 6、若a 2+b 2-2a +2b +2=0,则a 2004+b 2005=________ 7、一个长方形的长为(2a +3b ),宽为(2a -3b ),则长方形的面积为________ 8、5-(a -b )2的最大值是________,当5-(a -b )2取最大值时,a 与b 的关系是________ 9、要使式子+4 1y 2成为一个完全平方式,则应加上________ 10、(4a m+1-6a m )÷2a m -1=________. 29×31×(302+1)=________ 11、已知x 2-5x +1=0,则x 2+21x =________ 12、已知(2005-a )(2003-a )=1000,请你猜想(2005-a )2+(2003-a )2=________ 13、若x2-7xy+M 是一个完全平方式,那么M 是 14、若x 2-y 2 =30,且x -y=-5,则x+y 的值是 15、若x 2-x -m = (x -m)(x+1)且x ≠0,则m 等于 16、(x +q )与(x +5 1)的积不含x 的一次项,则q 应是 17、计算[(a 2-b 2)(a 2+b 2)]2等于 18、已知(a +b )2=11,ab =2,则(a -b )2的值是 19、已知m 2+n 2-6m+10n+34=0,则m+n 的值是 20、已知0136422=+-++y x y x ,y x 、都是有理数,则y x 的值是 21、已知 2()16,4,a b ab +==则22 3a b +的值是 、2()a b -的值是 22、已知()5,3a b ab -==,则2()a b +的值是 、223()a b +的值是 23、已知6,4a b a b +=-=,则ab 的值是 、22a b +的值是 24、已知224,4a b a b +=+=,则22a b 的值是 、2()a b -的值是 25、已知(a +b)2=60,(a -b)2=80,则a 2+b 2的值是 、a b 的值是

完全平方公式与平方差公式

《完全平方公式与平方差公式》教学设计 第1课时完全平方公式 1.能根据多项式的乘法推导出完全平方公式;(重点) 2.理解并掌握完全平方公式,并能进行计算.(重点、难点) 一、情境导入 计算: (1)(x+1)2; (2)(x-1)2; (3)(a+b)2; (4)(a-b)2. 由上述计算,你发现了什么结论? 二、合作探究 探究点:完全平方公式 【类型一】直接运用完全平方公式进行计算 利用完全平方公式计算: (1)(5-a)2; (2)(-3m-4n)2; (3)(-3a+b)2. 解析:直接运用完全平方公式进行计算即可. 解:(1)(5-a)2=25-10a+a2;

(2)(-3m-4n)2=9m2+24mn+16n2; (3)(-3a+b)2=9a2-6ab+b2. 方法总结:完全平方公式:(a±b)2=a2±2ab+b2.可巧记为“首平方,末平方,首末两倍中间放”. 变式训练:见《学练优》本课时练习“课堂达标训练”第12题 【类型二】构造完全平方式 如果36x2+(m+1)xy+25y2是一个完全平方式,求m的值. 解析:先根据两平方项确定出这两个数,再根据完全平方公式确定m 的值. 解:∵36x2+(m+1)xy+25y2=(6x)2+(m+1)xy+(5y)2,∴(m+1)xy=±2·6x·5y,∴m+1=±60,∴m=59或-61. 方法总结:两数的平方和加上或减去它们积的2倍,就构成了一个完全平方式.注意积的2倍的符号,避免漏解. 变式训练:见《学练优》本课时练习“课堂达标训练”第4题 【类型三】运用完全平方公式进行简便计算 利用完全平方公式计算: (1)992; (2)1022. 解析:(1)把99写成(100-1)的形式,然后利用完全平方公式展开计算.(2)可把102分成100+2,然后根据完全平方公式计算.解:(1)992=(100-1)2=1002-2×100+12=10000-200+1=9801; (2)1022=(100+2)2=1002+2×100×2+4=10404. 方法总结:利用完全平方公式计算一个数的平方时,先把这个数写成

完全平方公式变形公式专题

半期复习(3)—- 完全平方公式变形公式及常见题型 一、公式拓展: 拓展一: 拓展二: 拓展三: 拓展四:杨辉三角形 拓展五: 立方与与立方差 二。常见题型: (一)公式倍比 例题:已知=4,求。 (1),则= (2)已知= (二)公式变形 (1)设(5a +3b)2=(5a -3b)2+A,则A = (2)若()()x y x y a -=++22 ,则a 为 (3)如果,那么M 等于 (4)已知(a +b)2=m,(a—b)2=n,则a b等于 (5)若,则N 得代数式就是 (三)“知二求一” 1.已知x﹣y=1,x2+y 2=25,求xy 得值. 2。若x+y=3,且(x +2)(y+2)=12. (1)求xy 得值; (2)求x 2+3xy+y 2得值. 3.已知:x +y=3,xy=﹣8,求: (1)x2+y 2 (2)(x 2﹣1)(y 2﹣1). 4.已知a ﹣b=3,ab=2,求: (1)(a+b)2 (2)a 2﹣6ab+b 2得值、 (四)整体代入 例1:,,求代数式得值、 例2:已知a = x +20,b=x +19,c=x+21,求a 2+b2+c 2-ab-bc-ac 得值 ⑴若,则= ⑵若,则= 若,则= ⑶已知a 2+b 2=6ab 且a 〉b >0,求 得值为

⑷已知,,,则代数式得值就是、 (五)杨辉三角 请瞧杨辉三角(1),并观察下列等式(2): 根据前面各式得规律,则(a+b)6= . (六)首尾互倒 1.已知m2﹣6m﹣1=0,求2m2﹣6m+=。 2、阅读下列解答过程: 已知:x≠0,且满足x2﹣3x=1.求:得值。 解:∵x2﹣3x=1,∴x2﹣3x﹣1=0 ∴,即. ∴==32+2=11. 请通过阅读以上内容,解答下列问题: 已知a≠0,且满足(2a+1)(1﹣2a)﹣(3﹣2a)2+9a2=14a﹣7, 求:(1)得值;(2)得值。 (七)数形结合 1、如图(1)就是一个长为2m,宽为2n得长方形,沿图中得虚线剪开均分成四个小长方形,然后按图(2)形状拼成一个正方形。 (1)您认为图(2)中得阴影部分得正方形边长就是多少? (2)请用两种不同得方法求图(2)阴影部分得面积; (3)观察图(2),您能写出下列三个代数式之间得等量关系不? 三个代数式:(m+n)2,(m﹣n)2,mn. (4)根据(3)题中得等量关系,解决下列问题:若a+b=7,ab=5,求(a﹣b)2得值. 2.附加题:课本中多项式与多项式相乘就是利用平面几何图形得面积来表示得,例如:(2a+b)(a+b)=2a2+3ab+b2就可以用图1或图2得面积来表示. (1)请写出图3图形得面积表示得代数恒等式; (2)试画出一个几何图形,使它得面积能表示(a+b)(a+3b)=a2+4ab+3b2。 (八)规律探求 15.有一系列等式:

平方差公式 完全平方公式 拓展

平方差公式、完全平方公式 一、填空 1、(-2x+y )(-2x -y )=______ 2、(-3x 2+2y 2)(______)=9x 4-4y 4 3、(a+b -1)(a -b+1)=(_____)2-(_____)2 4、两个正方形的边长之和为5,边长之差为2,那么较大正方形的面积减去较小的正方形的面积,差是_____ 5、计算:(a+1)(a -1)=______ 6、若a 2+b 2-2a +2b +2=0,则a 2004+b 2005=________ 7、一个长方形的长为(2a +3b ),宽为(2a -3b ),则长方形的面积为________ 8、5-(a -b )2的最大值是________,当5-(a -b )2取最大值时,a 与b 的关系是________ 9、要使式子+41 y 2成为一个完全平方式,则应加上________ 10、(4a m+1 -6a m )÷2a m -1=________. 29×31×(302+1)=________ 11、已知x 2-5x +1=0,则x 2 +21x =________ 12、已知(2005-a )(2003-a )=1000,请你猜想(2005-a )2+(2003-a )2=________ 13、若x2-7xy+M 是一个完全平方式,那么M 是 14、若x 2 -y 2 =30,且x -y=-5,则x+y 的值是 15、若x 2-x -m = (x -m)(x+1)且x ≠0,则m 等于 16、(x +q )与(x +5 1 )的积不含x 的一次项,则q 应是 17、计算[(a 2-b 2)(a 2+b 2)]2等于 18、已知(a +b )2=11,ab =2,则(a -b )2的值是 19、已知m 2+n 2-6m+10n+34=0,则m+n 的值是 20、已知0136422=+-++y x y x ,y x 、都是有理数,则y x 的值是 21、已知 2 ()16,4,a b ab +==则22 3 a b +的值是 、2()a b -的值是 22、已知()5,3a b ab -==,则2()a b +的值是 、223()a b +的值是

初中数学完全平方公式的变形与应用

完全平方公式的变形与应用 提高培优完全平方公式 222222()2,()2a b a a b b a b a a b b 在使用时常作如下变形: (1) 222222()2,()2a b a b a b a b a b a b (2) 2222()()4,()()4a b a b a b a b a b a b (3) 2222 ()()2()a b a b a b (4) 2222 1 [()()]2a b a b a b (5) 22 1 [()()]2a b a b a b (6) 222222 1 [()()()]2a b c a b b c ca a b b c c a 例1 已知长方形的周长为 40,面积为75,求分别以长方形的长和宽为边长的正方形面积之和是多少? 解设长方形的长为α,宽为b ,则α+b=20,αb=75. 由公式(1),有: α2+b 2=(α+b)2-2αb=202-2×75=250. (答略,下同) 例2 已知长方形两边之差 为4,面积为12,求以长方形的长与宽之和为边长的正方形面积. 解设长方形长为 α,宽为b ,则α-b=4,αb=12.由公式(2),有:(α+b)2=(α-b)2+4αb=42+4×12=64. 例3 若一个整数可以表示为两个整数的平方和, 证明:这个整数的2倍也可以表示为两个整数的平方和 . 证明设整数为x ,则x=α2+b 2(α、b 都是整数).

由公式(3),有2x=2(α2+b 2)=(α+b)2+(α-b)2.得证 例4 将长为64cm 的绳分为两段,各自围成一个小正方形,怎样分法使得两个正方形面积之和最小? 解设绳被分成的两部分为x 、y ,则x+y=64. 设两正方形的面积之和为 S ,则由公式(4),有:S=(x 4)2+(y 4)2=116 (x 2+y 2) =132 [(x+y)2+(x-y)2] =132 [642+(x-y)2]. ∵(x-y)2 ≥0,∴当x=y 即(x-y)2=0时,S 最小,其最小值为 64232=128(cm 2). 例5 已知两数的和为 10,平方和为52,求这两数的积. 解设这两数分别为α、b ,则α+b =10,α2+b 2 =52. 由公式(5),有: αb=12 [(α+b)2-(α2+b 2)] =12 (102-52)=24. 例6 已知α=x+1,b=x+2,c=x+3. 求:α2+b 2+c 2-αb-bc-c α的值. 解由公式(6)有: α2+b 2+c 2-αb-bc-αc =12 [(α-b)2+(b-c )2+(c-α)2] =12 [(-1)2+(-1)2+22] =12×(1+1+4)=3.

【名师导航】七年级数学下册 完全平方公式拓展训练专项教程导学案(无答案) 北师大版

9、《完全平方公式》导学案 一、探索公式 问题1.利用多项式乘多项式法则,计算下列各式,你又能发现什么规律? (1)()()()=++=+1112 p p p __________________________. (2)()____________22 =+m =_______________________. (3) ()()()=--=-1112 p p p _____ _______________. (4) ()____________22 =-m =_________________________. (5) ()____________2 =+b a =_________________________ . (6) ()____________2 =-b a =________________________. 问题2.上述六个算式有什么特点?结果又有什么特点? 问题3.尝试用你在问题3中发现的规律,直接写出()2b a +和()2 b a -的结果. 即:2()a b += 2()a b -= 问题4:问题3中得的等式中,等号左边是 ,等号的右边: ,把这个公式叫做(乘法的)完全平方公式 问题5. 得到结论: (1)用文字叙述: (3)完全平方公式的结构特征: 问题6:请思考如何用图15.2- 2和图15.2-3中的面积说 明完全平方公式吗? 问题8. 找出完全平方公式与平方差公式结构上的差异 二、例题分析 例1:判断正误:对的画“√”,错的画“×”,并改正过来. (1)(a +b )2=a 2+b 2; ( ) (2)(a -b )2=a 2-b 2; ( ) (3)(a +b )2=(-a -b )2; ( ) (4)(a -b )2=(b -a )2. ( ) 例2.利用完全平方公式计算 (1) ()24n m + (2)2 21??? ??-y (3) (x +6)2 (4) (-2x +3y )(2x -3y ) 例3.运用完全平方公式计算: (5) 2102 (6) 2 99 三、达标训练 1、运用完全平方公式计算:

完全平方公式变形公式专题

半期复习(3)——完全平方公式变形公式及常见题型一.公式拓展: 2a2b2(a b)22ab 22 拓展一:a b(a b)2ab 11211 2 2 2 a(a)2a(a)2 22 a a a a 2a b2a b22a22b2 2 拓展二:(a b)(a b)4ab 22(a b)2(a b)24ab (a b)(a b)4ab 2222 拓展三:a b c(a b c)2ab2ac2bc 拓展四:杨辉三角形 33232 33 (a b)a a b ab b

444362243 4 (a b) a a b a b ab b 拓展五:立方和与立方差 3b a b a ab b 3223b3a b a ab b 22 a()()a()() 第1页(共5页)

二.常见题型: (一)公式倍比 。 2 2 a b 例题:已知 a b =4,求ab 2 1 1 (1) x y 1,则 2 2 x xy y = 2 2 2 2 x y 2 ) 2 (2) 已知x x x y ,xy ( 1) ( 则= 2 ( 二)公式变形 (1) 设(5a+3b)2=(5a-3b)2+A,则A= 2 2 (2) 若( x y) ( x y) a ,则a 为 (3) 如果 2 ( ) 2 (x y) M x y ,那么M等于(4) 已知(a+b) 2=m,(a —b) 2=n,则ab 等于 2 (2 3 ) 2 ( ,则N的代数式是(5) 若2a b a b N 3 ) (三)“知二求一” 1.已知x﹣y=1,x 2+y2=25,求xy 的值. 2.若x+y=3 ,且(x+2)(y+2)=12. (1)求xy 的值; 2+3xy+y 2 的值. (2)求x

完全平方公式常考题型(经典)

完全平方公式典型题型 一、公式及其变形 1、 完全平方公式:222()+2a b a ab b +=+ (1)222()2a b a ab b -=-+ (2) 公式特征:左边是一个二项式的完全平方,右边有三项,其中有两项是左边二项式中每一项的平方,而另一项是左边二项式中两项乘积的2倍。 注意: 222)()]([)(b a b a b a +=+-=-- 222)()]([)(b a b a b a -=--=+- 完全平方公式的口诀:首平方,尾平方,加上首尾乘积的2倍。 2、公式变形 (1)+(2)得:22 22 ()()2a b a b a b ++-+= (12)-)(得: 22 ()()4 a b a b ab +--= ab b a ab b a b a 2)(2)(2222-+=-+=+,ab b a b a 4)()(22-+=- 3、三项式的完全平方公式:bc ac ab c b a c b a 222)(2222+++++=++ 二、题型 题型一、完全平方公式的应用 例1、计算(1)(- 21ab 2-3 2c )2; (2)(x -3y -2)(x +3y -2); 练习1、(1)(x -2y )(x 2-4y 2)(x +2y );(2)、(a -2b +3c -1)(a +2b -3c -1); 题型二、配完全平方式 1、若k x x ++22是完全平方式,则k = 2、.若x 2-7xy +M 是一个完全平方式,那么M 是 3、如果4a 2-N ·ab +81b 2 是一个完全平方式,则N = 4、如果224925y kxy x +-是一个完全平方式,那么k = 题型三、公式的逆用 1.(2x -______)2=____-4xy +y 2. 2.(3m 2+_______)2=_______+12m 2n +________.

完全平方公式变形公式专题

半期复习(3)—— 完全平方公式变形公式及常见题型 一.公式拓展: 拓展一: 拓展二: 拓展三: 拓展四:杨辉三角形 拓展五: 立方与与立方差 二.常见题型: (一)公式倍比 例题:已知=4,求。 (1),则= (2)已知= (二)公式变形 (1)设(5a +3b)2=(5a -3b)2+A,则A= (2)若()()x y x y a -=++22 ,则a 为 (3)如果,那么M 等于 (4)已知(a+b)2=m,(a —b)2=n,则ab 等于 (5)若,则N 得代数式就是 (三)“知二求一” 1.已知x ﹣y=1,x 2+y 2=25,求xy 得值. 2.若x+y=3,且(x+2)(y+2)=12. (1)求xy 得值; (2)求x 2+3xy+y 2得值. 3.已知:x+y=3,xy=﹣8,求: (1)x 2+y 2 (2)(x 2﹣1)(y 2﹣1). 4.已知a ﹣b=3,ab=2,求: (1)(a+b)2 (2)a 2﹣6ab+b 2得值. (四)整体代入 例1:,,求代数式得值。 例2:已知a= x +20,b=x +19,c=x +21,求a 2+b 2+c 2-ab -bc -ac 得值 ⑴若,则= ⑵若,则= 若,则=

⑶已知a2+b2=6ab且a>b>0,求得值为 ⑷已知,,,则代数式得值就是. (五)杨辉三角 请瞧杨辉三角(1),并观察下列等式(2): 根据前面各式得规律,则(a+b)6=. (六)首尾互倒 1.已知m2﹣6m﹣1=0,求2m2﹣6m+=. 2.阅读下列解答过程: 已知:x≠0,且满足x2﹣3x=1.求:得值. 解:∵x2﹣3x=1,∴x2﹣3x﹣1=0 ∴,即. ∴==32+2=11. 请通过阅读以上内容,解答下列问题: 已知a≠0,且满足(2a+1)(1﹣2a)﹣(3﹣2a)2+9a2=14a﹣7, 求:(1)得值;(2)得值. (七)数形结合 1.如图(1)就是一个长为2m,宽为2n得长方形,沿图中得虚线剪开均分成四个小长方形,然后按图(2)形状拼成一个正方形. (1)您认为图(2)中得阴影部分得正方形边长就是多少? (2)请用两种不同得方法求图(2)阴影部分得面积; (3)观察图(2),您能写出下列三个代数式之间得等量关系吗? 三个代数式:(m+n)2,(m﹣n)2,mn. (4)根据(3)题中得等量关系,解决下列问题:若a+b=7,ab=5,求(a﹣b)2得值. 2.附加题:课本中多项式与多项式相乘就是利用平面几何图形得面积来表示得,例 如:(2a+b)(a+b)=2a2+3ab+b2就可以用图1或图2得面积来表示. (1)请写出图3图形得面积表示得代数恒等式; (2)试画出一个几何图形,使它得面积能表示(a+b)(a+3b)=a2+4ab+3b2. (八)规律探求 15.有一系列等式:

完全平方公式变形公式专题

半期复习(3)—— 完全平方公式变形公式及常见题型 一.公式拓展: 拓展一:ab b a b a 2)(222-+=+ ab b a b a 2)(222+-=+ 2)1(1222-+=+ a a a a 2)1(1222+-=+a a a a 拓展二:a b b a b a 4)()(22=--+ ()()222222a b a b a b ++-=+ ab b a b a 4)()(22+-=+ ab b a b a 4)()(22-+=- 拓展三:bc ac ab c b a c b a 222)(2 222---++=++ 拓展四:杨辉三角形 3223333)(b ab b a a b a +++=+ 4322344464)(b ab b a b a a b a ++++=+ 拓展五: 立方和与立方差 ))((2233b ab a b a b a +-+=+ ))((2233b ab a b a b a ++-=- 二.常见题型: (一)公式倍比 例题:已知b a +=4,求ab b a ++2 2 2。 (1)1=+y x ,则222 121y xy x ++= (2)已知xy 2y x ,y x x x -+-=---2 222)()1(则= (二)公式变形 (1)设(5a +3b )2=(5a-3b )2+A ,则A= (2)若()()x y x y a -=++22,则a 为 (3)如果2 2)()(y x M y x +=+-,那么M 等于 (4)已知(a+b)2=m ,(a —b)2=n ,则ab 等于 (5)若N b a b a ++=-22)32()32(,则N 的代数式是 (三)“知二求一” 1.已知x﹣y=1,x 2+y 2=25,求xy 的值. 2.若x +y=3,且(x+2)(y +2)=12. (1)求xy的值; (2)求x 2+3x y+y2的值.

完全平方公式的变形与应用

完全平方公式的变形与应用 完全平方公式222222()2,()2a b a ab b a b a ab b +=++-=-+在使用时常作如下变形: (1) 222222()2,()2a b a b ab a b a b ab +=+-+=-+ (2) 2222()()4,()()4a b a b ab a b a b ab +=-+-=+- (3) 2222()()2()a b a b a b ++-=+ (4) 22221[()()]2 a b a b a b +=++- (5) 221[()()]2 ab a b a b =+-- (6) 2222221[()()()]2 a b c ab bc ca a b b c c a ++---=-+-+- 例1 已知长方形的周长为40,面积为75,求分别以长方形的长和宽为边长的正方形面积之和是多少? 解 设长方形的长为α,宽为b ,则α+b=20,αb=75. 由公式(1),有: α2+b 2=(α+b)2-2αb=202-2×75=250. (答略,下同) 例2 已知长方形两边之差为4,面积为12,求以长方形的长与宽之和为边长的正方形面积. 解 设长方形长为α,宽为b ,则α-b=4,αb=12. 由公式(2),有: (α+b)2=(α-b)2+4αb=42+4×12=64. 例3 若一个整数可以表示为两个整数的平方和,证明:这个整数的2倍也可以表示为两个整数的平方和. 证明 设整数为x ,则x=α2+b 2(α、b 都是整数).

由公式(3),有2x=2(α2+b 2)=(α+b)2+(α-b)2.得证 例4 将长为64cm 的绳分为两段,各自围成一个小正方形,怎样分法使得两个正方形面积之和最小? 解 设绳被分成的两部分为x 、y ,则x+y=64. 设两正方形的面积之和为S ,则由公式(4),有: S=(x 4)2+(y 4)2=116 (x 2+y 2) =132 [(x+y)2+(x-y)2] =132 [642+(x-y)2]. ∵(x-y)2≥0, ∴当x=y 即(x-y)2=0时,S 最小,其最小值为64232 =128(cm 2). 例5 已知两数的和为10,平方和为52,求这两数的积. 解 设这两数分别为α、b ,则α+b=10,α2+b 2=52. 由公式(5),有: αb=12 [(α+b)2-(α2+b 2)] =12 (102-52)=24. 例6 已知α=x+1,b=x+2,c=x+3. 求:α2+b 2+c 2-αb -bc-cα的值. 解 由公式(6)有: α2+b 2+c 2-αb -bc-αc =12 [(α-b)2+(b-c)2+(c-α)2] =12 [(-1)2+(-1)2+22] =12 ×(1+1+4)=3.

平方差公式和完全平方公式强化练习答案

平方差公式 公式: ( a+b)(a-b)= a 2-b 2 语言叙述:两数的 和乘以这两个数的差等 于这两个数的平方差 , . 。 公式结构特点: 左边: (a+b)(a-b) 右边: a 2-b 2 熟悉公式:公式中的a 和b 既可以表示数字也可以表示字母,还可以表示一个单项式或者一个多项式。 (5+6x)(5-6x) 中 (5+6x) 是公式中的a , (5-6x) 是公式中的b (5+6x) (5+6x) 中 (5+6x) 是公式中的a , (5+6x) 是公式中的b (x-2y)(x+2y) 中 (x+2y)是公式中的a , (x-2y) 是公式中的b (-m+n)(-m-n) 中 (-m-n) 是公式中的a , (-m+n) 是公式中的b (a+b+c )(a+b-c) 中 (a+b+c ) 是公式中的a , (a+b-c) 是公式中的b (a-b+c )(a-b-c) 中 (a-b+c ) 是公式中的a , (a-b-c) 是公式中的b (a+b+c )(a-b-c) 中 (a+b+c ) 是公式中的a , (a-b-c) 是公式中的b 填空: 1、(2x-1)( (2x+1 )=4x 2-1 2、(-4x- 7y )( 7y -4x)=16x 2-49y 2 第一种情况:直接运用公式 1.(a+3)(a-3) 2..( 2a+3b)(2a-3b) = a 2-9 =4a 2 -9b 2 3. (1+2c)(1-2c) 4. (-x+2)(-x-2) =1-4C 2 =x 2-42平方差公式和完全平方公式强化练习答案 5. (2x+12)(2x-12) 6. (a+2b)(a-2b) =4x 2-1/4 =a 2-4b 2 7. (2a+5b)(2a-5b) 8. (-2a-3b)(-2a+3b) =4a 2-25b 2 =4a 2-9b 2 第二种情况:运用公式使计算简便 1、 1998×2002 2、498×502 =(2000-2)(2000+2) =(500-2)(500+2) =4000000-4 =250000-4 =3999996 =249996 3、999×1001 4、1.01×0.99 =(1000-1)(1000+1) =(1+0.1)(1-0.1) =1000000-1 =1-0.01 =999999 =0.99 5、30.8×29.2 6、(100-13)×(99-23) =(30+0.8)(30-0.8) = =900-0.64 =899.46 7、(20-19)×(19-89) =(19+8/9)(19-8/9) =361-64/81 =11032/27 第三种情况:两次运用平方差公式 1、(a+b )(a-b)(a 2+b 2) =(a 2-b 2) (a 2+b 2) =a 4-b 4 2、(a+2)(a-2)(a 2+4) =(a 2-4) (a 2+4) =a 4-16 3、(x- 12)(x 2+ 14)(x+ 12 ) =(x 2-1/4)( (x 2+ 14) =x 4-1/16 第四种情况:需要先变形再用平方差公式

完全平方公式变形

完全平方公式变形 1.已知 ,求下列各式的值: (1) ; (2) . (3)4 41x x 2.已知x+y=7,xy=2,求 (1)2x 2+2y 2; (2)(x ﹣y )2.。 (3)x 2+y 2-3xy 3.已知有理数m ,n 满足(m+n )2=9,(m ﹣n )2=1.求下列各式的值. (1)mn ; (2)m 2+n 2

平方差公式的应用 1.(a+b﹣c)(a﹣b+c)=a2﹣()2. 2.()﹣64m2n2=(a+)(﹣8mn) 3.已知x2﹣y2=12,x﹣y=4,则x+y=. 4.(x﹣y)(x+y)(x2+y2)(x4+y4)…(x2n+y2n)=. 5..(﹣3x+2y)()=﹣9x2+4y2. 6.记x=(1+2)(1+22)(1+24)(1+28)…(1+2n),且x+1=2128,则n=. 7.计算:=. 8.已知a﹣b=1,a2﹣b2=﹣1,则a4﹣b4=. 9.一个三角形的底边长为(2a+4)厘米,高为(2a﹣4)厘米,则这个三角形的面积为. 10观察下列等式19×21=202﹣1,28×32=302﹣22,37×43=402﹣32,…,已知m,n 为实数,仿照上述的表示方法可得:mn=. 11.正方形Ⅰ的周长比正方形Ⅱ的周长长96cm,它们的面积相差960cm2,求这两个正方形的边长 12如图,第一个图中两个正方形如图所示放置,将第一个图改变位置后得到第二个图,两图阴影部分的面积相等,则该图可验证的一个初中数学公式 为. 以下为提高题(请班级前20名学生会做) 13.如果一个正整数能表示为两个连续偶数的平方差,那么称这个这个正整数为“神秘数”,如:4=22﹣02,12=42﹣22,20=62﹣42,因此4,12,20这三个数都是“神秘数”.若60是一个“神秘数”,则60可以写成两个连续偶数的平方差为:60=. 14.20082﹣20072+20062﹣20052+…+22﹣12=. 15.(32+1)(34+1)(38+1)…(364+1)×8+1=. 16.(3a+3b+1)(3a+3b﹣1)=899,则a+b=. 17.化简式子,其结果是.

完全平方公式变形的应用练习题_2

(一)公式倍比 例题:已知b a +=4,求ab b a ++2 2 2。 ⑴如果1,3=-=-c a b a ,那么()()()2 22a c c b b a -+-+-的值是 ⑵1=+y x ,则222 121y xy x ++= ⑶已知xy 2y x ,y x x x -+-=---2222)()1(则 = (二)公式组合 例题:已知(a+b)2=7,(a-b)2=3, 求值: (1)a 2+b 2 (2)ab ⑴若()()a b a b -=+=22713,,则a b 22+=____________,a b =_________ ⑵设(5a +3b )2=(5a -3b )2+A ,则A= ⑶若()()x y x y a -=++22,则a 为 ⑷如果2 2)()(y x M y x +=+-,那么M 等于 ⑸已知(a+b)2=m ,(a —b)2=n ,则ab 等于 ⑹若N b a b a ++=-22)32()32(,则N 的代数式是 ⑺已知,3)(,7)(22=-=+b a b a 求ab b a ++22的值为 。 ⑻已知实数a,b,c,d 满足53=-=+bc ,ad bd ac ,求) )((2222d c b a ++ (三)整体代入 例1:2422=-y x ,6=+y x ,求代数式y x 35+的值。 例2:已知a= 201x +20,b=201x +19,c=20 1x +21,求a 2+b 2+c 2-ab -bc -ac 的值 ⑴若499,7322=-=-y x y x ,则y x 3+= ⑵若2=+b a ,则b b a 422+-= 若65=+b a ,则b ab a 3052++=

平方差公式和完全平方公式基础+提高练习题

平方差公式和完全平方公式基础+提高 A卷:基础题 1.下列多项式的乘法中,可以用平方差公式计算的是( ) A.(a+b)(b+a) B.(-a+b)(a-b) C.(a+b)(b-a) D.(a2-b)(b2+a)2.下列计算中,错误的有( ) ①(3a+4)(3a-4)=9a2-4;②(2a2-b)(2a2+b)=4a2-b2; ③(3-x)(x+3)=x2-9;④(-x+y)·(x+y)=-(x-y) (x+y)=-x2-y2. A.1个 B.2个 C.3个 D.4个 3.若x2-y2=30,且x-y=-5,则x+y的值是( ) A.5 B.6 C.-6 D.-5 4、判断下列各式是否正确 ,如果错误,请改正在横线上 (1)(a+b)=a+b( )________________ (2) (a+b)=a+2ab+b( )______________ (3) (a-b)=a-b( )________________ (4)(a-2)=a-4( )________________ 5.(-2x+y)(-2x-y)=______. 6.(-3x2+2y2)(______)=9x4-4y4. 7.(a+b-1)(a-b+1)=(_____)2-(_____)2. 8.两个正方形的边长之和为5,边长之差为2,那么用较大的正方形的面积减去较小的正方形的面积,差是_____. 9.利用平方差公式计算:20×21. 10.计算:(a+2)(a2+4)(a4+16)(a-2). 完全平方式常见的变形有: B卷: 提高题 1、已知x-y=9,x·y=5,求x+y的值.

2、已知a+b=5 ,ab=-2 ,求a+b的值 3、m+=(m+)- . 4、若x-y=9,.则x+y=91, x·y= . 5.已知求与的值。 6.已知求与的值。 7、已知求与的值。 8、已知(a+b)2=60,(a-b)2=80,求a2+b2及ab的值 9、已知,求的值。 10、已知,求的值。 11、,求(1)(2) 12、试说明不论x,y取何值,代数式的值总是正数。 13、已知m2+n2-6m+10n+34=0,求m+n的值 14、已知,都是有理数,求的值。 15、已知 求与的值。 16、若x+mx+4是一个完全平方公式,则m的值为( )

相关文档
最新文档