高考调研数学81

合集下载

高考调研北师大版数学选修2-3-2-5-2高考调研精讲精练

高考调研北师大版数学选修2-3-2-5-2高考调研精讲精练

第10页
高考调研 ·北师大版 ·数学(选修2-3)
【解析】 (1)P(“当天商店不进货”)=P(“当天商品销售 量为0件”)+P(“当天商品销售量为1件”)=210+250=130.
(2)由题意知,X的可能取值为2,3. P(X=2)=P(“当天商品销售量为1件”)=250=14; P(X=3)=P(“当天商品销售量为0件”)+P(“当天商品销 售量为2件”)+P(“当天商品销售量为3件”)=210+290+250=34.
第8页
高考调研 ·北师大版 ·数学(选修2-3)
【误区警示】 要分清楚是谁获利,不能忽视了先交5元才 能参加这一抽奖.因此,不能只计算E(ξ),最终E(η)的结果为负 值,说明摸奖者若重复这种抽奖,平均每摸一次要亏1.4元.
第9页
高考调研 ·北师大版 ·数学(选修2-3)
例3 某商店试销某种商品20天,获得如下数据:
第19页
高考调研 ·北师大版 ·数学(选修2-3)
3.如果袋中有 6 个红球,4 个白球,从中任取 1 球,记住颜
色后放回,连续摸取 4 次,设 ξ 为取得红球的次数,那么 ξ 的期
望 E(ξ)=( )
3
12
A.4
B. 5
19
1
C. 7
D.3
第20页
高考调研 ·北师大版 ·数学(选修2-3)
答案 B 解析 每次摸到红球的概率都为160=35,且每次相互独立, 因此符合独立重复试验,因此该分布列应为二项分布: E(ξ)=4×35=152.
第17页
高考调研 ·北师大版 ·数学(选修2-3)
2.节日期间,某种鲜花的进价是每束2.5元,售价是每束5
元,节后对没有卖出的鲜花以每束1.6元处理.根据前5年节日期

新课标版数学必修二(新高考新课程)作业15高考调研精讲精练

新课标版数学必修二(新高考新课程)作业15高考调研精讲精练

新课标版数学必修⼆(新⾼考新课程)作业15⾼考调研精讲精练课时作业(⼗五)(第⼀次作业)1.直线a是平⾯α的斜线,过a且和α垂直的平⾯有()A.0个B.1个C.2个D.⽆数个答案 B2.给定下列四个命题①若⼀个平⾯内的两条直线与另⼀个平⾯都平⾏,则这两个平⾯相互平⾏;②若⼀个平⾯经过另⼀个平⾯的垂线,则这两个平⾯相互垂直;③垂直于同⼀直线的两条直线相互平⾏;④若两个平⾯垂直,则⼀个平⾯内与它们的交线不垂直的直线与另⼀个平⾯也不垂直.其中,为真命题的是()A.①和②B.②和③C.③和④D.②和④答案 D3.若m,n是两条不同的直线,α,β,γ是三个不同的平⾯,则下列命题中的真命题是() A.若m?β,α⊥β,则m⊥αB.若α∩γ=m,β∩γ=n,m∥n,则α∥βC.若m⊥β,m∥α,则α⊥βD.若α⊥γ,α⊥β,则β⊥γ答案 C解析若m?β,α⊥β,则m与α的关系可能平⾏也可能相交,则A为假命题;选项B中,α与β可以平⾏也可能相交,则B为假命题;选项D中β与γ也可能平⾏或相交(不⼀定垂直),则D为假命题.故选C.4.在如图所⽰的三棱锥中,AD⊥BC,CD⊥AD,则有()A.⾯ABC⊥⾯ADC B.⾯ABC⊥⾯ADBC.⾯ABC⊥⾯DBC D.⾯ADC⊥⾯DBC答案 D5.正⽅体ABCD-A1B1C1D1中,P为CC1的中点,则平⾯PBD垂直于()A.平⾯A1BD B.平⾯D1BDC.平⾯PBC D.平⾯CBD答案 A6.在空间四边形ABCD中,AB=BC,AD=CD,E为对⾓线AC的中点,下列判断正确的是()A.平⾯ABD⊥平⾯ADC B.平⾯ABC⊥平⾯ABDC.平⾯ABC⊥平⾯ADC D.平⾯ABC⊥平⾯BED答案 D7.(2016·浙江)已知互相垂直的平⾯α,β交于直线l,若直线m,n满⾜m∥α,n⊥β,则()A.m∥l B.m∥nC.n⊥l D.m⊥n答案 C解析因为α∩β=l,所以l?β,所以n⊥l.故选C.8.如图,正⽅体ABCD-A1B1C1D1中,O为底⾯ABCD的中⼼,M为棱BB1的中点,则下列结论中错误的是()A.D1O∥平⾯A1BC1B.MO⊥平⾯A1BC1C.异⾯直线BC1与AC所成的⾓等于60°D.⼆⾯⾓MACB等于90°答案 D解析对于选项A,连接B1D1,BO,交A1C1于E,则四边形D1OBE为平⾏四边形,所以D1O∥BE,因为D1O?平⾯A1BC1,BE?平⾯A1BC1,所以D1O∥平⾯A1BC1,故正确;对于选项B,连接B1D,因为O为底⾯ABCD的中⼼,M为棱BB1的中点,所以MO∥B1D,易证B1D⊥平⾯A1BC1,所以MO⊥平⾯A1BC1,故正确;对于选项C,因为AC∥A1C1,所以∠A1C1B为异⾯直线BC1与AC 所成的⾓,因为△A1C1B为等边三⾓形,所以∠A1C1B=60°,故正确;对于选项D,因为BO⊥AC,MO⊥AC,所以∠MOB为⼆⾯⾓MACB的平⾯⾓,显然不等于90°,故不正确.综上知,选D.9.如图,已知六棱锥P-ABCDEF的底⾯是正六边形,PA⊥平⾯ABC,PA=2AB,则下列结论正确的是________(填序号).①PB⊥AD;②平⾯PAB⊥平⾯PAE;③BC∥平⾯PAE;④直线PD与底⾯ABC所成的⾓为45°.答案②④解析由于AD与AB不垂直,因此得不到PB⊥AD,①不正确;由PA⊥AB,AE⊥AB,PA∩AE=A,得AB⊥平⾯PAE,因为AB?平⾯PAB,所以平⾯PAB⊥平⾯PAE,②正确;延长BC,EA,两者相交,因此BC与平⾯PAE相交,③不正确;由于PA⊥平⾯ABC,所以∠PDA就是直线PD与平⾯ABC所成的⾓,由PA=2AB,AD=2AB,得PA=AD,所以∠PDA=45°,④正确.10.如图,在直三棱柱ABC-A1B1C1中,E,F分别是A1B,A1C的中点,点D在B1C1上,A1D⊥B1C.求证:(1)EF∥平⾯ABC;(2)平⾯A1FD⊥平⾯BB1C1C.证明(1)因为E,F分别是A1B,A1C的中点,所以EF∥BC,⼜EF?⾯ABC,BC?⾯ABC,所以EF∥平⾯ABC.(2)因为直三棱柱ABC-A1B1C1,所以BB1⊥⾯A1B1C1,BB1⊥A1D.⼜A1D⊥B1C,BB1∩B1C=B1,所以A1D⊥⾯BB1C1C.⼜A1D?⾯A1FD,所以平⾯A1FD⊥平⾯BB1C1C.11.如图,四棱锥S-ABCD中,四边形ABCD为菱形,SD=SB.(1)求证:平⾯SAC⊥平⾯SBD;(2)求证:平⾯SAC⊥平⾯ABCD.证明(1)连接AC,BD,使AC∩BD=O.∵底⾯ABCD为菱形,∴BD⊥AC.∵SB=SD,O为BD中点,∴SO⊥BD,⼜SO∩AC=O,∴BD⊥平⾯SAC,⼜∵BD?平⾯SBD,∴平⾯SAC⊥平⾯SBD.(2)由(1)知BD⊥平⾯SAC,BD?平⾯ABCD,∴平⾯SAC⊥平⾯ABCD.12.如图,△ABC为正三⾓形,EC⊥平⾯ABC,BD∥CE,且CE=CA=2BD,M是EA的中点,求证:(1)DE=DA;(2)平⾯BDM⊥平⾯ECA;(3)平⾯DEA⊥平⾯ECA.证明(1)取AC中点N,连接MN,BN,则MN∥EC,∵EC⊥平⾯ABC,∴平⾯EAC⊥平⾯ABC.∴MN⊥平⾯ABC,⼜BN?平⾯ABC,∴MN⊥BN,且MN=BD,MN∥BD,∴四边形MNBD为矩形,∴DM∥BN,∵CN=AN,BC=AB,∴BN⊥CA,⼜CA ∩MN =N ,∴BN ⊥平⾯AEC ,∴DM ⊥⾯EAC ,∴DM ⊥AE.∴DE =DA. (2)由(1)知,DM ⊥⾯EAC ,DM ?⾯BDM ,∴平⾯BDM ⊥平⾯ECA.(3)由(1)知,DM ⊥⾯EAC ,DM ?⾯ADE ,∴平⾯DEA ⊥平⾯ECA.13.如图所⽰,在矩形ABCD 中,已知AB =12AD ,E 是AD 的中点,沿BE 将△ABE 折起⾄△A ′BE 的位置,使A ′C =A ′D ,求证:平⾯A ′BE ⊥平⾯BCDE.证明如图所⽰,取CD 的中点M ,BE 的中点N ,连接A ′M ,A ′N ,MN ,则MN ∥BC.∵AB =12AD ,E 是AD 的中点,∴AB =AE ,即A ′B =A ′E ,⼜BN =NE ,∴A ′N ⊥BE.∵A ′C =A ′D ,∴A ′M ⊥CD. 在四边形BCDE 中,CD ⊥MN ,⼜MN ∩A ′M =M ,∴CD ⊥平⾯A ′MN ,⼜A ′N ?平⾯A ′MN ,∴CD ⊥A ′N. ∵DE ∥BC 且DE =12BC ,∴BE 必与CD 相交.⼜A ′N ⊥BE ,A ′N ⊥CD ,∴A ′N ⊥平⾯BCDE. ⼜A ′N ?平⾯A′BE ,∴平⾯A ′BE ⊥平⾯BCDE.课时作业(⼗五)(第⼆次作业)1.(2015·浙江)设α,β是两个不同的平⾯,l ,m 是两条不同的直线,且l ?α,m ?β.( ) A .若l ⊥β,则α⊥β B .若α⊥β,则l ⊥m C .若l ∥β,则α∥βD .若α∥β,则l ∥m答案 A解析⾯⾯垂直的证明主要是找线⾯垂直,此题在选项中直接给出两个条件,便于考⽣根据判定定理进⾏直接选择,相对较为基础.如果采⽤排除法,思维量会增加.2.在正四⾯体P-ABC 中,D ,E ,F 分别是AB ,BC ,CA 的中点,下⾯四个结论不成⽴的是( )A .BC ∥平⾯PDFB .DF ⊥平⾯PAEC .平⾯PDF ⊥平⾯ABCD .平⾯PAE ⊥平⾯ABC答案 C解析∵D ,E ,F 分别为AB ,BC ,AC 的中点,∴DF ∥BC.∴BC ∥平⾯PDF.故A 正确.连接AE ,PE ,则AE ⊥BC.PE ⊥BC ,∴BC ⊥平⾯PAE.∴DF ⊥平⾯PAE.故B 正确.⼜∵BC ?平⾯ABC ,∴平⾯PAE ⊥平⾯ABC.故D 正确.∴选C.3.把正⽅形ABCD 沿对⾓线BD 折成直⼆⾯⾓,则△ABC 是( ) A .正三⾓形 B .直⾓三⾓形 C .锐⾓三⾓形 D .钝⾓三⾓形答案 A4.在正⽅体ABCD-A 1B 1C 1D 1中,截⾯A 1BD 与底⾯ABCD 所成⼆⾯⾓A 1-BD-A 的正切值为( ) A.32B.22C. 2D. 3答案 C解析如图所⽰,连接AC 交BD 于点O ,连接A 1O ,O 为BD 中点,∵A 1D =A 1B ,∴在△A 1BD 中,A 1O ⊥BD.⼜∵在正⽅形ABCD 中,AC ⊥BD ,∴∠A 1OA 为⼆⾯⾓A 1-BD-A 的平⾯⾓.设AA 1=1,则AO =22,∴tan ∠A 1OA =AA 1AO =122= 2.故选C. 5.如图,在四棱锥P-ABCD 中,PA ⊥平⾯ABCD ,底⾯ABCD 是矩形,则图中互相垂直的平⾯有( )A.2对B.3对C.4对D.5对答案 D解析∵PA⊥平⾯ABCD,∴平⾯PAB⊥平⾯ABCD,平⾯PAD⊥平⾯ABCD.∵AB⊥AD,PA⊥AB,∴AB⊥平⾯PAD,∴平⾯PAB⊥平⾯PAD.同理,平⾯PCD⊥平⾯PAD,平⾯PAB⊥平⾯PBC.共有5对平⾯互相垂直.故选D.6.若⼀个⼆⾯⾓的两个半平⾯分别垂直于另⼀个⼆⾯⾓的两个半平⾯,那么这两个⼆⾯⾓()A.相等B.互补C.相等或互补D.关系⽆法确定答案 D解析如图所⽰,平⾯EFDG⊥平⾯ABC,当平⾯HDG绕DG转动时,平⾯HDG始终与平⾯BCD垂直,所以两个⼆⾯⾓的⼤⼩关系不确定,因为⼆⾯⾓H-DG-F的⼤⼩不确定.故选D.7.四边形ABCD是正⽅形,以BD为棱把它折成直⼆⾯⾓A-BD-C,E为CD的中点,则∠AED的⼤⼩为()A.45°B.30°C.60°D.90°答案 D解析设BD中点为F,则AF⊥BD,CF⊥BD,∴∠AFC=90°,∴AF⊥⾯BCD.∵E,F分别为CD,BD的中点,∴EF∥BC,⼜∵BC⊥CD,∴CD⊥EF,⼜AF⊥CD,∴CD⊥平⾯AEF,⼜AE?平⾯AEF,∴CD⊥AE.故选D.8.如图,在三棱锥P-ABC中,PA⊥平⾯ABC,∠BAC=90°,则⼆⾯⾓B-PA-C的⼤⼩为()A.30°B.45°C.60°D.90°答案 D解析∵PA⊥平⾯ABC,∴BA⊥PA,CA⊥PA,∴∠BAC为⼆⾯⾓BPAC的平⾯⾓.∵∠BAC=90°,∴⼆⾯⾓的⼤⼩为90°.9.如图,在四棱锥V-ABCD中,底⾯ABCD是这长为2的正⽅形,其他四个侧⾯都是侧棱长为5的等腰三⾓形,则⼆⾯⾓V-AB-C 的度数是________.答案60°解析如图,取AB的中点E,CD的中点F,连接VE,EF,VF,由题意知,AB⊥VE,AB⊥EF,所以∠VEF为⼆⾯⾓V ABC的平⾯⾓.易知△VEF为正三⾓形,所以∠VEF=60°.10.如图所⽰,在长⽅体ABCD-A1B1C1D1中,BC=2,AA1=1,E,F分别在AD和BC上,且EF∥AB,若⼆⾯⾓C1-EF-C等于45°,则BF=________.答案 1解析∵AB⊥平⾯BC1,C1F?平⾯BC1,CF?平⾯BC1,∴AB⊥C1F,AB⊥CF,⼜EF∥AB,∴C1F⊥EF,CF⊥EF,∴∠C1FC是⼆⾯⾓C1EFC的平⾯⾓,∴∠C1FC=45°,∴△FCC1是等腰直⾓三⾓形,∴CF=CC1=AA1=1.⼜BC=2,∴BF=BC-CF=2-1=1.11.如图,四边形ABCD是平⾏四边形,直线SC⊥平⾯ABCD,E是SA的中点,求证:平⾯EDB⊥平⾯ABCD.证明连接AC交BD于点F,连接EF.∴EF是△SAC的中位线,∴EF∥SC.∵SC⊥平⾯ABCD,∴EF⊥平⾯ABCD.⼜EF?平⾯BDE,∴平⾯BDE⊥平⾯ABCD.12.如图,四棱锥P-ABCD的底⾯是边长为a的正⽅形,PB⊥平⾯ABCD.(1)求证:平⾯PAD⊥平⾯PAB;(2)若平⾯PDA与平⾯ABCD成60°的⼆⾯⾓,求该四棱锥的体积.解析(1)证明:∵PB⊥平⾯ABCD,AD?平⾯ABCD,∴PB⊥AD.⼜∵AD⊥AB,且AB∩PB=B,∴AD⊥平⾯PAB.⼜∵AD?平⾯PAD,∴平⾯PAD⊥平⾯PAB.(2)由(1)的证明知,∠PAB为平⾯PDA与平⾯ABCD所成的⼆⾯⾓的平⾯⾓,即∠PAB=60°,∴PB=3a.∴V P-ABCD=13·a2·3a=3a33.13.如图所⽰,四棱锥P-ABCD的底⾯ABCD是边长为1的菱形,∠BCD=60°,E是CD 的中点,PA⊥底⾯ABCD,PA= 3.(1)求证:平⾯PBE⊥平⾯PAB;(2)求⼆⾯⾓A-BE-P的⼤⼩.解析(1)证明:如图所⽰,连接BD.由ABCD是菱形且∠BCD=60°知,△BCD是等边三⾓形.因为E是CD的中点,所以BE⊥CD,⼜AB∥CD,所以BE⊥AB,⼜因为PA⊥平⾯ABCD,BE?平⾯ABCD,所以PA⊥BE,⽽PA∩AB=A,因此BE⊥平⾯PAB.⼜BE ?平⾯PBE,所以平⾯PBE⊥平⾯PAB.(2)由(1)知,BE⊥平⾯PAB,PB?平⾯PAB,所以PB⊥BE.⼜AB⊥BE,所以∠PBA是⼆⾯⾓A-BE-P的平⾯⾓.在Rt△PAB中,tan∠PBA=PAAB=3,∠PBA=60°.故⼆⾯⾓A-BE-P 的⼤⼩为60°.1.如图,⼆⾯⾓αlβ的⼤⼩是60°,线段AB?α,B∈l,AB与l所成的⾓为30°,则AB与平⾯β所成的⾓的正弦值是________.答案3 4解析如图所⽰,过点A作平⾯β的垂线,垂⾜为C,在β内过C作l的垂线,垂⾜为D,连接AD,由线⾯垂直判定定理可知l⊥平⾯ACD,则l⊥AD,故∠ADC为⼆⾯⾓α-l-β的平⾯⾓,即∠ADC=60°.⼜∠ABD=30°,连接CB,则∠ABC为AB与平⾯β所成的⾓,设AD=2,则AC=3,CD=1,AB=ADsin30°=4,∴sin ∠ABC =AC AB =34.2.(2017·辽宁省育才学校阶段测试)如图,在⼏何体ABDCE 中,AB =AD ,M 是BD 的中点,AE ⊥平⾯ABD ,MC ∥AE,AE =MC.(1)求证:平⾯BCD ⊥平⾯CDE ;(2)若N 为线段DE 的中点,求证:平⾯AMN ∥平⾯BEC. 证明 (1)∵AB =AD ,M 为线段BD 的中点,∴AM ⊥BD.∵AE ⊥平⾯ABD ,MC ∥AE ,∴MC ⊥平⾯ABD. ∴MC ⊥AM.⼜MC ∩BD =M ,∴AM ⊥平⾯CBD.⼜MC ∥AE ,MC =AE ,∴四边形AMCE 为平⾏四边形,∴EC ∥AM ,∴EC ⊥平⾯CBD ,⼜EC ?平⾯CDE ,∴平⾯BCD ⊥平⾯CDE.(2)∵M 为BD 中点,N 为ED 中点,∴MN ∥BE. 由(1)知EC ∥AM 且AM ∩MN =M ,BE ∩EC =E ,∴平⾯AMN ∥平⾯BEC.3.在如图所⽰的⼏何体中,四边形ABCD 是正⽅形,MA ⊥平⾯ABCD ,PD ∥MA ,E ,G ,F 分别为MB ,PB ,PC 的中点,且AD =PD =2MA. (1)求证:平⾯EFG ⊥平⾯PDC ;(2)求三棱锥P-MAB 与四棱锥P-ABCD 的体积之⽐.解析 (1)证明:因为MA ⊥平⾯ABCD ,PD ∥MA. 所以PD ⊥平⾯ABCD.⼜BC ?平⾯ABCD ,所以PD ⊥BC. 因为四边形ABCD 为正⽅形,所以BC ⊥DC.⼜PD∩DC=D,所以BC⊥平⾯PDC.在△PBC中,因为G,F分别为PB,PC的中点,所以GF∥BC,所以GF⊥平⾯PDC.⼜GF?平⾯EFG,所以平⾯EFG⊥平⾯PDC.(2)因为PD⊥平⾯ABCD,四边形ABCD为正⽅形,不妨设MA=1,则PD=AD=2,所以V P-ABCD=13S正⽅形ABCD ·PD=83.由题意易知DA⊥平⾯MAB,且PD∥MA,所以DA即为点P到平⾯MAB的距离,所以V P-MAB=13×12×1×2×2=23.所以V P-MAB∶V P-ABCD=1∶4.。

【高考调研】高考数学一轮复习 专题研究 导数的应用课件 理 新人教版

【高考调研】高考数学一轮复习 专题研究 导数的应用课件 理 新人教版
【答案】 C
探究 1 给定解析式求函数的图像是近几年高考重 点,并且难度在增大,多需要利用导数研究单调性知其变 化趋势,利用导数求极值(最值)研究零点.
思考题 1 (2011·安徽文)函数 f(x)=axn(1-x)2 在区间 [0,1]上的图像如图所示,则 n 可能是( )
A.1 C.3
B.2 D.4
探究 2 ①本题是将不等式证明转化为求函数的最 值,体现了函数与不等式之间的联系.
②借助函数单调性、最值、恒成立等知识证明函数不 等式是近几年高考热点.
思考题 2 (2011·辽宁)设函数 f(x)=x+ax2+blnx,曲 线 y=f(x)过 P(1,0),且在 P 点处的切线斜率为 2.
(1)求 a,b 的值; (2)证明:f(x)≤2x-2.
2013届高考一轮数学复习理科课件(人教版)
第三章 导数及其应用
专题研究 导数的应用
题型一 导数与函数图像 例 1 (2011·山东)函数 y=2x-2sinx 的图像大致是( )
【解析】 y′=12-2cosx,令 y′=0,得 cosx=14, 根据三角函数的知识可知这个方程有无穷多解,即函数 y =2x-2sinx 有无穷多个极值点,函数是奇函数,图像关于 坐标原点对称,故只能是选项 C 的图像.
思考题 3 (1)(2011·辽宁文)已知函数 f(x)=ex-2x+a 有零点,则 a 的取值范围是________.
【解析】 由原函数有零点,可将问题转化为方程 ex-2x+a=0 有解问题,即方程 a=2x-ex 有解.
令函数 g(x)=2x-ex,则 g′(x)=2-ex,令 g′(x)=0, 得 x=ln2,所以 g(x)在(-∞,ln2)上是增函数,在(ln2, +∞)上是减函数,所以 g(x)的最大值为:g(ln2)=2ln2- 2.因此,a 的取值范围就是函数 g(x)的值域,所以,a∈(- ∞,2ln2-2].

【高考调研】高中数学(人教a版)选修2-3:第一章-计数原理+单元测试题x

【高考调研】高中数学(人教a版)选修2-3:第一章-计数原理+单元测试题x

【高考调研】高中数学(人教a版)选修2-3:第一章-计数原理+单元测试题x第一章综合测试题一、选择题1.设东、西、南、北四面通往山顶的路各有?2、3、3、4?条路,只从一面上山,而从任意一面下山的走法最多,应( )A.从东边上山C.从南边上山B.从西边上山D.从北边上山2.若一系列函数的解析式相同,值域相同,但其定义域不同,则称这些函数为“同族函数”,那么函数解析式为?y=x2,值域为{1,4}的“同族函数”共有( )A.7?个B.8?个?C.9?个D.10?个3.5?名学生相约第二天去春游,本着自愿的原则,规定任何人可以“去”或“不去”,则第二天可能出现的不同情况的种数为( )2A.C5 B.25C.52 D.A2524.6?个人分乘两辆不同的汽车,每辆车最多坐?4?人,则不同的乘车方法数为( )A.40 B.50 C.60 D.705.在航天员进行的一项太空实验中,先后要实施?6?个程序,其中程序 A?只能出现在第一步或最后一步,程序?B?和?C?实施时必须相邻,请问实验顺序的编排方法共有( )A.24?种B.48?种C.96?种D.144?种6.有甲、乙、丙三项任务,甲需?2?人承担,乙、丙各需?1?人承担,从?10?人中选派?4?人承担这三项任务,不同的选法有( )A.2?520 B.2?025 C.1?260 D.5?0408?10.已知?x-x展开式中常数项为?1120,其中实数8?10.已知?x-x展开式中常数项为?1120,其中实数?a?是常数,则展在第?3?道上,货车?B?不能停在第?1?道上,则?5?列火车的停车方法共有 ( )A.78?种B.72?种C.120?种D.96?种8.已知(1+x)n=a0+a1x+a2x2+…+anxn,若?a0+a1+a2+…+an =16,则自然数?n?等于( )A.6 B.5 C.4 D.39.6?个人排队,其中甲、乙、丙?3?人两两不相邻的排法有( )A.30?种B.144?种?C.5?种D.4?种? a?? ?开式中各项系数的和是( )A.28?B.38?C.1?或?38 D.1?或?2811.有?A、B、C、D、E、F?共?6?个集装箱,准备用甲、乙、丙三辆卡车运送,每台卡车一次运两个,若卡车甲不能运?A?箱,卡车乙不能运B?箱,此外无其他任何限制;要把这?6?个集装箱分配给这?3?台卡车运送,则不同的分配方案的种数为( )A.168 B.84 C.56 D.4212.从?2?名女教师和?5?名男教师中选出三位教师参加?20xx?年高考某考场的监考工作.要求一女教师在室内流动监考,另外两位教师固定在室内监考,问不同的安排方案种数为( )A.30 B.180?C.630 D.1?08013.已知(x+2)n?的展开式中共有?5?项,则?n=________,展开式中的常数项为________.(用数字作答)14.5?个人排成一排,要求甲、乙两人之间至少有一人,则不同的排法有____种.15.已知(x+1)6(ax-1)2?的展开式中含?x3?项的系数是?20,则?a?的值等于________.16.用数字?2,3?组成四位数,且数字?2,3?至少都出现一次,这样的四位数共有________个.(用数字作答)17.某书店有?11?种杂志,2?元?1?本的?8?种,1?元?1?本的?3?种,小张用10?元钱买杂志(每种至多买一本,10?元钱刚好用完),求不同的买法有多少种(用数字作答).18.4?个相同的红球和?6?个相同的白球放入袋中,现从袋中取出?4?个球;若取出的红球个数不少于白球个数,则有多少种不同的取法?9(12?分)从?1?到?6?的六个数字中取两个偶数和两个奇数组成没有重复数字的四位数.试问:(1)能组成多少个不同的四位数?(2)四位数中,两个偶数排在一起的有几个?(3)两个偶数不相邻的四位数有几个?(所有结果均用数值表示)20?已知(1+2?x)n?的展开式中,某一项的系数恰好是它的前一项系数5的?2?倍,而且是它的后一项系数的6,试求展开式中二项式系数最大的项.21?某单位有三个科室,为实现减负增效,每科室抽调2?人,去参加再就业培训,培训后这?6?人中有?2?人返回原单位,但不回到原科室工作,且每科室至多安排?1?人,问共有多少种不同的安排方法.22.10?件不同厂生产的同类产品:(1)在商品评选会上,有?2?件商品不能参加评选,要选出?4?件商品,并排定选出的?4?件商品的名次,有多少种不同的选法?(2)若要选?6?件商品放在不同的位置上陈列,且必须将获金质奖章的两件商品放上,有多少种不同的布置方法?1,D2,由题意,问题的关键在于确定函数定义域的个数:第一步,先确定函数值?1?的原象:因为?y=x2,当?y=1?时,x=1?或?x=-1,为此有三种情况:即{1},{-1},{1,-1};第二步,确定函数值?4?的原象,因为?y=4?时,x=2?或?x=-2,为此也有三种情况:{2},{-2},{2,-2}.由分步计数原理,得到:3×3=9?个.选?C.3,B,4B44 22 85C?当?A?出现在第一步时,再排?A,B,C?以外的三个程序,有?A33种,A?与?A,B44 22 8成?4?个可以排列程序?B、C?的空档,此时共有?A33A1A2种排法;当?A?出现在最后一步时的排法与此相同,故共有?2A33A1A2=96?种编排方法.6A?先从?10?人中选出?2?人承担甲任务有?C10种选法,再从剩下的?8?人中选出2?人分别承担乙、丙任务,有?A28种选法,由分步乘法计数原理共有?C10A2=2?520?种不同的选法.故选?A.7不考虑不能停靠的车道,5?辆车共有?5!=120?种停法.A?停在?3?道上的停法:4!=24(种);B?种停在?1?道上的停法:4!=24(种);A、B?分别停在?3?道、1?道上的停法:3!=6(种).故符合题意的停法:120-24-24+6=78(种).故选?A.令?x=1,得?2n=16,则?n=4.故选?C.4分两步完成:第一步,其余?3?人排列有?A33种排法;第二步,从?4?个可插空档中任选?3?个给甲、乙、丙?3?人4站有?A34种插法.由分步乘法计数原理可知,一共有?A3A3=144?种.B r 810,CTr+1=(-a)rC8x8-2r,令?8-2r=0 r=4.∴T5=C4(-a)4=1?120,∴a=±2.当?a=2?时,和为?1;当?ar 8时,和为?38.4 4 4 311,D 分两类:①甲运?B?箱,有?C1·?C2·?C2种;②甲不运?B?箱,有?C2·?C4 4 4 34 4 4 3∴不同的分配方案共有?C1·?C2·?C2+C2·?C2·?C24 4 4 3,A?分两类进行:第一类,在两名女教师中选出一名,从?5?名男教师中选出两名,且该女教师只能在室2 5 5内流动监考,有?C1·?C2种选法;第二类,选两名女教师和一名男教师有?C2·2 5 55 2 2 5 5 2教师中选一名作为室内流动监考人员,即有?C2·?C1·?C1共?10?种选法,∴共有?C1·?C2+C2·?5 2 2 5 5 2A13.4 16 ∵展开式共有?5?项,∴n=4,常数项为?C4424=16.414. 甲、乙两人之间至少有一人,就是甲、乙两人不相邻,则有?A3·?A2=72(种).15. 0?或?5 16,14?因4为四位数的每个数位上都有两种可能性,其中四个数字全是?2?或?3?的情况不合题意,所以适合题意的四位数有?24-2=14?个.17.解析分两类:第一类,买?5?本?2?元的有?C58?种;第二类,买?4?本?2?元的和?2?本?1?元的有?C48×C23种.故共有?C58+C48×C23=266?种不同的买法种数.18.解析依题意知,取出有?4?个球中至少有?2?个红球,可分三类:①取出的全是红球有?C44种方法;②20.解析? 由题意知展开式中第?k+1?项系数是第?k?项系数的?2?倍,是第?k+2?项系数的,6 4 6取出的?4?个球中有20.解析? 由题意知展开式中第?k+1?项系数是第?k?项系数的?2?倍,是第?k+2?项系数的,6 4 64 6 4 6理,共有?C4+C3·?C1+C2·?C4 6 4 6319.解析(1)四位数共有?C23C2A4=216?个.333 3(2)上述四位数中,偶数排在一起的有?C23C2A3A2=10833 3(3)两个偶数不相邻的四位数有?C23C2A2A2=108?个.56∴Ckn2k=6Ckn+1·?2k+ ∴?Ckn2k=6Ckn+1·?2k+1, ? k k5解得?n=7.∴展开式中二项式系数最大两项是:37T4=C37(2?x)3=280x2与?T5=C4(2?x)4=560x2.721. 6?人中有?2?人返回原单位,可分两类:2(1)2?人来自同科室:C13C1=6?种;23 2 2 3 2 2(2)2?人来自不同科室:C2C1C1,然后?2?人分别回到科室,但不回原科室有?3?种方法,故有?3 2 2 3 2 236?种.由分类计数原理共有?6+36=42?种方法22.解析(1)10?件商品,除去不能参加评选的?2?件商品,剩下?8?件,从中选出?4?件进行排列,有?A48=1?680(或8C4·?A4)(种).8(2)分步完成.先将获金质奖章的两件商品布置在?6?个位置中的两个位置上,有?A26种方法,再从剩下的8 6 8 88?件商品中选出?4?件,布置在剩下的?4?个位置上,有?A4种方法,共有?A2·?A4=50?400(或?C4·?8 6 8 8。

高考调研数学选修1

高考调研数学选修1

高考调研数学选修1一、引言数学作为一门重要的学科,对高中生的学业发展具有举足轻重的影响。

为了更好地了解高考数学选修1的情况,本文将对该选修课进行调研和分析,以期为学生选课和备考提供帮助和指导。

二、数学选修1的背景与基本信息2.1 背景数学选修1是高中数学课程的一部分,属于选修课程,授课内容主要围绕数学的基础和应用展开,涵盖的知识点较为广泛。

2.2 基本信息•课程目标:通过学习数学选修1课程,使学生能够掌握基本的数学思维方法和解题技巧,培养学生的数学兴趣和创新意识。

•课程内容:包括平面几何、立体几何、向量、数列、概率等内容。

•教材参考:《数学选修1教材》(具体教材可根据地区和学校而有所不同)。

三、数学选修1的教学现状3.1 教学方法根据调研结果,数学选修1的教学方法主要包括理论讲解、示例演示和习题辅导。

教师通常采用讲解和演示相结合的方式,帮助学生理解知识点,并通过习题辅导提高学生的解题能力。

3.2 教学资源数学选修1的教学资源主要包括教材、习题集、学校图书馆以及各类辅导资料。

教师会根据教学需要选用不同的教材和辅导资料,为学生提供丰富的学习资源。

3.3 学生反馈从学生的反馈中可以看出,数学选修1的内容相对较难,需要投入较多的时间和精力来学习和理解。

但同时,学生也认为数学选修1能够锻炼他们的逻辑思维和解决问题的能力,对培养学生的数学素养起到了积极的作用。

四、数学选修1的备考建议4.1 制定学习计划针对数学选修1的学习内容和难点,学生可以制定详细的学习计划,合理安排每天的学习时间,保证学习的效果和效率。

4.2 多做习题数学是一门需要实践的学科,通过多做习题可以加深对知识点的理解和记忆,提高解题能力。

建议学生选择合适的习题集,根据自己的实际情况进行练习。

4.3 寻求辅导和帮助在学习过程中,学生遇到困难和疑惑时,可以积极寻求教师和同学的帮助,或参加一些数学辅导班,提高自己的学习效果。

4.4 备考技巧备考期间,建议学生重点复习各个知识点的基本概念和公式,掌握解题的常用方法和技巧。

高考调研层级快练数学电子版必修二

高考调研层级快练数学电子版必修二

高考调研层级快练数学电子版必修二一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1、已知集合2{|340},{4,1,3,5}A x x x B =--<=-,则A 、{4,1}-B 、A B ={1,5}C 、{3,5}D 、{1,3}2、若312i i z =++,则||=zA 、0B 、1 CD 、23、埃及胡夫金字塔是古代世界建筑奇迹之一,它的形状可视为一个正四棱锥。

以该四棱锥的高为边长的正方形面积等于该四棱锥一个侧面三角形的面积,则其侧面三角形底边上的高与底面正方形的边长的比值为A 、14B 、12C 、14D 、12+ 4、设O 为正方形ABCD 的中心,在O ,A ,B ,C ,D 中任取3点,则取到的3点共线的概率为A 、15 B 、25 C 、12D 、455、某校一个课外学习小组为研究某作物种子的发芽率y 和温度x (单位:℃)的关系,在20个不同的温度条件下进行种子发芽实验,由实验数据(,)(1,2,,20)i i x y i =得到下面的散点图:由此散点图,在10℃至40℃之间,下面四个回归方程类型中最适宜作为发芽率y 和温度x 的回归方程类型的是A 、y a bx =+B 、2y a bx =+C 、e x y a b =+D 、ln y a b x =+6、已知圆2260x y x +-=,过点(1,2)的直线被该圆所截得的弦的长度的最小值为A 、1B 、2C 、3D 、47、设函数π()cos()6f x x ω=+在[−π,π]的图像大致如下图,则f (x )的最小正周期为A 、10π9B 、7π6C 、4π3D 、3π28、设3log 42a =,则4a -=A 、116B 、19C 、18D 、169、执行下面的程序框图,则输出的n =A 、17B 、19C 、21D 、2310、设{}n a 是等比数列,且1231a a a ++=,234+2a a a +=,则678a a a ++=A 、12B 、24C 、30D 、3211、设12,F F 是双曲线22:13y C x -=的两个焦点,O 为坐标原点,点P 在C 上且||2OP =,则12PF F △的面积为A 、72B 、3C 、52D 、212、已知,,A B C 为球O 的球面上的三个点,⊙1O 为ABC △的外接圆,若⊙1O 的面积为4π,1AB BC AC OO ===,则球O 的表面积为A 、64πB 、48πC 、36πD 、32π二、填空题:本题共4小题,每小题5分,共20分。

【高考调研】高考数学一轮复习 题组层级快练4(含解析)

【高考调研】高考数学一轮复习 题组层级快练4(含解析)

题组层级快练(四)1.下列表格中的x 与y 能构成函数的是( )答案 C解析 A 中0既是非负数又是非正数;B 中0又是偶数;D 中自然数也是整数,也是有理数. 2.对于集合A ={x |0≤x ≤2},B ={y |0≤y ≤3},则由下列图形给出的对应f 中,能构成从A 到B 的函数的是( )答案 D解析 对于B ,C 两图可以找到一个x 与两个y 对应的情形,对于A 图,当x =2时,在B 中找不到与之对应的元素.3.若二次函数g (x )满足g (1)=1,g (-1)=5,且图像过原点,则g (x )的解析式为( ) A .g (x )=2x 2-3x B .g (x )=3x 2-2x C .g (x )=3x 2+2x D .g (x )=-3x 2-2x答案 B解析 用待定系数法,设g (x )=ax 2+bx +c (a ≠0), ∵g (1)=1,g (-1)=5,且图像过原点,∴⎩⎪⎨⎪⎧a +b +c =1,a -b +c =5,c =0,解得⎩⎪⎨⎪⎧a =3b =-2,c =0,∴g (x )=3x 2-2x ,选B.4.已知a ,b 为实数,集合M ={b a,1},N ={a,0},若f 是M 到N 的映射,f (x )=x ,则a +b 的值为( ) A .-1 B .0 C .1 D .±1答案 C解析 由f (x )=x ,知f (1)=a =1.∴f (ba)=f (b )=0,∴b =0. ∴a +b =1+0=1.5.已知函数f (x )=⎩⎪⎨⎪⎧3x,x ≤1,-x ,x >1,若f (x )=2,则x 等于( )A .log 32B .-2C .log 32或-2D .2答案 A解析 当x ≤1时,3x=2,∴x =log 32; 当x >1时,-x =2,∴x =-2(舍去). ∴x =log 32.6.(2015·江西吉安四校联考)已知函数f (x )=⎩⎪⎨⎪⎧1-x 2x ,x 2+x -2 x ,则f [1f]的值为( )A.1516 B.89 C .-2716D .18答案 A解析 f (2)=4,f [1f]=f (14)=1-(14)2=1516.7.已知f :x →2sin x 是集合A (A ⊆[0,2π])到集合B 的一个映射,若B ={0,1,2},则A 中的元素个数最多为( )A .6B .5C .4D .3答案 A解析 ∵A ⊆[0,2π],由2sin x =0,得x =0,π,2π;由2sin x =1,得x =π6,5π6;由2sin x =2,得x =π2.故A 中最多有6个元素.故选A.8.图中的图像所表示的函数的解析式为( )A .y =32|x -1|(0≤x ≤2)B .y =32-32|x -1|(0≤x ≤2)C .y =32-|x -1|(0≤x ≤2)D .y =1-|x -1|(0≤x ≤2) 答案 B解析 当x ∈[0,1]时,y =32x =32-32(1-x )=32-32|x -1|;当x ∈[1,2]时,y =32-01-2(x -2)=-32x +3=32-32(x -1)=32-32|x -1|.因此,图中所示的图像所表示的函数的解析式为y =32-32|x -1|. 9.已知函数f (x ),g (x )分别由下表给出则f [g (1)]的值为________;满足f [g (x )]>g [f (x )]的x 的值是________. 答案 1,210.(2015·河南洛阳统考)设函数f (x )满足f (x )=1+f (12)log 2x ,则f (2)=________.答案 32解析 由已知得f (12)=1-f (12)·log 22,则f (12)=12,则f (x )=1+12·log 2x ,故f (2)=1+12×log 22=32. 11.已知集合M ={-1,1,2,4},N ={0,1,2},给出下列四个对应法则:①y =x 2,②y =x +1,③y =2x,④y =log 2|x |.其中能构成从M 到N 的函数的是________.答案 ④解析 对于①,②,M 中的2,4两元素在N 中找不到象与之对应,对于③,M 中的-1,2,4在N 中没有象与之对应.12.已知f (x -1x )=x 2+1x2,则f (3)=______.答案 11解析 ∵f (x -1x )=(x -1x)2+2,∴f (x )=x 2+2(x ∈R ),∴f (3)=32+2=11.13.已知x ∈N *,f (x )=⎩⎪⎨⎪⎧x 2-35,x ≥3,f x +,x <3,其值域设为D .给出下列数值:-26,-1,9,14,27,65,则其中属于集合D 的元素是________.(写出所有可能的数值)答案 -26,14,65解析 注意函数的定义域是N *,由分段函数解析式可知,所有自变量的函数值最终都是转化为大于等于3的对应自变量函数值计算的f (3)=9-35=-26,f (4)=16-35=-19,f (5)=25-35=-10,f (6)=36-35=1,f (7)=49-35=14,f (8)=64-35=29,f (9)=81-35=46,f (10)=100-35=65.故正确答案应填-26,14,65.14.函数f (x )=ax 3+bx 2+cx +d 的部分数值如下表:则函数y 答案 (-1,1)∪(2,+∞)解析 结合三次函数的图像和已知表可知f (x )>0的解集为(-1,1)∪(2,+∞),即为y =lg f (x )的定义域.15.设函数f (x )=⎩⎨⎧-x -1,x ≤0,x ,x >0.若f (x 0)>1,则实数x 0的取值范围是________.答案 (-∞,-2)∪(1,+∞)解析 当x 0≤0时,由-x 0-1>1,得x 0<-2. ∴x 0<-2;当x 0>0时,由x 0>1,得x 0>1. ∴x 0的取值范围为(-∞,-2)∪(1,+∞).16.(2015·衡水调研卷)具有性质:f (1x)=-f (x )的函数,我们称为满足“倒负”变换的函数,下列函数:①y =x -1x ;②y =x +1x ;③y =⎩⎪⎨⎪⎧x ,0<x <1,0,x =1,-1x,x >1.其中满足“倒负”变换的函数是________. 答案 ①③解析 对于①,f (x )=x -1x ,f (1x )=1x -x =-f (x ),满足;对于②,f (1x )=1x+x =f (x ),不满足;对于③,f (1x)=⎩⎪⎨⎪⎧1x ,0<1x <1,0,1x =1,-x ,1x >1,即f (1x )=⎩⎪⎨⎪⎧1x ,x >1,0,x =1,-x ,0<x <1.故f (1x)=-f (x ),满足.综上可知,满足“倒负”变换的函数是①③.17.一个圆柱形容器的底面直径为d cm ,高度为h cm ,现以S cm 3/s 的速度向容器内注入某种溶液,求容器内溶液高度y (cm)与注入时间t (s)的函数关系式及定义域.答案 y =4S πd 2·t ,t ∈[0,πhd24S] 解析 依题意,容器内溶液每秒升高4Sπd 2 cm.于是y =4Sπd2·t .又注满容器所需时间h ÷(4S πd 2)=πhd24S (秒),故函数的定义域是t ∈[0,πhd24S].18.(2015·四川泸州摸底)设集合A ={x |x ∈N ,且1≤x ≤26},B ={a ,b ,c ,…,z},对应关系f :A →B 如下表(即1到26按由小到大顺序排列的自然数与按照字母表顺序排列的26个英文小写字母之间的一一对应):又知函数g (x )=⎩⎪⎨⎪⎧log 2-x ,22<x <32,x +4,0≤x ≤22,若f [g (x 1)],f [g (20)],f [g (x 2)],f [g (9)]所表示的字母依次排列恰好组成的英文单词为“exam”,求x 1+x 2的值.答案 31解析 由题设知f [g (x 1)]=e ,f [g (x 2)]=a ,所以g (x 1)=5,g (x 2)=1.由log 2(32-x )=5,得x =0(舍去);由log 2(32-x )=1,得x =30;由x +4=5,得x =1;由x +4=1,得x =-3(舍去).所以x 1+x 2=30+1=31.1.若f (x +1x )=x 2+1x2+1,则函数f (x )的解析式为( )A .f (x )=x 2-1 B .f (x )=x 2-1(x ≥2) C .f (x )=x 2-1(x ≤-2) D .f (x )=x 2-1(x ≥2或x ≤-2) 答案 D解析 因为f (x +1x )=(x +1x)2-1,所以f (x )=x 2-1,x ≥2或x ≤-2,选D.2.根据统计,一名工人组装第x 件某产品所用的时间(单位:分钟)为f (x )=⎩⎪⎨⎪⎧c x ,x <A ,cA ,x ≥A(A ,c 为常数).已知工人组装第4件产品用时30分钟,组装第A 件产品用时15分钟,那么c 和A 的值分别是( )A .75,25B .75,16C .60,25D .60,16答案 D解析 因为组装第A 件产品用时15分钟,所以c A =15①,所以必有4<A ,且c 4=c2=30②,联立①②解得c =60,A =16,故选D.3.若定义x ⊙y =3x-y ,则a ⊙(a ⊙a )等于( ) A .-a B .3aC .aD .-3a答案 C解析 由题意知:a ⊙a =3a-a ,则a ⊙(a ⊙a )=3a-(a ⊙a )=3a-(3a-a )=a .选C. 4.对于函数f (n )=1+-n2(n ∈N *),我们可以发现f (n )有许多性质,如:f (2k )=1(k ∈N *)等.下列关于f (n )的性质中一定成立的是( )A .f (n +1)-f (n )=1B .f (n +k )=f (n )(n ∈N *) C .a f (n )=f (n +1)+af (n )(a ≠0) D .af (n +1)=a -(a +1)f (n )(a ≠0)答案 C解析 因为f (2k )=1,f (2k +1)=0(k ∈N *),所以f (n )=1或0,f (n +1)=0或1,因此f (n +1)-f (n )=±1,A 错误;当k 为奇数时,f (n +k )≠f (n ),B 错误;对于a f (n )与f (n +1)+af (n ),不论n 为偶数还是奇数均有a 1=0+a 或a 0=1+a ×0,C 正确;当n 为奇数时,a f (n +1)=a -(a +1)f (n ),当n 为偶数时,等式不成立,故D 错误.5.如图,设点A 是单位圆上的一定点,动点P 从点A 出发在圆上按逆时针方向旋转一周,点P 所旋转过的AP 的长为l ,弦AP 的长为d ,则函数d =f (l )的图像大致是( )答案 C解析 函数在[0,π]上的解析式为d =12+12-2×1×1×cos l =2-2cos l =4sin 2l 2=2sin l2.在[π,2π]上的解析式为d =2-π-l=2sin l 2,故函数的解析式为d =2sin l2,l ∈[0,2π].点评 这类题目也是近年来的一个小热点.解决的基本方法有二:一是通过分析变化趋势或者一些特殊的点,采用排除法;二是求出具体的函数解析式.6.设a 在映射f 下的象为2a+a ,则20在映射f 下的原象为________. 答案 4解析 2a+a =20,当a =4时,24+4=20. 又函数y =2x+x 为单调递增函数, ∴方程2a+a =20有且只有一个解4. ∴20在映射f 下的原象为4.7.已知f (lg x )=1x,则f (1)=________.答案110解析 f (1)=f (lg10)=110.8.如图所示,△AOB 是边长为2的正三角形,设直线x =t 截这个三角形所得到的位于此直线左方的图形的面积为y ,求函数y =f (t )的解析式.解析 当t ∈[0,1]时,y =12t ·t ·tan60°=32t 2;当t ∈(1,2]时,y =34·22-12(2-t )2tan60°=3-32(2-t )2, ∴y =f (t )=⎩⎪⎨⎪⎧32t 2, t ∈[0,1],3-32-t 2, t ∈,2].。

2014《高考调研》新课标总复习 数学(理科版) 衡水中学1-1

2014《高考调研》新课标总复习 数学(理科版)  衡水中学1-1

课时作业
高考调研
新课标版 · 数学(理)
1.下列集合中表示同一集合的是 A.M={ 2 3 } ( ) , B.M={ 3 2 } , ,N={ 3 2 } ( ) , ,N={ 2 3 } ,
(
)
C.M={(x,y)|x+y=1},N={y|x+y=1} D.M={ 3 2 } ,
答案 B
,N={ 3 2 } ( ) ,
新课标版 · 数学(理)
② A={ ∵ 5 3 } ,
, B 又 A, ax-1=0 无 , 解有 a=0;
故 B=∅, 方 若 则程
1 若 B≠∅, a≠0, ax-1=0, x= . 则 由 得 a 1 1 1 1 ∴ =3 或 =5, a=3或 a=5. 即 a a 1 1 故 C={0, , }. 3 5
a+2 0 1 3
=2 0 1 3
,则 a=0 或 a=2
当 a=0 时,集合 A 中元素重复,故舍去. 当 a=2 0 1 2 时,集合 A 满足题意.
【答案】 {} 0 2 1 2
课前自助餐
授人以渔
自助餐
课时作业
高考调研
新课标版 · 数学(理)
探究 1 由本例讲透集合的基础知识: 1 由例( 讲清:列举法与描述法及它们之间的相互转换. ( ) 1 ) 通提使生刻解素集,合集之的 过问学深理元与合集与合间 关系,并共同总结此类题的解法. 2 例( 的难点是对集合 A、 的识别: 是函数 y= 4-x2 ( ) 2 ) B A 的定义域,B 是函数 y=2x 1 的值域. 3 由例( 深刻理解集合中元素的互异性的应用. ( ) 3 )
课前自助餐
授人以渔
自助餐
课时作业
高考调研
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档